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Summary
Correlation coefficients are widely used to identify patterns in data that may be of particular interest. In
transcriptomics, genes with correlated expression often share functions or are part of disease-relevant
biological processes. Here we introduce the Clustermatch Correlation Coefficient (CCC), an efficient,
easy-to-use and not-only-linear coefficient based on clustering. CCC assumes that if two features are similar,
then the clustering of objects using each feature separately should match. We show that CCC reveals
biologically meaningful linear and nonlinear patterns missed by standard, linear-only correlation coefficients.
Moreover, CCC is much faster than state-of-the-art coefficients such as the Maximal Information Coefficient.
When applied to human gene expression data, CCC identifies robust linear relationships while detecting
nonlinear patterns associated, for example, with sex differences that are not captured by linear-only
coefficients. Gene pairs highly ranked by CCC were enriched for interactions in integrated networks built from
protein-protein interaction, transcription factor regulation, and chemical and genetic perturbations, suggesting
that CCC could detect functional relationships that linear-only methods missed. CCC is a highly-efficient,
next-generation not-only-linear correlation coefficient that can readily be applied to genome-scale data and
other domains across different data types. A record of this paper’s Transparent Peer Review process is
included in the Supplemental Information.

Introduction
New technologies have vastly improved data collection, generating a deluge of information across different
disciplines. This large amount of data provides new opportunities to address unanswered scientific questions,
provided we have efficient tools capable of identifying multiple types of underlying patterns. Correlation
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analysis is an essential statistical technique for discovering relationships between variables1. Correlation
coefficients are often used in exploratory data mining techniques, such as clustering or community detection
algorithms, to compute a similarity value between a pair of objects of interest such as genes2 or
disease-relevant lifestyle factors3. These coefficients are also used in supervised tasks, for example, for feature
selection to improve prediction accuracy4,5. The Pearson correlation coefficient is ubiquitously deployed across
application domains and diverse scientific areas. Thus, even minor and significant improvements in these
techniques could have enormous consequences in industry and research.

In transcriptomics, many analyses start with estimating the correlation between genes. More sophisticated
approaches built on correlation analysis can suggest gene function6, aid in discovering common and cell
lineage-specific regulatory networks7, and capture important interactions in a living organism that can uncover
molecular mechanisms in other species8,9. The analysis of large RNA-seq datasets10,11 can also reveal complex
transcriptional mechanisms underlying human diseases2,12–15. Since the introduction of the omnigenic model of
complex traits16,17, gene-gene relationships are playing an increasingly important role in genetic studies of
human diseases18–21, even in specific fields such as polygenic risk scores22. In this context, recent approaches
combine disease-associated genes from genome-wide association studies (GWAS) with gene co-expression
networks to prioritize “core” genes directly affecting diseases19,20,23. These core genes are not captured by
standard statistical methods but are believed to be part of highly-interconnected, disease-relevant regulatory
networks. Therefore, advanced correlation coefficients could immediately find wide applications across many
areas of biology, including the prioritization of candidate drug targets in the precision medicine field.

The Pearson and Spearman correlation coefficients are widely used because they reveal intuitive relationships
and can be computed quickly. However, they are designed to capture linear or monotonic patterns (referred to
as linear-only) and may miss complex yet critical relationships. Novel coefficients have been proposed as
metrics that capture nonlinear patterns such as the Maximal Information Coefficient (MIC)24 and the Distance
Correlation (DC)25. MIC, in particular, is one of the most commonly used statistics to capture more complex
relationships, with successful applications across several domains4,26,27. However, the computational
complexity makes them impractical for even moderately sized datasets26,28. Recent implementations of MIC, for
example, take several seconds to compute on a single variable pair across a few thousand objects or
conditions26. We previously developed a clustering method for highly diverse datasets that outperformed
approaches based on Pearson, Spearman, DC and MIC in detecting clusters of simulated linear and nonlinear
relationships with varying noise levels29.

Here we introduce the Clustermatch Correlation Coefficient (CCC), an efficient not-only-linear coefficient that
works across quantitative and qualitative variables. CCC has a single parameter that limits the maximum
complexity of relationships found (from linear to more general patterns) and computation time. CCC provides a
high level of flexibility to detect specific types of patterns that are more important for the user, while providing
safe defaults to capture general relationships. We also provide an efficient CCC implementation that is highly
parallelizable, allowing to speed up computation across variable pairs with millions of objects or conditions. To
assess its performance, we applied our method to gene expression data from the Genotype-Tissue Expression
v8 (GTEx) project across different tissues30. CCC captured both strong linear relationships and novel nonlinear
patterns, which were entirely missed by standard coefficients. For example, some of these nonlinear patterns
were associated with sex differences in gene expression, suggesting that CCC can capture strong
relationships present only in a subset of samples. We also found that the CCC behaves similarly to MIC in
several cases, although it is much faster to compute. Gene pairs detected in expression data by CCC had
higher interaction probabilities in tissue-specific gene networks from the Genome-wide Analysis of gene
Networks in Tissues (GIANT)31. Furthermore, its ability to efficiently handle diverse data types (including
numerical and categorical features) reduces preprocessing steps and makes it appealing to analyze large and
heterogeneous repositories.
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Results

Overview of CCC: a not-only-linear correlation coefficient

Figure 1: Different patterns across data types. Each panel contains a set of simulated datasets described by
two generic variables. a) The Anscombe’s quartet with four different datasets (from Anscombe I to IV) with
numerical variables and , and 11 data points; b) Four datasets with 100 data points; c) Two datasets with𝑥 𝑦
categorical variables (with values “Orange” and “Blue”) and (with values “A”, “B” and “C”), and 100 data𝑤 𝑧
points; d) Two datasets with categorical and numerical variables, and 100 data points. Each panel shows the
correlation value using: Pearson ( ) and Spearman ( ) for numerical variables only, and CCC ( ) for both𝑝 𝑠 𝑐
numerical and categorical; their statistical significance is indicated with asterisks: (*), (**),𝑃 < 0. 05 𝑃 < 0. 01
and (***). For CCC, we computed the p-value using 10,000 permutations. Vertical and horizontal𝑃 < 0. 001
red lines show how CCC clustered data points using and , respectively. For categorical variables, CCC uses𝑥 𝑦
the categories to cluster data points.

The CCC provides a similarity measure between any pair of variables, either with numerical or categorical
values. The method assumes that if there is a relationship between two variables/features describing data𝑛
points/objects, then the clusterings of those objects using each variable should match. In the case of
numerical values, CCC uses quantiles to efficiently separate data points into different clusters (e.g., the median
separates numerical data into two clusters). For categorical values, CCC uses the categories themselves to
separate data points into different clusters (e.g., if feature “color” has three values, “red”, “green”, and “blue”,
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then data will be clustered into three clusters defined by those colors). Once all clusterings are generated
according to each variable, we define the CCC as the maximum adjusted Rand index (ARI)32 between them,
ranging between 0 and 1. Details of the CCC algorithm can be found in Methods.

