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Abstract

An ever-growing body of work has shown that machine learning systems can be systematically
biased against certain sub-populations defined by attributes like race or gender. Data imbalance
and under-representation of certain populations in the training datasets have been identified as
potential causes behind this phenomenon. However, understanding whether data imbalance with
respect to a specific demographic group may result in biases for a given task and model class is
not simple. An approach to answering this question is to perform controlled experiments, where
several models are trained with different imbalance ratios and then their performance is evaluated
on the target population. However, in the absence of ground-truth annotations at deployment
for an unseen population, most fairness metrics cannot be computed. In this work, we explore
an alternative method to study potential bias issues based on the output discrepancy of pools of
models trained on different demographic groups. Models within a pool are otherwise identical in
terms of architecture, hyper-parameters, and training scheme. Our hypothesis is that the output
consistency between models may serve as a proxy to anticipate biases concerning demographic
groups. In other words, if models tailored to different demographic groups produce inconsistent
predictions, then biases are more prone to appear in the task under analysis. We formulate the
Demographically-Informed Prediction Discrepancy Index (DIPDI) and validate our hypothesis in
numerical experiments using both synthetic and real-world datasets. Our work sheds light on the
relationship between model output discrepancy and demographic biases and provides a means to
anticipate potential bias issues in the absence of ground-truth annotations. Indeed, we show how
DIPDI could provide early warnings about potential demographic biases when deploying machine
learning models on new and unlabeled populations that exhibit demographic shifts.

1 Introduction

Machine learning (ML) models are susceptible to exhibiting biases against certain subpopulations
defined in terms of sensitive demographic characteristics such as gender, age, or race. Examples of
such biases can be found in a variety of fields, including predictive policing (Angwin et al. 2016),
facial analysis (Buolamwini & Gebru 2018), and healthcare (Chen et al. 2019, Ricci Lara et al. 2022).
Factors that contribute to biased models may include the data used for training and evaluation, as
well as decisions made during the development process (Suresh & Guttag 2019). As ML applications
in the real world become increasingly widespread, it is important to evaluate models to ensure that
they are not only accurate but also produce fair and ethical results.

In particular, under-representation of certain demographic groups has been identified as one of the
main causes of bias when developing predictive systems. Although many types of biases exist and
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can be measured using different metrics, here we are mostly concerned about disparities in predictive
performance usually studied in the literature of group fairness (e.g. as measured by the gap in accuracy
between different demographic groups for classification systems, or the gap in mean absolute error per
demographic group for regression problems). For example, gender imbalance in X-ray medical imaging
datasets has been shown to have a significant impact on the performance of assisted diagnosis systems
for thoracic diseases based on convolutional neural networks (Larrazabal et al. 2020), as measured
by the gap in area under the receiver operating curve (AUC-ROC) for male and female individuals.
Another example is given by under-representation of ethnic groups, which has also been found to
influence model performance for cardiac image segmentation (Puyol-Antón et al. 2021), as measured
by the differences in the Dice coefficient between different groups. However, in other tasks, such data
imbalance has not been associated with unequal performance. In Petersen et al. (2022) for example,
the authors found that in the case of Alzheimer’s disease prediction from brain magnetic resonance
images (MRI), gender imbalance in the training dataset did not lead to a clear pattern of improved
model performance for the majority group. A similar phenomenon was observed in Kinyanjui et al.
(2020), where the authors studied under-representation of skin color when analyzing dermoscopic
images for skin cancer detection, and did not observe such disparities. This observation was then
challenged by Groh et al. (2021), which found disparities in performance arising from training a neural
network on only a subset of skin types. In all, it is not always a fact that data imbalance will result
in biased automated systems. To complicate matters further, even when the presence of biases can
be assessed during the development of an automated tool, these properties may not transfer under
distribution shifts (Schrouff et al. 2022), for instance, once the model is deployed. This is a problem
for fairness metrics which require ground-truth annotations, which are expensive to obtain and may
not be available before deployment. Given these issues, a valid question that one may then ask is:
can we anticipate whether models will exhibit biases with respect to data imbalance in terms of a
particular protected attribute in the absence of ground-truth annotations?

