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Abstract

Motivation: In UniProtKB, up to date, there are more than 251 mil-
lion proteins deposited. However, only 0.25% have been annotated with
one of the more than fifteen thousand possible Pfam family domains. The
current annotation protocol integrates knowledge from manually curated
family domains, obtained using sequence alignments, and hidden Markov
models. This approach has been successful for automatically growing the
Pfam annotations, however at a low rate in comparison to protein dis-
covery. Just a few years ago, deep learning models were proposed for
automatic Pfam annotation. However, these models demand a consid-
erable amount of training data, which can be a challenge with poorly
populated families.
Results: To address this issue, we propose and evaluate here a novel pro-
tocol based on transfer learning. This requires the use of protein large lan-
guage models, trained with self-supervision on big unnanotated datasets
in order to obtain sequence embeddings. Then, the embeddings can be
used with supervised learning on a small and annotated dataset for a spe-
cialized task. In this protocol we have evaluated several cutting-edge pro-
tein large language models together with machine learning architectures
to improve the actual prediction of protein domain annotations. Results
are significatively better than state-of-the-art for protein families classifi-
cation, reducing the prediction error by an impressive 60% compared to
standard methods.
Keywords: large language models, protein annotations, transfer learn-
ing, protein families
Availability: We explain how LLMs embeddings can be used for protein
annotation in a concrete and easy way, and provide the pipeline in a github
repo. Full source code and data are available at: https://github.com/sinc-
lab/llm4pfam
Contact: gstegmayer@sinc.unl.edu.ar
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1 INTRODUCTION

A current challenge in bioinformatics is the computational annotation of
the immense protein universe. The annotation of the function of proteins
is very demanding as a result of the high rate of current experimental
data production [1]. For example, as of November 2023 there are more
than 251,000,000 protein entries in UniProtKB1; nevertheless only 570,157
(much less than 1%) have been manually curated by experts. This large
gap between sequencing and annotation capabilities remains because it is
easier and faster every time to generate experimental data; while on the
contrary the manual curation of results is very slow and time-consuming.

The most widely used tool for functional annotation of proteins is
domain annotation. The Pfam2 database is the repository of protein fam-
ilies and domains. Pfam has a list of well-known protein domain sequences
called seed sequences from which a domain signature is drawn and is used
for annotating new domains in novel proteins. Pfam uses BLAST [2]
sequence similarity together with manually curated seed alignments of
protein regions to obtain hidden Markov models (HMMs) profiles. The
HMMs learn a sequence probabilistic representation of each family and
are used to classify novel sequences [3]. In spite of the success of this
current approach, there still remains a high percentage of unannotated
proteins in Pfam that do not match any HMM profile. Currently UniProt
is growing at a much faster speed than its parallel Pfam coverage [4]

In many cases this happens because it is difficult to estimate the HMM
probabilities since in some families the examples available are just a few.
HMM is trained as a generative model. This means that each HMM
learns the probability distribution of one specific family, without using
information of the others. Thus, the model for a given family is not able
to use sequences from several families to learn inner patterns that might
be shared among them. Generative models delve deep into the underlying
data distribution. Each one aims to model the probability distribution of
the training data for one class (family). This way, it can gain the ability
to generate samples that closely resemble the training data. Discrimi-
native models, on the contrary, focus on learning the decision boundary
that separates classes within data. Instead of modeling data distribution
itself, they aim to model the discriminative information in the training
data. Thus, discriminative models only work with labeled data and are
very suited for classification tasks since they can effectively capture the
differences between classes.

Deep learning (DL) models have been recently proposed for this task
[5]. DL models are trained in a discriminative manner, looking at the
complete sets of training patterns at the same time. Thus, those models
are capable of inferring inner patterns or hidden rules shared across fam-
ilies, which can be very useful when new sequences have to be annotated
[6]. Nonetheless, in order to infer meaningful patterns, large amounts of
annotated data are required by DL models. This can be a constraint in
the case of scarce families, thus the alternative we propose in this protocol

1https://www.uniprot.org/
2https://www.ebi.ac.uk/interpro/entry/pfam/
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is the transfer of knowledge from already trained and large models.
Following the path in natural language processing (NLP), several large

language models (LLMs) for protein representation have recently appeared
[7, 8, 9], which given a raw protein sequence can calculate a feature vec-
tor (embedding) that encodes its representation [10]. Next, a predictive
model can solve a downstream task by learning from the embeddings that
are associated with specific target labels. This is how LLMs that have
acquired knowledge from one task can make the transfer-learning (TL) of
this knowledge into another task [11].