We examined how the Pearson ( ), Spearman ( ) and CCC ( ) correlation coefficients behaved on different𝑝 𝑠 𝑐
simulated data patterns. Figure 1 shows different types of relationships between two variables of different data
types, where and are numerical and and are categorical. For each variable pair, we show the𝑥 𝑦 𝑤 𝑧
coefficient values and their statistical significance, where asterisks indicate different -values ( ). The red lines𝑃 𝑃
show how CCC clustered numerical data points using (vertical lines) and (horizontal lines).𝑥 𝑦

In Figure 1a, we examine the classic Anscombe’s quartet33, which comprises four synthetic datasets with
different patterns but the same data statistics (mean, standard deviation and Pearson’s correlation). This kind
of simulated data, recently revisited with the “Datasaurus”34–36, is used as a reminder of the importance of going
beyond simple statistics, where either undesirable patterns (such as outliers) or desirable ones (such as
biologically meaningful nonlinear relationships) can be masked by summary statistics alone. Anscombe I
contains a noisy but clear linear pattern, similar to Anscombe III where the linearity is perfect besides one
outlier. In these two examples, CCC separates data points using two clusters (one red line for each variable 𝑥
and ), yielding a statistically significant value of (the maximum for CCC) and thus indicating a strong𝑦 1. 0
relationship. Anscombe II seems to follow a partially quadratic relationship interpreted as linear by Pearson
and Spearman. In contrast, for this potentially undersampled quadratic pattern, CCC yields a lower and not
statistically significant value of , reflecting a more complex relationship than a linear pattern. Anscombe IV0. 34
shows a vertical line of data points where values are almost constant except for one outlier. This outlier does𝑥
not influence CCC (which correctly identifies no relationship) as it does for Pearson or Spearman, although
only Pearson yields a statistically significant result. Thus (the minimum value) correctly indicates no𝑐 = 0. 00
association for this variable pair because, besides the outlier, for a single value of there are ten different𝑥
values for . This pair of variables does not fit the CCC assumption: the two clusters formed with𝑦 𝑥
(approximately separated by ) do not match the three clusters formed with . The Pearson’s correlation𝑥 = 13 𝑦
coefficient is the same across all these Anscombe’s examples ( ), whereas Spearman is or𝑝 = 0. 82 0. 50
greater.

We also simulated additional types of numerical relationships (Figure 1b), including some previously described
from gene expression data37–39. For the random/independent pair of variables, all coefficients correctly agree
with a value close to zero and . The non-coexistence pattern, captured by all coefficients, represents𝑃 > 0. 05
a case where one gene ( ) might be expressed while the other one ( ) is inhibited, highlighting a potentially𝑥 𝑦
strong biological relationship (such as a microRNA negatively regulating another gene). For the other two
examples (quadratic and two-lines), only CCC is able to yield a high and statistically significant correlation
value, whereas Pearson and Spearman fail to capture these nonlinear patterns. These relationships also show
how CCC uses different degrees of complexity to capture the relationships. For the quadratic pattern, for
example, CCC separates into more clusters (four in this case) to reach the maximum ARI. The two-lines𝑥
example shows two embedded linear relationships with different slopes, which neither Pearson nor Spearman
detect ( and , respectively, both with ). Here, CCC increases the complexity of𝑝 =− 0. 12 𝑠 = 0. 05 𝑃 > 0. 05
the model by using eight clusters for and six for , resulting in ( ).𝑥 𝑦 𝑐 = 0. 31 𝑃 < 0. 001

Furthermore, we also simulated categorical variables, which only CCC can handle. Figure 1c shows two
patterns between variables (with categories “Orange” and “Blue”) and (with categories “A”, “B” and “C”).𝑤 𝑧
The first case (Two-Categorical I) represents a random/independent pattern where categorical values in one
variable are approximately uniformly distributed across the categorical values of the other variable. Here, as
expected, CCC yield a very low and non-significant value. In the second case (Two-Categorical II), the
category “Blue” of is overrepresented in data points with equal to “A” and, less strongly, the category𝑤 𝑧
“Orange” of is overrepresented in data points with equal to “B”. In this case, since CCC clusters data points𝑤 𝑧
using the categorical values, it detects that clusters of data points with =“Blue” match clusters with =“A”,𝑤 𝑧
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yielding a statistically significant . Figure 1d mixes a categorical variable ( ) with a numerical one ( ).𝑐 = 0. 21 𝑧 𝑦
The first case (Categorical-Numerical I) represents a random/independent pattern where numerical values in 𝑦
are approximately uniformly distributed across the categorical values in . Similarly as in the other𝑧
random/independent cases, CCC yields a very low and non-significant value, since the clusters formed by do𝑦
not match the clusters (given by the categorical values) formed by . Conversely, in the second case𝑧
(Categorical-Numerical II), clusters of data points with similar values in tend to have also similar categorical𝑦
values in . In this example, for data points with =“A”, we assigned , whereas for =“B” and “C”,𝑧 𝑧 𝑦 ∼ 𝑁 0, 0. 52( ) 𝑧
we assigned and , respectively. Here, CCC uses values to group data points𝑦 ∼ 𝑁 1, 0. 252( ) 𝑦 ∼ 𝑁 1, 0. 752( ) 𝑦
into two clusters, and these clusters match the clusters obtained from , yielding a statistically significant𝑧

.𝑐 = 0. 30

The CCC reveals linear and nonlinear patterns in human transcriptomic
data

We next examined the characteristics of these correlation coefficients in gene expression data from GTEx v8
across different tissues. For our initial analyses, we selected the top 5,000 genes with the largest variance on
whole blood and then computed the correlation matrix between genes using Pearson, Spearman and CCC
(see Methods). Although we always considered the statistical significance of the coefficients, we focused on
the strength of the association (i.e., the coefficient value) for our analyses.