Typical approaches to identify biases in ML models involve subgroup analysis and controlled ex-
periments where both demographic and target labels are available (Larrazabal et al. 2020, Buolamwini
& Gebru 2018, Glocker et al. 2021). Model performance across demographic groups is commonly eval-
uated employing one or more metrics (Corbett-Davies & Goel 2018) with the implicit assumption that
the presence or absence of biases during development will be representative of the behaviour of these
models when applied to previously unseen data at deployment. Recent findings regarding how fairness
properties transfer across distribution shifts in real-world healthcare applications due to changes in
geographic location or population demographics, warn us about the risks of this assumption (Schrouff
et al. 2022). A system that did not exhibit strong biases in the source population may begin to do
so when the target population changes. This is particularly concerning in applications like healthcare,
where collecting expert annotations on large datasets can be costly and time-consuming (Ricci Lara
et al. 2022), meaning that fairness metrics requiring labels may not be computed, with the result of
biases going unnoticed. In this context, developing methods that can be used without the need for
ground truth in the target population becomes highly relevant. In this paper, we are interested in
exploring ways to anticipate potential bias issues that may arise in the context of a given task for a
novel unlabeled target population. We do so by proxy: using an index that we call Demographically-
Informed Prediction Discrepancy Index (DIPDI), which can be computed in the absence of ground
truth annotations. We provide an analytical derivation demonstrating the relation between DIPDI and
performance gaps, and show in numerical experiments using both synthetic and real-world datasets
that this index is indeed indicative of bias proneness, providing an early warning for potential fairness
issues in these settings.

2 Related work

The implicit assumption that model assessment during development is representative of its behaviour
at deployment is not unique to fairness studies. Indeed, anticipating whether a model will systemat-
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ically fail or not when ground-truth annotations are not available is a current topic of interest in the
field, and one way to tackle this issue is to look at predictive uncertainty (Gal et al. 2016). Intuitively,
if a well-calibrated model systematically makes highly uncertain predictions for certain individuals,
then chances are that these predictions will have a higher failure rate for those individuals. In this
context, recent studies have analyzed the relation between fairness and uncertainty, postulating that
uncertainty estimates can be used to obtain fairer models, improve decision-making, and build trust
in automated systems (Bhatt et al. 2021). For example, Lu et al. (2021) analyzed how alternative
uncertainty estimation methods can be used to evaluate subgroup disparities in mammography image
analysis, while Stone et al. (2022) leveraged epistemic uncertainty estimates to mitigate minority group
biases during training. The work of Dusenberry et al. (2020) discusses the role of model uncertainty in
predictive models for Electronic Health Record (EHR), and shows how it can change across different
patient subgroups, in terms of ethnicity, gender and age, considering Bayesian and deep ensemble
approaches for uncertainty estimation. Even though in this work we do not directly rely on the notion
of uncertainty, our study is highly influenced by this idea, as it explores the use of output discrepancy
for a set of models as a way of anticipating bias issues. This notion is closely related to ensemble vari-
ance, usually employed as a measure of uncertainty for ensemble methods (Lakshminarayanan et al.
2017, Pividori et al. 2016, Larrazabal et al. 2021). Another important concept in our study is that of
consistency (Wang et al. 2020), defined as the ability of a set of multiple trained learners to reproduce
an output for the same input. According to this concept, model outputs are analyzed irrespective of
whether they are correct or incorrect, and as such, it does not require ground-truth annotations to be
computed. This idea will be central to our study, as we explore how changes in consistency for pools
of models trained on the same or different demographic groups will correlate with potential biases that
may emerge in a given task.

Contributions: Here we present a methodology to understand whether biases with respect to a given
demographic attribute are prone to arise in a new unlabeled dataset. We do so by analyzing the output
consistency of a pool of models, where each model is trained on separate demographic groups, but is
otherwise identical in terms of architecture, hyper-parameters and training scheme. We introduce a
new index, DIPDI, based on the following hypothesis: if models specialized in different demographic
groups produce discrepant predictions for the same test data, then the task under analysis is prone to
be biased against that demographic attribute. Note that throughout this manuscript, we consider that
a task is prone to be biased with respect to a given demographic attribute when we observe systematic
performance gaps for models trained on different demographic groups characterized by such attribute.