Protein embeddings, in particular, have recently appeared [12]. In a
recent review [13] 12 protein sequence representation learning methods
were experimentally benchmarked regarding sequence similarities repre-
sentation in the embedding space, Gene Ontology (GO) terms functional
inference and protein domain prediction. Results showed that Evolution-
ary Scale Modeling (ESM) [6] and ProtTrans [14] were the best methods
in the evaluated tasks.

We will show in this protocol how the task of protein domain anno-
tation into families can be largely improved by using TL from protein
LLMs, trained in an auto-supervised way (without requiring external an-
notations) from large-scale protein data [15]. In [16] we have already
shown that TL effectively improved classical machine learning models for
this task. In this protocol we show and explain in detail how to combine
TL with DL models for this task. We evaluate several recent LLMs in the
same TL schema to assess their performance.

2 Transfer learning and large language
models for proteins

2.1 Transfer Learning for proteins

Transfer learning is a machine learning technique where there is a trans-
fer of the knowledge learned from a general task into a very specific task
[17, 18]. It is a procedure where some knowledge that is acquired in one
scenario can be taken advantage of in order to achieve better generaliza-
tion in another one [19, 20]. The ability to learn knowledge from one
task to solve related problems in other tasks has demonstrated that TL
overcomes the limitation of standard DL models regarding the need of a
very large amount of labeled data for training, specially when the source
domain have large data availability and the corresponding task can be
defined easily [21, 22, 23].

The transfer learning protocol proposed in this article is shown in
Figure 1. At the left, there is a self-supervised large language model
(LLM), which was trained without labels and for the task of predicting
masked small segments of the input sequence. This is called pre-training
on a pretext task, which in this case is the reconstruction of a protein
sequence. This model has several hidden deep layers providing internal
representations (in gray) and a fully connected architecture for the output
representation (in blue), which will be discarded later. In the example of
this Figure, the protein sequence inputs the model with part of its amino
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Self-supervised
pre-training

on pretext task

Supervised
training

on target task

Transfer
learning

Unlabeled
dataset

Small dataset Annotations

...KQGTTRKFTIRM        LATVTTLGGAD...

...

...

...
...YTKKADREAAPAKIADESFLKRTSKLSLIKE...
...EVCFSTCASASHGRWDLGLEVPPDLARLFPF...
...VQGVAEEKIETIWESNTAGALRMRTRTYKEL...
...NPDSIDLTFMDQAAGDVALFTLFNALYYDET...
...SPEVHIDIELDSVGPIDPEFRVFAEGLLVNF...
...RNDGPGPNELVIVDKSGTMELIIADRLTIPF...
...SIEFMMTILLALTYLGACRRSVQADHITFFS...
...DFKKREALNIHIVVKLPRMGEEEPKFVMLAV...
...PPRSNVLDSIVWHKYGLARVKAWGGMVDSVT...
...TPYEVPPAHDKELSTWGGHDFALATAPALAM...
...SILLQLTDQKKIVKTVPHETILNFSEWTKSL...
...KQGTTRKFTIRMHVFHGRIELATVTTLGGAD...

...GILGQFVGVAEPRQTSLETLGWASSRNLDLI...

                 ...                          .
                 ...                          .
...DSLAERLLAVQPPCSDLQMRRPLNGVELGGK...      PF03455
...GILGQFVGVAEPRQTSLETLGWASSRNLDLI...      PF00421