We examined the distribution of each coefficient’s absolute values in GTEx (Figure 2). CCC (mean=0.14,
median=0.08, sd=0.15) has a much more skewed distribution than Pearson (mean=0.31, median=0.24,
sd=0.24) and Spearman (mean=0.39, median=0.37, sd=0.26). The coefficients reach a cumulative set
containing 70% of gene pairs at different values (Figure 2b), , and , suggesting𝑐 = 0. 18 𝑝 = 0. 44 𝑠 = 0. 56
that for this type of data, the coefficients are not directly comparable by magnitude, so we used ranks for
further comparisons. In GTEx v8, CCC values were closer to Spearman than either was to Pearson (Figure
2c). We also compared with the Maximal Information Coefficient (MIC) (see Methods), another advanced,
not-only-linear correlation coefficient that has been successfully used in various application domains4,26,27. We
found that CCC behaved very similarly to MIC, although CCC was up to two orders of magnitude faster to run
(see Methods). These results suggest that our findings for CCC generalize to MIC, therefore, in the
subsequent analyses we focus on CCC and linear-only coefficients.
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Figure 2: Distribution of coefficient values on gene expression (GTEx v8, whole blood). a) Histogram of
coefficient values. b) Corresponding cumulative histogram. The dotted line maps the coefficient value that
accumulates 70% of gene pairs. c) 2D histogram plot with hexagonal bins between all coefficients, where a
logarithmic scale was used to color each hexagon.

A closer inspection of gene pairs that were either prioritized or disregarded by these coefficients revealed that
they captured different patterns. We analyzed the agreements and disagreements by obtaining, for each
coefficient, the top 30% of gene pairs with the largest correlation values (“high” set) and the bottom 30% (“low”
set), resulting in six potentially overlapping categories (Supplementary Files 1 and 2). For most cases (76.4%),
an UpSet analysis40 (Figure 3a) showed that the three coefficients agreed on whether there is a strong
correlation (42.1%) or there is no relationship (34.3%). Since Pearson and Spearman are linear-only, and CCC
can also capture these patterns, we expect that these concordant gene pairs represent clear linear patterns.
CCC and Spearman agree more on either highly or poorly correlated pairs (4.0% in “high”, and 7.0% in “low”)
than any of these with Pearson (all between 0.3%-3.5% for “high”, and 2.8%-5.5% for “low”). In summary, CCC
agrees with either Pearson or Spearman in 90.5% of gene pairs by assigning a high or a low correlation value.
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Figure 3: Intersection of gene pairs with high and low correlation coefficient values (GTEx v8, whole
blood). a) UpSet plot with six categories (rows) grouping the 30% of the highest (green triangle) and lowest
(red triangle) values for each coefficient. Columns show different intersections of categories grouped by
agreements and disagreements. b) Hexagonal binning plots with examples of gene pairs where CCC ( )𝑐
disagrees with Pearson ( ) and Spearman ( ). For each method, colors in the triangles indicate if the gene pair𝑝 𝑠
is among the top (green) or bottom (red) 30% of coefficient values. No triangle means that the correlation value
for the gene pair is between the 30th and 70th percentiles (neither low nor high). The statistical significance is
indicated with asterisks using the False Discovery Rate (FDR) adjusted -values, calculated using the𝑃
Benjamini and Hochberg method41: (*), (**), and (***). A logarithmic𝐹𝐷𝑅 < 0. 05 𝐹𝐷𝑅 < 0. 01 𝐹𝐷𝑅 < 0. 001
scale was used to color each hexagon.

While there was broad agreement, more than 20,000 gene pairs with a high CCC value were not highly ranked
by the other coefficients (“Disagreements” group on the right of Figure 3a). There were also gene pairs with a
high Pearson value and either low CCC (1,075), low Spearman (87) or both low CCC and low Spearman
values (531). No gene pairs were found to have a high Spearman value and a low CCC. Considering the
correlation values and their statistical significance, we analyzed gene pairs among the top ten of each
intersection in the “Disagreements” group (Figure 3a, right) where CCC disagrees with Pearson, Spearman or
both.
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Figure 4: The expression levels of KDM6A and UTY display sex-specific associations across GTEx
tissues. CCC captures this nonlinear relationship in all GTEx tissues (nine examples are shown in the first
three rows), except in female-specific organs (last row).

The first two gene pairs at the top of Figure 3b (IFNG - SDS, with high CCC and Spearman, and low Pearson;
PRSS36 - CCL18, with high CCC and low Pearson) appear to follow a non-coexistence relationship: in
samples where one of the genes is highly expressed, the other is slightly activated, suggesting a potentially
inhibiting effect. The following four gene pairs (UTY - KDM6A, DDX3Y - KDM6A, RASSF2 - CYTIP, and
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AC068580.6 - KLHL21) follow patterns combining either two linear or one linear and one independent
relationships. In particular, genes UTY - KDM6A (paralogs) and DDX3Y - KDM6A show a nonlinear
relationship where a subset of samples follows a robust linear pattern and another subset has a constant
(independent) expression of one gene. The relationships in these two gene pairs are explained by sex
differences in expression: UTY and DDX3Y are in chromosome Y (Yq11) whereas KDM6A is in chromosome X
(Xp11), and therefore samples with a linear pattern are males, whereas those with no expression for UTY or
DDX3Y are females. Furthermore, for this sex-specific gene pair pattern, CCC yields a statistically significant
coefficient value in 45 out of 47 tissues in GTEx, except for female-specific organs (Figure 4 and S1, and
Supplementary File 3). The gene pair RASSF2 - CYTIP was replicated in an independent dataset as we
explain later. Even though we have not found a biological explanation for gene pair AC068580.6 - KLHL21
(there is limited information about AC068580.6, ENSG00000235027, a long non-coding RNA), its strong
nonlinear connection with KLHL21 (linked with some cancers42) is robustly captured by CCC only. Notably,
these four gene pairs contain strong linear relationships and CCC is the only coefficient able to consistently
capture these nonlinear patterns across a variety of tissues with a statistically significant and high correlation
value. Pearson and Spearman show a statistically significant correlation value for some of these gene pairs,
although these values are low and would very likely not be prioritized for further research. In addition, these
two linear-only coefficients are unable to robustly capture the same pattern in other tissues (Figure 4 and S1,
and Supplementary File 3). For instance, although the three coefficients are statistically significant in whole
blood for the gene pair UTY - KDM6A, Pearson and Spearman fail to capture the same pattern in the brain
cerebellum, and in many cases, such as small intestine, the sign of the coefficient is negative despite the
strong positive linear correlation among male samples (Figure 4).

Finally, the last two gene pairs in Figure 3b are highly ranked by Pearson, but not by CCC or Spearman.
Although all coefficients are significant for the gene pair MYOZ1 - TNNI2, the low CCC ( ) and𝑐 = 0. 03
moderate Spearman ( ) contrast with Pearson’s ( ), suggesting a statistically significant but𝑠 = 0. 28 𝑝 = 0. 97
very weak linear relationship. The high and statistically significant Pearson value for SCGB3A1 - C19orf33
seems to be driven by outliers.