We validate our hypothesis using synthetic and real-world datasets, focusing on regression and
classification tasks: age regression from face photos and X-ray images, classification of younger vs
older celebrities in face images, as well as hair color classification. We use four real-world datasets and
consider different cases of demographic imbalance in the training data. Our results indicate that DIPDI
can be used to anticipate potential bias issues in the absence of ground truth labels, and confirm the
association between output discrepancy and bias proneness. We also assess the behaviour of DIPDI for
unseen populations with different types of distribution shifts, showing how it can be used to measure
bias proneness in dynamic contexts. Moreover, since our metric does not require expert annotations
to be computed, it could help to anticipate bias issues in real-world scenarios and give early warnings
when deploying machine learning models on new, unlabeled populations.
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3 Demographically-Informed Prediction Discrepancy
Index (DIPDI)

3.1 Quantifying output discrepancy within and between demo-
graphically-informed sets of models

Given two sets of predictive models A = {A1, A2} and B = {B1, B2}, we are interested in analyzing
how the output discrepancy of models within the same set compares to the output discrepancy of
models coming from different sets, when they are evaluated on samples from an unlabeled dataset
D. Here A(xk) : X −→ Y is a predictive model (e.g. a regression or classification model), where
xk ∈ D ⊆ X can be images or other types of data for subject k, and the output of A(xk) is a label
y ∈ Y which could be a real number for regression problems as well as a categorical label or a soft
probability estimate for classification problems.

We then define an average output discrepancy function ND(M1,M2), that takes as input two
models M1 and M2, and returns a number representing how different their outputs are on average
when evaluated on all samples from D. We measure the discrepancy between two models using a
discrepancy function d(·, ·) so that the average output discrepancy is defined as

ND(M1,M2) =
1

|D|
∑

xk∈D
d(M1(xk),M2(xk)). (1)

For example, in regression problems the discrepancy function d(·, ·) could be the absolute or the
quadratic error, while in classification problems it could be the Jensen–Shannon divergence between
the output distributions for models M1,M2. In other words, the average output discrepancy is the
mean discrepancy d(M1,M2) between the predicted values of models M1 and M2 for all subjects in the
dataset. It returns a number closer to 0 when the outputs of the two models for every data sample are
similar, and higher if they tend to differ. Since we are interested in analyzing the output discrepancy
for models within and between sets, we consider the following ratio as an indicator of relative output
discrepancy:

ΦD(A,B) = log

[
ND(A1, B1)ND(A2, B2)

ND(A1, A2)ND(B1, B2)

]
. (2)

This inter-model prediction discrepancy will be close to 0 when the output discrepancy for models
within the same set (numerator) is similar to that of models coming from different sets (denominator),
and it will be greater than 0 when the discrepancy for models coming from different sets is greater than
that of models coming from the same set. When applied to models trained on different demographic
groups, we refer to this diverse set of models as a demographically-informed pool and ΦD becomes our
Demographically-Informed Prediction Discrepancy Index (DIPDI). This will be the case, for example,
when models in A are trained on male individuals while models in B are trained on female individuals.

Note that in our current analysis, we have focused on model sets of size 2 for simplicity (e.g. both
A and B have two elements). However, it is important to note that this concept can be extended
to larger sets. The generalization involves considering combinations of pairs of models both within
each set and between different sets. For an extension of DIPDI to handle groups with more than two
models, please refer to Appendix A.1.

3.2 DIPDI as a proxy for anticipating bias issues

Our goal is to anticipate whether biases may arise with respect to a particular protected attribute a
in a novel dataset before annotated labels become available. Here we provide an example where the
task at hand is age regression and the protected attribute a indicates the gender of the individual,
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which for simplicity we take as male (a = M) or female (a = F ). We create two sets of models
(age regressors): A, where models Ai are trained only on male individuals, i.e. a = M ; and B,
where models Bi are trained only on female individuals, i.e. a = F . We say that this constitutes a
demographically-informed pool of models, as each of them was trained on individuals from a particular
demographic group characterized by the protected attribute a. Let us also have a fixed dataset D that
will be used as the novel target population where potential biases would want to be flagged. D is a
balanced dataset according to the protected attribute a (but unlabeled with respect to output class,
i.e. without the reference age). In our example, this means that D is composed of 50% male and 50%
female individuals.