HVFHGRIE PF00421

embedding

Figure 1: Transfer learning is an approach where a large model is trained on
a generic task (left), and the knowledge obtained is afterwards transferred to
be used for a specific task (right). The generic task in this protocol is protein
sequence reconstruction by self-supervised learning on UniProtKB unlabeled
data. After this pre-training, a task-agnostic deep large language model (LLM)
is generated (in gray), whose output representation (blue) is discarded. The
middle layers of the LLM (orange) are frozen and transferred to another specific
neural network architecture, whose last layers are adapted through supervised
learning on a small labeled dataset to provide new representations (green) for a
target task, which in this case of Pfam annotation.
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acids empty (HVFHGRIF) and the model has to learn how to predict
it. After pre-training, the layers of the LLM architecture are used for
feature extraction on new sequences (in gray), that is, these layers are
“transferred” to another model in order to solve a different task. The LLM
weights are usually frozen to avoid the well-known catastrophic forgetting
[24, 25, 26]. In this second stage, shown at the right of Figure 1, another
supervised model is trained on a small labeled dataset for a specific task,
which in this case is Pfam annotation. In the example, the second model
at the right (in green), has to learn how to assign each protein segment,
from the LLM embedding (in orange), to a Pfam family (PF00421 in the
example).

From a practical point of view, the way of using TL in a pipeline for
Pfam domain prediction is the following. First, obtain the embeddings
from a LLM for all the training proteins. With those protein embeddings
and their corresponding Pfam domain label, use supervised learning to
train a model. After training your own model, or using one of the already
trained models that we provide, in order to assign a family to a test
protein the embedding of the testing protein must be calculated using the
sequence as input of the LLM, as for the training proteins. Then, the test
embedding is passed through the model to obtain the Pfam prediction.
For example, if we obtain the embedding for the protein J7S630 KAZNA
and pass it through a trained model, the output class with the highest
score will be MutS III (PF05192), which corresponds to its annotated
Pfam domain at coordinates 214-5393. Annotations close to this domain,
like PF00488, will not be confused by the model and the second and
third output classes could be for example the Pfam domains DUF488 and
ORMDL, but with extremely low scores.

2.2 Large language models for proteins

LLMs that produce protein (numerical) representations (i.e. embeddings)
are becoming more and more required by the community nowadays. Since
very recently UniProtKB provides embeddings additionally to standard
protein annotations (https://www.uniprot.org/help/embeddings), but only
for two model organisms (Homo sapiens and E. coli) and SARS-CoV-2.
However, no protocol has been published yet with clear indications on how
to use them in practice for protein function annotation. Multiple protein
embedding methods appeared in the last five years [27]. A recent review
[13] stated that there are just a few LLMs that can clearly outperform
all others, even on diverse tasks. In that comparative study, ESM and
ProtTrans were the best methods for all the bioinformatics tasks evalu-
ated. For example, to quantify the ability of the embedding methods to be
used for Pfam functional domain prediction, the cosine similarity between
vector embeddings with a k-nearest neighbor classifier was evaluated. In
that test, ESM and ProtTrans showed to perform noticeably better than
other methods, regardless of the number k chosen.

ESM and ProtTrans were pre-trained on millions of unaligned se-
quences from UniProtKB. Both are based on a powerful general-purpose

3https://www.ebi.ac.uk/interpro/protein/unreviewed/J7S630/
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model architecture for representation learning that has out-performed
deep recurrent and convolutional neural networks, named Transformer
[28]. The most widely used method for pre-training is named BERT
(Bidirectional Encoder Representations from Transformers), which was
originally designed for natural language processing [29], where context
within a text is used to predict masked words. The self-supervised learn-
ing is performed under the hypothesis that word semantics can be derived
from context, thus the subjacent language is learnt from these predic-
tions. In ESM and ProtTrans the input tokens are amino acids instead of
syllables, making an analogy between text and proteins. They learn mean-
ingful per-residue encodings by following the masked language modeling
objective [29]. In the context of obtaining good protein representations,
the masked language modeling is based on randomly masking some of the
residues in the sequence (analogously to words in a sentence) and predict-
ing which residues should replace those masks. Models learn a per-residue
embedding that encodes its “meaning” within the sequence by observing
and taking into account its context. Hidden dependencies between amino
acids can be learnt by this procedure. At the end, the per-residue rep-
resentation can be averaged to a per-protein sequence embedding, to be
used afterwards in the downstream task.

ESM [6]4: this family of models were pre-trained following the BERT
procedure, using sequences of amino acids as inputs. The first optimized
Transformer model on this task was ESM1b, which was trained on a high
diversity subset of the UniProtKB database, taking the representatives of
each cluster with similarity cutoff of 50% (UR50/S). In the case of ESM1v
[30], it has the same architecture as ESM1b but it was trained on UniRef90
and it is an ensemble of five models. The most recent model available is
ESM2 [31], a general-purpose model with up to 15B parameters, being the
largest language model of proteins to date. During its training, sequences
were sampled from across ≈ 43 million UniRef50 clusters and from ≈ 138
million UniRef90 sequences, so that during training the model saw ≈ 65
million unique sequences.