Replication of gene associations using tissue-specific gene networks from
GIANT

We sought to systematically analyze discrepant scores to assess whether associations were replicated in other
datasets besides GTEx. This is challenging and prone to bias because linear-only correlation coefficients are
usually used in gene co-expression analyses. Therefore, we used 144 tissue-specific gene networks from the
Genome-wide Analysis of gene Networks in Tissues (GIANT) project43,44, where nodes represent genes and
each edge a functional relationship weighted with a probability of interaction between two genes (see
Methods). The version of GIANT used in this study did not include GTEx samples45, making it an ideal case for
replication. These networks were built from expression and different interaction measurements, including
protein-interaction, transcription factor regulation, chemical/genetic perturbations and microRNA target profiles
from the Molecular Signatures Database (MSigDB46). We reasoned that statistically significant and
highly-ranked gene pairs using three different coefficients in a single tissue (whole blood in GTEx, Figure 3)
that represented real patterns should often replicate in a corresponding tissue or related cell lineage using the
multi-cell type functional interaction networks in GIANT. In addition to predicting a network with interactions for
a pair of genes, the GIANT web application can also automatically detect a relevant tissue or cell type where
genes are predicted to be specifically expressed (the approach uses a machine learning method introduced
in47 and described in Methods).

As an example of our evaluation procedure, we obtained the networks in blood and the automatically-predicted
cell type for gene pairs RASSF2 - CYTIP (strong nonlinear pattern and CCC high, Figure 5a) and MYOZ1 -
TNNI2 (weak linear pattern and Pearson high, Figure 5b). In addition to the gene pair, the networks include
other genes connected according to their probability of interaction (up to 15 additional genes are shown), which
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allows estimating whether genes are part of the same tissue-specific biological process. Two large black nodes
in each network’s top-left and bottom-right corners represent our gene pairs. A green edge means a
close-to-zero probability of interaction, whereas a red edge represents a strong predicted relationship between
the two genes. In this example, genes RASSF2 and CYTIP (Figure 5a), with a high CCC value ( ,𝑐 = 0. 20
above the 73th percentile) and low Pearson and Spearman ( and , below the 38th and 17th𝑝 = 0. 16 𝑠 = 0. 11
percentiles, respectively), were both strongly connected to the blood network, with interaction scores of at least
0.69 and an average of 0.77 and 0.85, respectively (Supplementary Table S1). The autodetected cell type for
this pair was leukocytes, and interaction scores were similar to the blood network (Supplementary Table S1).
However, genes MYOZ1 and TNNI2, with a very high Pearson value ( ), moderate Spearman (𝑝 = 0. 97

) and very low CCC ( ), were predicted to belong to much less cohesive networks (Figure 5b),𝑠 = 0. 28 𝑐 = 0. 03
with average interaction scores of 0.17 and 0.22 with the rest of the genes, respectively. Additionally, the
autodetected cell type (skeletal muscle) is not related to blood or one of its cell lineages. These preliminary
results suggested that CCC might be capturing blood-specific patterns missed by the other coefficients.

Figure 5: Analysis of GIANT tissue-specific predicted networks for gene pairs prioritized by correlation
coefficients. a-b) Two gene pairs prioritized by correlation coefficients (from Figure 3b) with their predicted
networks in blood (left) and an automatically selected tissue/cell type (right) using the method described in47. A
node represents a gene and an edge the probability that two genes are part of the same biological process in a
specific cell type. A maximum of 15 genes are shown for each network. The GIANT web application
automatically determined a minimum interaction confidence (edges’ weights) to be shown. These networks can
be analyzed online using the following links: RASSF2 - CYTIP48, MYOZ1 - TNNI249. c) Summary of predicted
tissue/cell type networks for gene pairs exclusively prioritized by CCC and Pearson ( ). The first𝐹𝐷𝑅 < 0. 05
row combines all gene pairs where CCC is high, and Pearson and Spearman are not. The second row
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combines all gene pairs where Pearson is high, and CCC and Spearman are not. Bar plots (left) show the
number of gene pairs for each predicted tissue/cell type. Box plots (right) show the average probability of
interaction between genes in these predicted tissue-specific networks. Red indicates CCC-only tissues/cell
types, blue are Pearson-only, and purple are shared.

We next performed a systematic evaluation using the top 100 discrepant gene pairs between CCC and the
other two coefficients. For each gene pair prioritized in GTEx (whole blood), we autodetected a relevant cell
type using GIANT to assess whether genes were predicted to be specifically expressed in a blood-relevant cell
lineage. For this, we used the top five most commonly autodetected cell types for each coefficient and
assessed connectivity in the resulting networks (see Methods). The top 5 predicted cell types for gene pairs
highly ranked by CCC and not by the rest were all blood-specific (Figure 5c, top left), including macrophage,
leukocyte, natural killer cell, blood and mononuclear phagocyte. The average probability of interaction between
genes in these CCC-ranked networks was significantly higher than the other coefficients (Figure 5c, top right),
with all medians larger than 67% and first quartiles above 41% across predicted cell types. In contrast, most
Pearson’s gene pairs were predicted to be specific to tissues unrelated to blood (Figure 5c, bottom left), with
skeletal muscle being the most commonly predicted tissue. The interaction probabilities in these
Pearson-ranked networks were also generally lower than in CCC, except for blood-specific gene pairs (Figure
5c, bottom right).

The associations exclusively detected by CCC in whole blood from GTEx were more strongly replicated in
these independent networks that incorporated multiple data modalities. CCC-ranked gene pairs not only had
higher probabilities of belonging to the same biological process but were also predicted to be specifically
expressed in blood cell lineages. Conversely, most Pearson-ranked gene pairs were not predicted to be
blood-specific, and their interaction probabilities were relatively much lower. This lack of replication in GIANT
suggests that top Pearson-exclusive-ranked gene pairs in GTEx might be driven mainly by outliers, which is
consistent with our earlier observations of outlier-driven associations (Figure 3b).

Discussion
We introduce the Clustermatch Correlation Coefficient (CCC), an efficient not-only-linear clustering-based
statistic. Applying CCC to GTEx v8 revealed that it was robust to outliers and detected linear relationships as
well as complex and biologically meaningful patterns that standard coefficients missed. In particular, CCC
alone detected gene pairs with complex nonlinear patterns from the sex chromosomes, highlighting the way
that not-only-linear coefficients can play in capturing sex-specific differences. The ability to capture these
nonlinear patterns, however, extends beyond sex differences: it provides a powerful approach to detect
potentially complex relationships where a subset of samples or conditions are explained by other factors (such
as differences between health and disease). We found that top CCC-ranked gene pairs in whole blood from
GTEx were replicated in independent tissue-specific networks trained from multiple data types and attributed to
cell lineages from blood, even though CCC did not have access to any cell lineage-specific information. This
suggests that CCC can disentangle intricate cell lineage-specific transcriptional patterns missed by linear-only
coefficients. In addition to capturing nonlinear patterns, the CCC was more similar to Spearman than Pearson,
highlighting their shared robustness to outliers. The CCC results were concordant with MIC, but much faster to
compute and thus practical for large datasets. Another advantage over MIC and standard coefficients is that
CCC can also process categorical variables together with numerical values. CCC is conceptually easy to
interpret and has a single parameter that controls the maximum complexity of the detected relationships while
also balancing compute time.