Our hypothesis is that for larger values of ΦD(A,B), computed for a pool of models comprising
sets A and B, biases are more likely to emerge. In other words, we hypothesize that inconsistencies
between the output discrepancy of models trained on highly imbalanced datasets with respect to the
protected attribute a will tend to co-occur with potential bias issues. To confirm our hypothesis, we
first look for biases with respect to a using ground-truth annotations in the target population (following
a strategy similar to Larrazabal et al. (2020)), by computing performance gaps in terms of absolute
error (using the ground-truth of each sub-population). Then we calculate DIPDI, which does not
require ground-truth labels for D, and verify if it produces results that are in line with the conclusions
we drew when using the annotations. As a sanity check, we incorporate control experiments where we
break the assumption that sets A and B are trained on different demographic groups (e.g. by training
models in A and B using balanced data formed by 50% male and 50% female individuals), and show
that in these cases DIPDI returns values close to 0. Moreover, the theoretical derivation included in
Appendix A.2 provides analytic expressions for the relationship between performance gap and output
discrepancies captured by DIPDI, assuming one-dimensional Gaussian soft outputs for classification
models.

4 Experimental validation

We start by verifying the behaviour of DIPDI under controlled conditions using synthetic data (Section
4.1). Then, we perform a set of experiments to evaluate the proneness to gender bias of tasks such as
age estimation (from face and X-ray images) and younger vs. older classification of celebrities (from
face images). Our focus is particularly on scenarios where a specific subgroup is underrepresented, as
discussed in Larrazabal et al. (2020). We show that DIPDI anticipates potential biases against the
minority group when training data is highly imbalanced in gender representation (Section 4.3). To
this end, we employ ground-truth annotations for the target population to compute performance gaps
for models trained with different imbalance ratios, in the different subgroups. Then, we proceed to
compute DIPDI (which does not require ground-truth labels) in the target population. We show that
bias gaps tend to occur for larger DIPDI values (Section 4.4). We conclude the study by showing how
DIPDI can serve to anticipate potential bias issues at deployment in populations with distribution
shifts, when target annotations are not yet available (Section 4.5).

4.1 DIPDI on synthetic data

We start by verifying the behaviour of the proposed DIPDI using synthetic data. The purpose is
to show, using a simple example, how sensitive DIPDI is when measuring bias proneness. To this
end, we generate a synthetic dataset composed of samples si = (xi, yi), where xi ∈ R2 are bi-
dimensional feature vectors coming from two bi-variate normal distributions Na=0(µ0 = (0, 0),Σ0 = I)
and Na=1(µ1 = (1, 1),Σ1 = I). These distributions simulate different demographic groups charac-
terized by a protected attribute a = 1 (e.g. female) or a = 0 (e.g. male). We then generate the
corresponding labels yi ∈ R for each data sample to simulate a regression problem (e.g. age regres-
sion). We do this by assigning yi to be equal to the first feature dimension of the sample, linearly
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(a)

(b)

Figure 1: (a) Mean absolute error (MAE) of SVR models trained on synthetic datasets of age estimation
with varying gender imbalance ratios. (b) DIPDI values for different group compositions, highlighting
the impact of gender imbalance in prediction consistency. Statistical significance with respect to a
mean equal to 0 was measured by a Wilcoxon test (ns: non-significant, *: p-value < 0.05, **: p-value
< 0.01, ***: p-value < 0.001).

interpolated to ensure it is within 1 and a 100 years, with an added uniform random noise of 10 years,
simulating an age estimation scenario (see Figure 7 in the Appendix B.1). We then train support vec-
tor regression (SVR) models on these samples, perform inference, and subsequently compute DIPDI
based on the actual predictions produced by these models.

Importantly, to ensure that under-representation of a certain group will bias age regression models
to exhibit better performance in the majority group, we sample each distribution by varying the
proportion of male and female samples in training. The range of gender imbalance cases spans from
100-0 (100% male) to 0-100 (100% female), with increments of 10%. We generated 10,000 training
samples that were partitioned into 10 folds for statistical purposes, and an additional 1,000 samples
for testing that were held constant across all experiments.