ProtTrans[14]5: this model was developed using several Transform-
ers. Two auto-regressive models (Transformer-XL and XLNet) and four
auto-encoder models (BERT, Albert, Electra, and T5) were trained with
more than 2,000 million proteins and up to 393 billion amino acids from
UniRef50 and BFD databases [32]. BERT, mentioned before, is the stan-
dard for transfer learning. Albert is a simpler version of BERT with fewer
parameters. Electra is composed of a generator and a discriminator net-
work for improving efficiency in the pre-training task. T5 is an encoder-
decoder model, which projects a source language to an embedding space
and then generates a translation to a target language. Although there are
several ProtTrans instances available, in this study we have used those
indicated as the best ones (ProtBert-BFD and ProtT5-XL-U50) by the
authors in its paper [14].

4https://github.com/facebookresearch/esm
5https://github.com/agemagician/ProtTrans
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3 Data and experimental setup

3.1 Data

Publicly available Pfam v.32.0 data was used for the experiments as in [5].
The benchmark annotation task includes seed sequences from 17,929 fam-
ilies. In order to assure remote homology (low similarity between training
and testing sequences), authors in [5] used single-linkage clustering at 25%
identity within each family to build a clustered split of the Pfam-seed data
(as suggested in [33]). The objective was to have an objective measure of
how a model would perform in a realistic scenario with testing sequences
that are not similar to the training ones. The clustered benchmark was
chosen because if a large number of sequences are evolutionarily related,
a random split would include training and testing sequences that are very
close, and thus the model can memorize the training samples to classify
the test one. Instead, in the clustered split all held-out test sequences are
guaranteed to be far from the train set, avoiding overoptimistic results.

There are 1,339,083 sequences for training and 21,293 sequences for
testing in the benchmark dataset. A development subset of 10% training
data was used for early stopping. For all the data (training + testing)
we have obtained the corresponding embeddings using the following pre-
trained models:

� ESM-1b: esm1b t33 650M UR50S

� ESM-1v: esm1v t33 650M UR90S [1-5]

� ESM2: esm2 t33 650M UR50D

� ProtBert-BFD: Rostlab/prot bert bfd

� ProtT5-XL-U50: Rostlab/prot t5 xl half uniref50-enc

3.2 Experimental setup

In this protocol we compared the following methods for the Pfam families
classification task. Models without TL (HMM, BLASTp, ProtCNN and
ProtENNas reported in [5]); versus the following ML models with TL
(that is, with input embeddings):

KNN: a standard k-nearest neighbor (kNN) classifier [34] with k = 1
for the neighborhood and Euclidean distance between embeddings. Em-
beddings are averaged across residues.

MLP: a multi-layer perceptron (MLP) neural network [35] was imple-
mented with a classical architecture of 4 hidden layers of size 500, 100,
100 and 1000, respectively. The hyperparameters have been determined
in previous experiments following [5], with a small development subset of
the clustered dataset that includes 21,510 sequences well-separated from
the train and test sets. We have performed a grid search on the following
hyperparameters: the number of hidden layers (2, 3, 4), and the number
of neurons in each layer (100, 500, 1000, 5000, 10000). Optimization was
performed with Adam solver and backpropagation with cross entropy loss,
using early-stopping with patience = 5 epochs in the development subset.
Embeddings are averaged across residues to obtain the features input.
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Table 1: Pfam families classification without TL
no TL Error rate errors
HMM 18.10% 3844
BLASTp 35.90% 7639
ProtCNN 27.60% 5882
ProtENN 12.20% 2590

MLP-E: an ensemble of 5 MLP models as described above regard-
ing architecture, training options and optimization solver. The ensemble
used a majority vote algorithm to determine the output class, where the
most voted element among each classifier prediction determines the output
class.

CNN: a Convolutional neural network (CNN) adapted from [5]. In
the input a 1-D convolutional layer has input size according to each per-
residue embedding (1280 in the case of ESM, 1024 in the case of Prot-
Trans), with 1100 filters and kernel size 9. Then 5 residual network blocks
(ResNets) with 0.5 factor in the bottleneck units and dilated convolutions
are included. The output is a fully connected layer that provides the
per class scores. Cross entropy loss and Adam optimizer are used during
training.