Datasets such as Anscombe or “Datasaurus” highlight the value of visualization instead of relying on simple
data summaries. While visual analysis is helpful, for many datasets examining each possible relationship is
infeasible, and this is where more sophisticated and robust correlation coefficients are necessary. Advanced
yet interpretable coefficients like CCC can focus human interpretation on patterns that are more likely to reflect
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real biology. The complexity of these patterns might reflect heterogeneity in samples that mask clear
relationships between variables. For example, genes UTY - KDM6A (from sex chromosomes), detected by
CCC, have a strong linear relationship but only in a subset of samples (males), which was not captured by
linear-only coefficients. This example, in particular, highlights the importance of considering sex as a biological
variable (SABV)50 to avoid overlooking important differences between men and women, for instance, in disease
manifestations51,52. More generally, a not-only-linear correlation coefficients that support categorical variables
like CCC could identify significant differences between variables (such as genes) that are explained by a third
factor (beyond sex differences), that would be entirely missed by linear-only coefficients.

It is well-known that biomedical research is biased towards a small fraction of human genes53,54. Some genes
highlighted in CCC-ranked pairs (Figure 3b), such as SDS (12q24) or PRSS36 (16p11), were previously found
to be the focus of fewer than expected publications55. It is possible that the widespread use of linear
coefficients may bias researchers away from genes with complex coexpression patterns. A beyond-linear gene
co-expression analysis on large compendia might shed light on the function of understudied genes. For
example, gene KLHL21 (1p36) and AC068580.6 (a long non-coding RNA gene in 11p15) have a high CCC
value and are missed by the other coefficients. KLHL21 was suggested as a potential therapeutic target for
hepatocellular carcinoma42 and other cancers56,57. Its nonlinear correlation with AC068580.6 might unveil other
important players in cancer initiation or progression, potentially in subsets of samples with specific
characteristics (as suggested in Figure 3b).

Not-only-linear correlation coefficients might also be helpful in the field of genetic studies. In this context,
genome-wide association studies (GWAS) have been successful in understanding the molecular basis of
common diseases by estimating the association between genotype and phenotype58. However, the estimated
effect sizes of genes identified with GWAS are generally modest, and they explain only a fraction of the
phenotype variance, hampering the clinical translation of these findings59. Recent theories, like the omnigenic
model for complex traits16,17, argue that these observations are explained by highly-interconnected gene
regulatory networks, with some core genes having a more direct effect on the phenotype than others. Using
this omnigenic perspective, we and others19,20,23 have shown that integrating gene co-expression networks with
genetic studies could potentially identify core genes that are missed by linear-only models alone like GWAS.
Our results suggest that building these networks with the latest approaches60 and advanced and efficient
correlation coefficients could better estimate gene co-expression profiles and thus more accurately identify
these core genes. Approaches like CCC could play a significant role in the precision medicine field by
providing the computational tools to focus on more promising genes representing potentially better candidate
drug targets.

Our analyses have some limitations. We worked on a sample with the top variable genes in a single tissue
from GTEx to keep computation time feasible. Although CCC is much faster than MIC, Pearson and Spearman
are still the most computationally efficient since they only rely on simple data statistics. Our results, however,
reveal the advantages of using more advanced coefficients like CCC for detecting and studying more intricate
molecular mechanisms that are replicated in independent datasets. The application of CCC on larger
compendia, such as recount311 with thousands of heterogeneous samples across different conditions, can
reveal other potentially meaningful gene interactions. We compute -values using computationally intensive𝑃
permutation tests; in the future, we plan to explore efficient permutation approaches such as those based on
extreme value theory61. The single parameter of CCC, , controls the maximum complexity of patterns𝑘

𝑚𝑎𝑥

found and also impacts the compute time. Our analysis suggested that was sufficient to identify both𝑘
𝑚𝑎𝑥

= 10

linear and more complex patterns in gene expression. A more comprehensive analysis of optimal values for
this parameter could provide insights to adjust it for different applications or data types. Finally, computing the
correlation between a gene pair represents only the first step of the analysis. Controlling for known
confounders, integrating with other data types, and replicating in independent datasets are some of the other
important steps to ensure the biological relevance of the detected patterns.
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While linear and rank-based correlation coefficients are exceptionally fast to calculate, not all relevant patterns
in biological datasets are linear. For example, patterns associated with sex as a biological variable are not
apparent to the linear-only coefficients that we evaluated but are revealed by not-only-linear methods. Beyond
sex differences, being able to use a method that inherently identifies patterns driven by other factors is likely to
be desirable. Not-only-linear coefficients can also disentangle intricate yet relevant patterns from expression
data alone that were replicated in models integrating different data modalities. CCC, in particular, is highly
parallelizable, and we anticipate efficient GPU-based implementations that could make it even faster. The CCC
is an efficient, next-generation correlation coefficient that is highly effective in transcriptome analyses and
potentially useful in a broad range of other domains.
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Method details

Data preprocessing

We downloaded gene expression data from GTEx v8 (https://gtexportal.org/) for all tissues, normalized using
TPM (transcripts per million), and focused our primary analysis on whole blood, which has a good sample size
(755). We selected the top 5,000 genes from whole blood with the largest variance after standardizing with

to avoid a bias toward highly expressed genes. We then computed Pearson62,63, Spearman62,63, the𝑙𝑜𝑔 𝑥 + 1( )
Maximal Information Coefficient (MIC)64 and CCC on these 5,000 genes across all 755 samples, generating a
pairwise similarity matrix of size 5,000 x 5,000.

The Clustermatch Correlation Coefficient (CCC)

Definitions

Definition 1.1. Given a data vector then define𝑥 = 𝑥
1
, 𝑥

2
, ..., 𝑥

𝑛( ) ∈ 𝑅𝑛

π
ℓ

= {𝑖∣ρ
ℓ

< 𝑥
𝑖

≤ ρ
ℓ+1

}, ∀ℓ ∈ 1, 𝑘[ ]

as a partition of the objects of into clusters, where is a set of cutpoints (e.g., quantiles) that𝑛 𝑥 π| | = 𝑘 ρ 𝑘 + 1
define the clusters, with and . If is a categorical vector with no intrinsic ordering,ρ

1
= 𝑚𝑖𝑛 𝑥( ) ρ

𝑘+1
= 𝑚𝑎𝑥 𝑥( ) 𝑥

then a partition is defined as

π
ℓ

= {𝑖∣𝑥
𝑖

= 𝐶
ℓ
}, ∀ℓ ∈ 1, |𝐶|[ ]

where is a set of unique values in corresponding to the categorical values that𝐶 = {𝑐
1
, 𝑐

2
, ..., 𝑐

𝑚
} 𝑥 𝑚 = |𝐶|

define the clusters.