The results of the synthetic experiment are presented in Figure 1. At the top (Figure 1a), the mean
absolute error (MAE) is shown for models trained with different imbalance ratios evaluated on males,
females, and the whole population. We can see performance disparities across demographic groups,
which highlights the impact of gender imbalance on predicted accuracy. The corresponding DIPDI
values are shown in Figure 1b. The observed results are consistent with our hypothesis that DIPDI
helps to anticipate bias proneness. In Appendix B.2 we include results for an even simpler synthetic
experiment, where instead of simulating the dataset and training SVR models, we directly simulate
the model outputs and show how DIPDI reacts in highly controlled conditions.
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4.2 DIPDI on real scenarios: datasets and experimental setup

We conduct experiments on the task of age regression using convolutional neural networks (CNNs),
employing three public databases: ChestX-ray14 (Wang et al. 2017), UTKFace (Zhang et al. 2017)
and IMDB-WIKI (Rothe et al. 2018). We also evaluate DIPDI for classification problems, considering
a binary classification (younger vs older celebrities) using the CelebA dataset (Liu et al. 2015). All
experiments were performed using PyTorch (Paszke et al. 2017) and executed on an NVIDIA Titan X
GPU.1.

ChestX-ray14 dataset. The ChestX-ray14 dataset contains 112,120 high-reso-lution frontal-view
radiographs of 30,805 unique patients with age and gender labels. Each image is annotated with up
to 14 different chest disease labels extracted from radiology reports (not used in our study), age and
gender. We use the ChestX-ray14 dataset to perform subgroup analysis in terms of gender and to
evaluate DIPDI in models trained to perform age estimation from radiological images. We use here
for gender the binary labels reported in the dataset, i.e. male and female. To avoid having two images
of the same patient in train and test, we randomly selected one image per patient, resulting in a
total of 28,350 images which include healthy and pathological cases. This database was divided into
10 folds using a stratified cross-validation strategy, where each fold is balanced by gender. For each
cross validation instance, one fold is used to evaluate the model and the remaining 9 folds are used to
train the model, which are further sub-divided into training (90%) and validation (10%) subsets for
hyper-parameter tuning and model selection.

For all experiments on ChestX-ray14 we used a DenseNet-121 (Huang et al. 2017) pretrained on
ImageNet (Russakovsky et al. 2015). The last layer of the network was replaced with an adaptive
pooling layer, followed by a single-output neuron layer to predict age. The models were trained for 50
epochs using the Adam optimizer (Kingma & Ba 2014) with default parameters and the mean absolute
error (MAE) loss function.

UTKFace dataset. The UTKFace dataset is a collection of over 20,000 facial images spanning ages
from 0 to 116, annotated for age, gender, and ethnicity. It exhibits diverse variations in pose, facial
expression, lighting, occlusion, and resolution. Images were filtered to include ages from 10 to 100 and
followed the same training settings as applied in the case of ChestX-ray14. This dataset is utilized for
subgroup analysis and assessing DIPDI in age estimation models.

We employed a VGG-16 architecture (Simonyan & Zisserman 2014), pretrained on ImageNet, with
the final layer replaced by adaptive pooling and a single-output neuron layer for age prediction.

IMDB-WIKI dataset. The IMDB-WIKI dataset consists of 523,051 face images of 20,284 celebrities
collected from IMDB and Wikipedia with age and gender labels. Age is estimated from the date of
birth and the year when the photo was taken. The IMBD-WIKI dataset is used to perform subgroup
analysis and to evaluate DIPDI for models trained to perform age estimation from facial images.

We used a VGG-19 architecture (Simonyan & Zisserman 2014) pre-trained on ImageNet. We added
a single-output neuron layer with ReLU activation and fine-tuned the last four layers. The models
were trained with a MAE loss for 10 epochs using the Adam optimizer with default parameters.

CelebA dataset. The CelebFaces Attributes (CelebA) dataset (Liu et al. 2015) is a large-scale
repository comprising over 200,000 celebrity images, each annotated with 40 attributes. This dataset
covers diverse facial poses and background variations. In our study, we choose the ’young’ attribute as
the target label (thus classifying younger vs older individuals) for prediction, and balance both gender
and target to mitigate potential spurious correlations.