CNN-E: an ensemble of 5 CNNs using the maximum activation of
the average scores, where each model was trained from a different random
initialization of parameters.

4 Results

4.1 Comparison between no TL and TL approaches
for Pfam families classification

Table 1 shows, for each classification method without TL (in rows), the
error rate calculated as the percentage and the absolute number of errors
as the difference between predicted family and golden standard family for
all test sequences. This table reproduces the results reported in [5], for
the same dataset and train/test partitions. In this work we used error rate
and number of errors in order to be able to compare the results directly
with [5]. However, the error rate is just one possible way of measuring
performance, which has the limitation of not taking into account false
negatives. HMM and BLASTp use the raw sequences, and ProtCNN and
ProtENN are fed with one-hot encoded inputs. The best value (lowest
classification error) is indicated in bold. It can be seen that in this ta-
ble the ensemble of CNNs using one-hot encoding, that is without TL,
achieves the best error rate of 12.20% corresponding to 2,590 errors.

Table 2 shows the results of the classifiers using TL, that is, using
inputs encoded with different embeddings, from top to bottom: ESM1b,
ESM1v, ESM2, ProtBert-BFD and ProtT5-XL-U50. The results are re-
ported as error rate and number of errors. several runs were made for
each model, with very small variations (below 0.01). The best result for

8

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
R

. V
ita

le
, L

. A
. B

ug
no

n,
 E

. F
en

oy
, D

. H
. M

ilo
ne

 &
 G

. S
te

gm
ay

er
; "

E
va

lu
at

in
g 

la
rg

e 
la

ng
ua

ge
 m

od
el

s 
fo

r 
an

no
ta

tin
g 

pr
ot

ei
ns

"
B

ri
ef

in
gs

 in
 B

io
in

fo
rm

at
ic

s,
 V

ol
. 2

5,
 N

o.
 3

, 2
02

4.



each embedding is indicated in bold. The reproducibility of the results
in Table 2 can be verified at the github repo https://github.com/sinc-
lab/llm4pfam.

If all embeddings are compared, ProtT5-XL-U50 and ESM2 are those
that allow obtaining the best results, that is the lowest errors. Both
embeddings, when used in combination with an ensemble of DL models,
achieve the lowest error rate (7.28% and 7.67%, respectively). It is very
interesting to note here that the use of TL (ProtT5-XL-U50) combined
with a simple KNN can achieve better results (8.63%) than the best result
of Table 1 (12.20%), which is an ensemble of deep learning models.

If models are analyzed, it can be stated that in all cases, the use of
TL makes them achieve competitive results in comparison to Table 1.
As stated before, a simple KNN with ProtT5-XL-U50 achieves a very low
error rate. In the case of MLP, it has the lowest error when combined with
ProtT5-XL-U50. The single CNN model achieves very similar and good
results with both ESM1b and ProtT5-XL-U50. Regarding the ensembles
of MLP, as it could be expected, achieve a better result than a single
MLP in all cases. Regarding CNN and CNN-E, they are the best models
in each table, being CNN-E with ProtT5-XL-U50 and CNN-E with ESM2
the ones with the lowest error rate in all the comparisons made.

In summary, if the best model not using TL (ProtENN) and the best
models using TL (CNN-E with ProtT5-XL-U50 and CNN-E with ESM2)
are compared, the last ones reach the best global results. It can be no-
ticed that the error rates of CNN-E with TL are almost half the error of
the ensemble of DL models without TL in Table 1. This confirms the hy-
pothesis of this study, that protein family classification could be greatly
enhanced with self-supervised learning by transferring LLM representa-
tions of protein sequences already learned without requiring annotations
from large-scale protein data. Moreover, if the error rate of standard Pfam
classification method (HMM, 3844 errors) is compared against the best
performing method with TL (1550 errors), it can be stated that the TL
approach could improve the actual classification models by 60%.