Definition 1.2. Given two partitions and of objects, the adjusted Rand Index (ARI)32 is given byπ π′ 𝑛

𝐴𝑅𝐼 π, π′( ) =
2 𝑛

0
𝑛

1
−𝑛

2
𝑛

3( )
𝑛

0
+𝑛

2( ) 𝑛
2
+𝑛

1( )+ 𝑛
0
+𝑛

3( ) 𝑛
3
+𝑛

1( ) ,

where is the number of object pairs that are in the same cluster in both partitions and , is the number𝑛
0

π π′ 𝑛
1

of object pairs that are in different clusters, is the number of object pairs that are in the same cluster in but𝑛
2

π

in different clusters in , and is the number of object pairs that are in different clusters in but in the sameπ′ 𝑛
3

π

cluster in . Intuitively, reflects the number of object pairs where both partitions agree, and areπ′ 𝑛
0

+ 𝑛
1

𝑛
2

+ 𝑛
3

those in which they disagree.

Definition 1.3. The Clustermatch Correlation Coefficient (CCC) between and is defined as the maximum𝑥 𝑦
ARI between all possible partitions of and𝑥 𝑦

𝐶𝐶𝐶 𝑥, 𝑦( ) = 𝑚𝑎𝑥{0,
π

𝑗
∈Π𝑥 π

𝑙
∈Π𝑦 

max {𝐴𝑅𝐼 π
𝑗
, π

𝑙( )}}, ∀ π| | ∈ 2, 𝑘
𝑚𝑎𝑥[ ]

where is a set of partitions derived from , is a set of partitions derived from , and specifies theΠ𝑥 𝑥 Π𝑦 𝑦 𝑘
𝑚𝑎𝑥

maximum number of clusters allowed. The ARI has an upper bound of 1 (achieved when both partitions are
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identical), and although it does not have a well-defined lower bound, values equal or less than zero are
achieved when partitions are independent. Therefore, . In the special case where all objects𝐶𝐶𝐶 𝑥, 𝑦( ) ∈ 0, 1[ ] 𝑛
in either or have the same value, the CCC is undefined.𝑥 𝑦

The CCC has the following basic properties derived from the ARI: 1) symmetry, since ;𝐴𝑅𝐼 π, π′( ) = 𝐴𝑅𝐼 π′, π( )
2) normalization, since it takes a minimum value of zero and a maximum of one since ; 3)𝐴𝑅𝐼 π, π( ) = 1
constant baseline, since the ARI is adjusted-for-chance32, it returns a value close to zero for independently
drawn partitions, and this also holds when partitions have different number of clusters65. This is an important
property, since CCC compares partitions with different numbers of clusters, and relationships between two
variables (such as linear or quadratic) might be better represented with different numbers of clusters as shown
in Figure 1.

The maximum number of clusters 𝑘
𝑚𝑎𝑥

The parameter is the maximum number of clusters allowed for any partition derived from or . On one𝑘
𝑚𝑎𝑥

𝑘 𝑥 𝑦

hand, note that the same value of might not be the right one to find a relationship between any two variables.𝑘
For instance, in the quadratic example in Figure 1, CCC returns a value of 0.36 (grouping objects in four
clusters using one variable and two using the other). If we used only two clusters instead, CCC would return a
similarity value of 0.02. On the other hand, computational time increases quadratically with . In addition, it𝑘

𝑚𝑎𝑥

is important to note that given the constant baseline property of the ARI, the CCC returns a value close to zero
for independent variables regardless of the value of . As shown in Figure S2, this holds even for very large𝑘

𝑚𝑎𝑥

values of , approaching the number of objects . Note that as approaches , the number of singleton𝑘
𝑚𝑎𝑥

𝑛 𝑘
𝑚𝑎𝑥

𝑛

clusters (i.e., clusters with only one object) increases, which would not be useful for finding relationships
between variables. Therefore, given the constant baseline property, only represents a tradeoff between𝑘

𝑚𝑎𝑥

the ability to capture complex patterns and the computational cost, with random/independent variables having
a CCC value close to zero regardless of the value of ; we found that works well in practice, and𝑘

𝑚𝑎𝑥
𝑘

𝑚𝑎𝑥
= 10

it was used as the default maximum number of clusters across all our analyses.

Statistical significance

Our null hypothesis is that the variables represented by and are independent. To compute a -value, we𝑥 𝑦 𝑃
perform a set of permutations of values in and compute the CCC between and each permuted vector. The𝑦 𝑥
-value is the proportion of CCC values using the permuted data that are greater than or equal to the CCC𝑃

value between and . We used 1 million permutations in all our analyses, and we adjusted the -values using𝑥 𝑦 𝑃
the Benjamini and Hochberg procedure41 to control the false discovery rate (FDR); given the computational
cost, we computed a -value only for gene pairs from the “Disagreements” group in Figure 3, which contains𝑃
gene pairs ranked differently by the correlation coefficients.
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Algorithm

The main function of the algorithm, ccc, generates a set of partitions for variable (line 16), and anotherΠ𝑥 𝑥

set of partitions for variable (line 17). Then, it computes the ARI between each partition andΠ𝑦 𝑦 π
𝑗

∈ Π𝑥

and gets the maximum (line 18), returning either this value or zero if this is negative (line 19).π
𝑙

∈ Π𝑦

Since CCC only needs a set of partitions to compute a correlation value, any type of variable that can be used
to perform clustering is supported. If variable is numerical (lines 2 to 6 in the get_partitions function),𝑣
each partition is generated using a set of quantiles . For example, if , then , where isπ ρ 𝑘 = 2 ρ = ρ

1
, ρ

2
, ρ

3( ) ρ
1

the minimum value of , is the median, and is the maximum value of . Then, the first cluster contains𝑣 ρ
2

ρ
3

𝑣 π
1

all values of that are less than or equal to , and contains all values of that are greater than . If𝑣 ρ
2

π
2

𝑣 ρ
2

variable is categorical (lines 8 to 11), we compute a single partition with clusters, where𝑣 π 𝑚 = 𝐶| |
is a set of unique categorical values in . Therefore, all variable types are internally𝐶 = {𝑐

1
, 𝑐

2
, ..., 𝑐

𝑚
} 𝑣

represented as partitions and it is not necessary to access the original data values to compute the ARI.
Consequently, numerical and categorical variables can be naturally integrated.