To conduct subgroup analysis and evaluate DIPDI in classification models, we employed a ResNet-
50 architecture (He et al. 2016) pretrained on ImageNet, replacing the final layer with a two-output

1Our code is publicly available at https://github.com/lamansilla/DIPDI-Biases
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neuron layer for binary classification. The training process followed the same protocols as ChestX-ray14
and UTKFace, employing the cross-entropy loss.

4.3 Assessing the impact of gender imbalance in a supervised setting

Age estimation from X-ray images. We analyze the impact of gender imbalance in age estimation
from radiological images by performing a supervised subgroup evaluation. The aim is to understand
if the age estimation task is prone to be biased with respect to gender if a certain subgroup is under-
represented. We will then see if the proposed DIPDI can predict such behaviour without ground-truth
annotations. We train models with different degrees of gender imbalance and then examine their
performance separately in male and female subgroups. We consider five cases of gender imbalance in
training: 100-0, 75-25, 50-50, 25-75, and 0-100. Importantly, male and female subgroups in the test
population are always equal in size. This means that every model is evaluated on equal footing.

The MAE for ChestX-ray14 is shown in Figure 2a. The results show that imbalance with respect
to the protected attribute leads to a significant difference in performance across subgroups, confirming
that this problem is prone to be biased with respect to gender if there is under-representation in the
training dataset. For example, when testing on female subjects, models trained only on male (100-0)
data have higher MAE than models trained on female images. The same happens when testing on
female individuals: models trained only on female data (0-100) significantly outperform those trained
on male data. Moreover, the differences between male and female subgroups are less significant when
the training data is less imbalanced. These results are consistent with previous observations reported
by Larrazabal et al. (2020) in the context of disease prediction from X-ray images. Appendix B.3
contains supplementary results for ChestX-ray14 including additional statistics and metrics.

Age estimation from face images. We also perform a similar analysis to study the impact of
gender imbalance in age estimation from facial images. For UTKFace, we followed the same procedure
as for ChestX-ray14. Figure 2c shows the MAE results for models trained with varying degrees of
gender imbalance and tested on male and female subgroups over 10 folds. These results demonstrate
a significant performance disparity across subgroups resulting from an imbalance in the protected
attribute.

In the case of IMDB-WIKI, we train an ensemble of 5 models with different degrees of male-female
imbalance and then evaluate their performance separately in male and female subgroups. We perform
20-fold cross-validation with a 60/20/20 ratio for the training, validation, and test sets.

The MAE is shown in Figure 2e for these experiments. We observe that the models perform better
in the subgroup (either male or female) that is most represented in training, while their performance
deteriorates in the other subgroup.

Younger vs older classification from face images. We explore the impact of gender imbalance
when classifying celebrity photos using the CelebA dataset as either younger vs older individuals.
Figure 2g presents the accuracy results by subgroup over 10 folds for models trained with varying gender
imbalance ratios. The results reveal large gaps in performance for different demographic subgroups in
highly imbalanced cases, while the gaps reduce for more balanced cases. We include supplementary
results for CelebA in Appendix B.4, which include confusion matrices and a fairness metric (Equality
of Opportunity).

4.4 Estimating bias proneness without ground-truth via DIPDI

In the previous section we confirmed that age estimation and classification of younger vs older individ-
uals are tasks prone to be biased with respect to gender, by computing error gaps between subgroups
using ground-truth annotations. Now, we want to study if it is possible to measure such bias prone-
ness in a given population without ground-truth labels using DIPDI. We are interested in analyzing if
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Results for age estimation (rows 1-3) and younger vs older classification (row 4) across
models trained with different gender imbalance ratios. Model performance, measured through MAE
and Accuracy, shows wider gaps in highly imbalanced cases. It is effectively captured by DIPDI with
higher values for imbalance, and close-to-zero values for balanced cases.
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output discrepancy for demography-aware model sets can be used as a proxy for anticipating potential
fairness problems in specific ML tasks. To this end, we compute DIPDI in the same settings where
we explicitly evaluated biases in the previous section. Note that we choose different discrepancy func-
tions d(·, ·) (from Equation 1) for regression and classification problems. For regression problems, we
choose d to be the absolute error between the model predictions. For classification, as we output soft
probabilities, we adopt the Jensen–Shannon divergence between the output distributions.