4.2 Detailed analysis for families with few sam-
ples

Figure 2 shows the error rate for HMM, ProtENN and each embedding
with the best model (CNN-E) for Pfam families classification. HMM
and ProtENN were trained and tested by us to reproduce the results of
Table 1. The x-axis indicates the number of samples of each family in
the training partition, from left (few) to right (many samples). It can
be clearly seen here that where there are just a few training samples
of a family, all methods have a very large error rate. At the extreme
left, 1 training sample per family, ProtT5-XL-U50 and ESM2 with the
CNN ensemble have the lowest error. As training samples of the families
increase, all methods decrease the error rate. HMM is, in any case, the
method with more errors. The number of classification errors is large
until a minimum number of sequences are present in the training set. In
the case of ProtENN, it has the largest error rates when there are very
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Table 2: Pfam families classification with TL
ESM1b Error rate #errors
KNN 15.16% 3229
MLP 35.23% 7501
CNN 16.66% 3548
MLP-E 21.93% 4669
CNN-E 9.56% 2035

ESM1v
KNN 21.33% 4541
MLP 41.41% 8818
CNN 18.79% 4000
MLP-E 27.33% 5819
CNN-E 10.94% 2329

ESM2
KNN 15.55% 3311
MLP 30.88% 6576
CNN 17.48% 3721
MLP-E 18.10% 3854
CNN-E 7.67% 1634

ProtBert-BFD
KNN 39.49% 8408
MLP 48.16% 10254
CNN 26.97% 5743
MLP-E 34.64% 7375
CNN-E 15.08% 3211

ProtBert-BFD
KNN 8.63% 1838
MLP 26.32% 5604
CNN 16.61% 3537
MLP-E 15.08% 3211
CNN-E 7.28% 1550

low training patterns for each family, as expected for DL models without
TL. However it should be noted that ProtENN outperforms other methods
given a sufficient number of training samples (at least 200 training samples
per family). All methods decrease the prediction error below 20% when
there are at least 100 samples per family in training. Notably, the best
performing embedding methods (ProtT5-XL-U50 and ESM2) can achieve
that error rate in the case of very low populated families, with less than
30 samples per family (see the zoom in Figure 2).

A deeper analysis was made for those families with less than 30 exam-
ples in the training set (1398 families). The error rate was calculated for
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Figure 2: Linear regression (lines) of the error rates (dots) per test families
classification for HMM, ProtENN (one-hot input) and each embedding here
evaluated with the CNN-E classifier. The x-axis shows the number of samples
at each family in the training partition, from left (fewl) to right (many samples),
showing only up to 500 training samples per family. The legend indicates the
error rate for all test families. The regression models were fitted with the number
of samples per family in logarithmic scale.

the corresponding (4420) testing sequences of those families. HMM and
ProtENN without TL were trained and tested by us to reproduce the re-
sults of Table 1. The HMM models were evaluated with the same testing
sequences, achieving a 49.69% error rate. The same procedure was done
with ProtENN, achieving a 36.60% error rate. In the case of the CNN-
E with TL, the error rates achieved were: ProtBertBFD 32.84%, ESM1v
27.59%, ESM1b 25.58%, ESM2 20.34% and ProtT5-XL-U50 16.33%. This
detailed analysis also confirms the hypothesis of this study: that the TL
approach can effectively improve the Pfam prediction rates, even in the
case of families with very low training examples.

5 Conclusions

In this protocol we implemented transfer learning to boost protein families
classification in the Pfam database. Results achieved on a clustered testing
partition showed that even the most simple machine learning classifier can
achieve better results than models without transfer learning. The results
indicate that using TL for protein families classification can impressively
reduce the prediction error in comparison to standard methods and to
DL models without TL. The outcomes suggest that transfer learning is
a feasible and effective solution for boosting protein classification, and it
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will become part of future protein annotation tools.
This protocol has shown how, instead of building a particular em-

bedder, it is more advantageous to recycle all computation time already
spent by the available protein large language models. We conclude that
using transfer learning in combination with supervised classifiers trained
on small annotated sets can have a significant impact on performance.

KEY POINTS

� We have shown here a protocol based on transfer learning for pro-
tein annotation, which involves self-supervised learning on a large
unlabeled dataset.

� Numerical embedding for each sequence can be easily obtained from
LLMs and used afterwards with supervised learning on a small la-
beled dataset.

� Transfer learning for protein families classification can impressively
reduce the prediction error by more than half compared to standard
methods.

� Transfer learning is a viable and effective solution for improving
protein classification.
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