Our algorithm implementation uses as the default. This means that for a variable pair, 18 partitions𝑘
𝑚𝑎𝑥

= 10

are generated (9 for each variable, from to ), and 81 ARI comparisons are performed. Smaller𝑘 = 2 𝑘 = 10
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values of can reduce computation time, although at the expense of missing more complex/general𝑘
𝑚𝑎𝑥

relationships. Our examples in Figure 1 suggest that using would force CCC to find linear-only𝑘
𝑚𝑎𝑥

= 2

patterns, which could be a valid use case scenario where only this kind of relationships are desired. In addition,
implies that only two partitions are generated, and only one ARI comparison is performed.𝑘

𝑚𝑎𝑥
= 2

As a final remark, generating partitions (lines 15 and 16) and computing their similarity (line 17) can be easily
parallelized. We used three CPU cores in our analyses to speed up the computation of CCC and this could be
potentially extended to a large number of processors using a GPU.

Strength of linear correlation

Figure 4 shows the relationships between UTY (chromosome Y) and KDM6A (chromosome X) across tissues
in GTEx. For this gene pair, CCC can find a complex pattern where a subset of samples (males) follows a clear
linear relationship, and there is no relationship in the rest of the samples (females). As it can be seen, there is
a difference in the strength of the linear correlation between male samples across different tissues. For
example, in brain cerebellum, the linear correlation among male samples is stronger than in small intestine
(terminal ileum). As shown in Figure S3a, this difference is reflected by all coefficients when only male samples
are considered.

However, when we consider all samples (males and females), there is no longer a linear relationship between
UTY and KDM6A. Therefore, while a subset of the data displays linear relationships, overall, it is no longer true
that there is a linear correlation. CCC assumes that if two variables (genes in our case) are similar, the
clustering of objects (samples) using each variable separately should match. As shown in Figure S3a with red
lines, this clustering of samples and their matching can be seen for the gene pair UTY / KDM6A: when we only
consider male samples, CCC finds clusterings in brain cerebellum with a larger matching than in small intestine
because the linear strength differs. But when we consider all samples together (males and females, as shown
in Figure S3b), the pattern is nonlinear, the distribution of all the data is different, and so are the clusterings
found by CCC.

The effect of analyzing all the data (males and females) in this nonlinear pattern (Figure 4) is also clear in the
negative sign of Pearson and Spearman coefficients in small intestine or even other tissues with a very strong
and clear linear pattern among male samples such as breast mammary tissue. This case indicates that
Pearson and Spearman, although statistically significant, are capturing the wrong pattern. Therefore, the fact
that CCC yields a similar value (0.19) for these nonlinear patterns in brain cerebellum and small intestine
(Figure S3b) reflects a similar clustering matching when considering all the samples. When applied only to the
data with linear relationships of varying strength, CCC performs consistently with other coefficients.

Presence of substructure in the data

Consider a scenario where there are known and undesirable substructures in the data. In the example in
Figure S4, we have simulated two distinct clusters (normally distributed) placed diagonally, horizontally, and
vertically. The only case where the CCC is close to 1.0 (Diagonal, left) is when the clusterings/partitions of
objects using each variable ( and ) match, which coincides with a linear pattern. In the other two cases𝑥 𝑦
(Horizontal and Vertical), clusterings of objects do not match, leading to a CCC value of zero. We note that MIC
has the same behavior.

Tissue-specific network analyses using GIANT

We accessed tissue-specific gene networks of GIANT using both the web interface and web services provided
by HumanBase44. The GIANT version used in this study included 987 genome-scale datasets with
approximately 38,000 conditions from around 14,000 publications. Details on how these networks were built
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are described in31. Briefly, tissue-specific gene networks were built using gene expression data (without GTEx
samples45) from the NCBI’s Gene Expression Omnibus (GEO)66, protein-protein interaction (BioGRID67,
IntAct68, MINT69 and MIPS70), transcription factor regulation using binding motifs from JASPAR71, and chemical
and genetic perturbations from MSigDB72. Gene expression data were log-transformed, and the Pearson
correlation was computed for each gene pair, normalized using the Fisher’s z transform, and z-scores
discretized into different bins. Gold standards for tissue-specific functional relationships were built using expert
curation and experimentally derived gene annotations from the Gene Ontology. Then, one naive Bayesian
classifier (using C++ implementations from the Sleipnir library73) for each of the 144 tissues was trained using
these gold standards. Finally, these classifiers were used to estimate the probability of tissue-specific
interactions for each gene pair.

For each pair of genes prioritized in our study using GTEx, we used GIANT through HumanBase to obtain 1) a
predicted gene network for blood (manually selected to match whole blood in GTEx) and 2) a gene network
with an automatically predicted tissue using the method described in47 and provided by HumanBase web
interfaces/services. Briefly, the tissue prediction approach trains a machine learning model using
comprehensive transcriptional data with human-curated markers of different cell lineages (e.g., macrophages)
as gold standards. Then, these models are used to predict other cell lineage-specific genes. In addition to
reporting this predicted tissue or cell lineage, we computed the average probability of interaction between all
genes in the network retrieved from GIANT. Following the default procedure used in GIANT, we included the
top 15 genes with the highest probability of interaction with the queried gene pair for each network.

Comparison with the Maximal Information Coefficient (MIC)

We used the Python package minepy74,75 (version 1.2.5) to estimate the MIC coefficient. In GTEx v8 (whole
blood), we used MICe (an improved implementation of the original MIC introduced in64) with the default
parameters alpha=0.6, c=15 and estimator='mic_e'. We used the pairwise_distances function
from scikit-learn63 to parallelize the computation of MIC on GTEx. For our computational complexity
analyses, we ran the original MIC (using parameter estimator='mic_approx') and MICe
(estimator='mic_e').

Conceptual and statistical differences between CCC and MIC

The Clustermatch Correlation Coefficient (CCC) and the Maximal Information Coefficient (MIC)24 are measures
designed to capture non-linear relationships between variables. While they share certain similarities, there are
also notable differences between them.