In all datasets, we consider different scenarios of gender imbalance for the set of models A and B
to be evaluated. Five comparisons are made: 100-0 vs 0-100, 75-25 vs 25-75, 50-50 vs 50-50, 25-75
vs 75-25, and 0-100 vs 100-0. To control for finite-size sampling variability, we split the training data
into four random disjoint partitions, so that no data is shared between models even when they are
trained for the same demographic sub-group (i.e. even though A1 and A2 are trained on subjects from
the same demographic group, the exact individuals are not the same). Then DIPDI is computed on
the held-out test set (i.e. the unlabeled data D), which is balanced by gender. Additional results for
DIPDI are included in Appendix B.5.

The plots in the right column of Figure 2 show DIPDI for the age regression and younger vs older
classification tasks. Note that, in all scenarios, the index values are very close to 0 when comparing
sets of models trained in the same population, but higher than 0 when comparing models from different
populations, in line with the absence or presence of biases as a function of data imbalance shown in the
corresponding left column. Taken together these results demonstrate the co-occurrence between higher
DIPDI and bias proneness: models coming from the same demographic population, produce more
consistent outputs when evaluated on a target population. This output stability is clearly evidenced
by index values close to 0 for 50-50 distributions. In contrast, the index returns significantly higher
values when it comes to models trained with different demographic subgroups, where biases are in turn
prone to appear, as shown in our previous supervised analysis (Section 4.3). Importantly, note that
no labels were required in the target population D when computing DIPDI.

4.5 Anticipating potential demographic biases in distribution shift scenar-
ios with DIPDI

We have highlighted in the previous section the role of DIPDI in identifying potential demographic
biases in populations that lack ground-truth annotations. Now, we turn our attention to a new chal-
lenge: demonstrating how DIPDI can deal with domain shift scenarios even when ground-truth data
is unavailable. Prior research has identified the vulnerability of fairness properties of machine learning
models when deployed on datasets differing from those used during model development (Schrouff et al.
2022). In this context, we leverage DIPDI as an unsupervised alternative to traditional fairness met-
rics for understanding bias proneness in populations under different types of distribution shifts. Here
we focus on two cases: covariate shift, where the conditional distribution of the input features (e.g.
pixel intensities) changes between source and target population; and label shift, where the conditional
distribution of labels change between source and target (e.g. different prevalence for a disease, or
different age distributions in our age regression problem). As discussed in Schrouff et al. (2022), such
shifts as well as other types of changes in data distribution, may result in failures of fairness transfer
across distribution shifts. In other words, models that were not biased in a source distribution may
start to exhibit biases in the target distribution. To this end, we explore two different scenarios.

4.5.1 Label shift: age distribution experiment

This experiment involves a target population that is always balanced by gender, and we introduce
label shifts by altering the age distribution within one gender group (either male or female, but not
both). Specifically, we increase the proportion of individuals with ages exceeding a predefined limit
(set at 45 in our experiments), while maintaining the age distribution within the non-shifted group.
For each shift scenario considered, we calculate both the DIPDI and the MAE gap (∆MAE) between
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male and female models, when tested separately on male and female subsets. For the male subset, we
calculate the ∆MAE by subtracting the MAE of a female-trained model from that of a male-trained
model. Similarly, for the female subset, we subtract the MAE of a male-trained model from that of a
female-trained model. Note that the calculation of ∆MAE requires access to ground truth annotations,
whereas DIPDI does not.

Figure 3 presents the mean and standard deviation of DIPDI and ∆MAE for age shift ratios ranging
from 50% to 90% (a shift ratio of 90%, for example, implies 90% of the subpopulation is under 45, and
10% is at or above 45). Our aim here is to understand if such label shift results in a task that is more
prone to be biased with respect to the demographic groups under analysis. In principle, there could be
three possibilities when compared with the original distribution: the problem is more, equally or less
prone to be biased. Note that when the shift affects the male group (Fig. 3a), DIPDI tends to slightly
increase, and a corresponding slightly increasing gap is observed for both male and female test groups.
On the other hand, when varying the proportion of females younger than 45 years old in the unseen
population, we observe that the ∆MAE between models trained on male and female individuals stays
constant for males (red curve in Fig. 3b, right panel), but decreases for female subjects (blue curve),
reaching a level of bias proneness equivalent to the one observed for males (at 90%, where the blue
and red curves intersect). In other words, decreasing the age of the female population changes the bias
proneness of that group (as measured by analyzing the ∆MAEs), making it more fair as it reaches
levels of bias proneness equivalent in both populations. As expected, the DIPDI index follows exactly
the same tendency (is reduced as bias proneness is reduced), confirming our hypothesis. This different
behavior observed when introducing label shifts in the test male and female groups may be rooted in
the different ways in which the features of each group interact with age. In fact, for this dataset it is
well known that the baseline performance is different for both groups. This could explain the greater
susceptibility of a group to changes in age distribution.