Conceptually, CCC is grounded in clustering input data using each variable separately. This process effectively
transforms each variable into a set of partitions, each containing a different number of clusters. The CCC then
quantifies the correlation between variables by assessing the similarity of these partitions. This allows to
process of various types of variables, including both numerical and categorical variables, even when the
categories are nominal (i.e., they lack intrinsic order), as explained in Methods. MIC, however, is specifically
designed for numerical variables. Additionally, in theory, CCC should also support correlating variables with
different dimensions. For 1-dimensional variables (such as genes), CCC obtains partitions using a
quantiles-based approach. For multidimensional variables, CCC could potentially use a standard clustering
algorithm (such as -means) to obtain partitions.𝑘

Now, consider two variables with data points on a scatterplot. We can overlay a grid on this scatterplot with𝑛 𝑥
columns and rows, where each cell of this grid contains a portion of the data points, thereby defining a𝑦
bivariate probability distribution. The MIC algorithm seeks an optimal grid configuration that maximizes the ratio
of mutual information to , subject to the constraint that . This normalization process using𝑙𝑜𝑔𝑚𝑖𝑛{𝑥, 𝑦} 𝑥𝑦 < 𝑛0.6

scales the MIC score between zero and one. The CCC, as defined in Methods, also generates a𝑙𝑜𝑔𝑚𝑖𝑛{𝑥, 𝑦}
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symmetric, normalized score between zero and one. However, unlike MIC which utilizes normalized mutual
information, CCC employs the Adjusted Rand Index (ARI). The ARI has an advantageous property: it
consistently returns a baseline (zero) for independently drawn partitions, irrespective of the number of clusters
(see Figure S2). This property is not inherent in mutual information, which can produce varied values for
independent variables if the grid dimensions vary. MIC mitigates this by limiting the grid size with the constraint

, which could also limit its ability to detect complex relationships.𝑥𝑦 < 𝑛0.6

Both CCC and MIC involve binning the input data vectors, aiming to maximize the mutual information and the
ARI, respectively. However, their approaches differ in complexity and execution. MIC utilizes a sophisticated
dynamic programming algorithm to identify the optimal grid. In contrast, CCC employs a more straightforward
and faster method, partitioning the data points separately using the two vectors. While CCC might benefit from
adopting MIC’s more complex grid search approach, it remains uncertain if MIC could maintain its performance
using CCC’s simpler partitioning strategy.

Regarding their parameters, CCC’s (maximum number of clusters) and MIC’s (maximum grid size)𝑘
𝑚𝑎𝑥

𝐵 𝑛( )

serve similar purposes. They control both the complexity of the patterns detected and the computational time.
For example, as illustrated in Figure 1 (Anscombe I and III), a of 2 is adequate for identifying linear𝑘

𝑚𝑎𝑥

patterns but insufficient for more complex patterns like quadratic or two-lines patterns. A similar principle
applies to MIC’s . However, a critical distinction exists between the two: the constant baseline property of𝐵 𝑛( )
ARIs ensures that CCC returns a value close to zero for independent variables, regardless of . In contrast,𝑘

𝑚𝑎𝑥

MIC may produce non-zero scores for independent data if is set too high, as discussed in Section 2.2.1 of𝐵 𝑛( )
the supplementary material in24. The authors of MIC suggest that a value of is generally effective in𝐵 𝑛( ) = 𝑛0.6

practice.

Comparison in gene expression data

We compared all the coefficients in this study with MIC, a popular nonlinear method that can find complex
relationships in data, although very computationally intensive76. We ran MICe (see Methods) on all possible
pairwise comparisons of our 5,000 highly variable genes from whole blood in GTEx v8. Then we performed
the analysis on the distribution of coefficients (the same as in the main text), shown in Figure 6. We verified
that CCC and MIC behave similarly in this dataset, with essentially the same distribution but only shifted.
Figure 6c shows that these two coefficients relate almost linearly, and both compare very similarly with
Pearson and Spearman.
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Figure 6: Distribution of MIC values on gene expression (GTEx v8, whole blood) and comparison with
other methods. a) Histogram of coefficient values. b) Corresponding cumulative histogram. The dotted line
maps the coefficient value that accumulates 70% of gene pairs. c) 2D histogram plot with hexagonal bins
between all coefficients, where a logarithmic scale was used to color each hexagon.

Computational complexity of coefficients

We also compared CCC with the other coefficients in terms of computational complexity. Although CCC and
MIC might identify similar gene pairs in gene expression data (see here), the use of MIC in large datasets
remains limited due to its very long computation time, despite some methodological/implementation
improvements74,76–79. The original MIC implementation uses ApproxMaxMI, a computationally demanding
heuristic estimator37. Recently, a more efficient implementation called MICe was proposed64. These two MIC
estimators are provided by the minepy package74, a C implementation available for Python. We compared all
these coefficients in terms of computation time on randomly generated variables of different sizes, which
simulates a scenario of gene expression data with different numbers of conditions. Differently from the rest,
CCC allows us to easily parallelize the computation of a single gene pair (see Methods), so we also tested the
cases using 1 and 3 CPU cores. Figure 7 shows the time in seconds in log scale.
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Figure 7: Computational complexity of all correlation coefficients on simulated data. We simulated
variables/features with varying data sizes (from 100 to a million, -axis). The plot shows the average time in𝑥
seconds (log-scale) taken for each coefficient on ten repetitions (1000 repetitions were performed for data size
100). CCC was run using 1 and 3 CPU cores. MIC and MICe did not finish running in a reasonable amount of
time for data sizes of 10,000 and 100,000, respectively.

As we already expected, Pearson and Spearman were the fastest, given that they only need to compute basic
summary statistics from the data. For example, Pearson is three orders of magnitude faster than CCC. Among
the nonlinear coefficients, CCC was faster than the two MIC variations (up to two orders of magnitude), with
the only exception in very small data sizes. The difference is important because both MIC variants were
implemented in C74, a high-performance programming language, whereas CCC was implemented in Python
(optimized with numba). For a data size of a million, the multi-core CCC was twice as fast as the single-core
CCC. This suggests that new implementations using more advanced processing units (such as GPUs) are
feasible and could make CCC reach speeds closer to Pearson.

Supplemental files
Note that these files were uploaded to Zenodo here because there is a size limit in the Editorial Manager
system. This was added as an entry to the Key Resources Table.
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File Legend

Supplemental File 1 All pairwise gene correlations using Pearson,
Spearman and CCC among the top 5,000 genes in
GTEx’s whole blood with the largest variance.
Columns indicates whether the gene pair was
categorized in the top or bottom 30% of each
coefficient, the correlation value, and the significance
of the association. Significance is only present for the
top 10 gene pairs of each intersection in the
“Disagreements” group (Figure 3a, right) where CCC
disagrees with Pearson, Spearman or both.

Supplemental File 2 Percentiles of the coefficient values for the top 5,000
genes in GTEx’s whole blood.

Supplemental File 3 Pearson, Spearman and CCC correlations values
and their significance for two gene pairs (UTY -
KDM6A and DDX3Y - KDM6A) across all tissues in
GTEx.
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