These experiments underscore the effectiveness of DIPDI in a label shift scenario, particularly when
ground-truth annotations are unavailable. An increase in DIPDI during deployment, compared to the
development phase, can be interpreted as an indicator of intensifying bias proneness within one or
both demographic groups, whereas a decrease in DIPDI implies a potential reduction in bias within
these groups.

4.5.2 Covariate shift: color distribution experiment

In this experiment, we evaluate a classification model trained for a new task: distinguishing between
blond and non-blond celebrities in the CelebA dataset. While the model is trained on the original
color images, we induce a covariate shift in the target population by transforming color test images
(RGB) to grayscale. We guarantee target and gender balance in both training and test splits to avoid
spurious correlations in our experiment, executing 10 runs with different random seeds.

Figure 4 presents DIPDI values and the accuracy gap (∆Acc) between models trained on male
and female subjects, tested on the whole target population with covariate shift (grayscale images) and
without covariate shift (RGB images). We note that evaluating bias proneness of the original models
in the shifted distribution using the ground-truth annotations shows decreased bias overall. Notably,
the ∆Acc between models trained on male and female subjects becomes more similar for both groups
for grayscale images compared to RGB. The DIPDI index consistently captures this behavior, resulting
in a decrease when computed in grayscale images.

5 Discussion

In this work, we tackle the issue of anticipating potential demographic biases at deployment in the
absence of ground truth annotations. Typical methods designed to assess fairness require access to such
annotations, which may be available at training time but not when deploying models for previously
unseen data. A prototypical example of this would be a model trained on a public dataset which will

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
L

. M
an

si
lla

, E
. C

la
uc

ic
h,

 R
. E

ch
ev

es
te

, D
. H

. M
ilo

ne
 &

 E
. F

er
ra

nt
e;

 "
D

em
og

ra
ph

ic
al

ly
-I

nf
or

m
ed

 P
re

di
ct

io
n 

D
is

cr
ep

an
cy

 I
nd

ex
: E

ar
ly

 W
ar

ni
ng

s 
of

 D
em

og
ra

ph
ic

 B
ia

se
s 

fo
r 

U
nl

ab
el

ed
 P

op
ul

at
io

ns
"

T
ra

ns
ac

tio
ns

 o
n 

M
ac

hi
ne

 L
ea

rn
in

g 
R

es
ea

rc
h,

 2
02

4.



(a)

(b)

Figure 3: Mean and standard deviation DIPDI (left) and MAE gap (right) under label shift scenarios
for male (a) and female (b) groups separately on UTKFace. Label shift is induced by modifying the
age distribution of individuals under 45 years at increasing ratios for male and female test groups
independently. Note that in both cases of shift, the DIPDI tends to follow the behaviour of the
difference curve, showing an increase with increasing biases and a decrease with decreasing biases.
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Figure 4: DIPDI values (left) and accuracy gap (right) corresponding to covariate shift (RGB to
grayscale) in CelebA for blond classification. Note that accuracy gaps become more similar as images
transform from RGB to grayscale, supported by a decrease in DIPDI.

then be applied to a local population for which we do not have the corresponding annotations. Recent
work has highlighted how distribution shifts may affect fairness (Schrouff et al. 2022), resulting in a
potential risk. While an explicit fairness metric may not be computed, we argue that we can employ
the discrepancy of output predictions from pools of models trained on different demographic groups
as a proxy to provide an early warning about potential demographic biases. We propose a concrete
solution in terms of an index, DIPDI, whose value indeed provides a measure for the proneness towards
biased solutions.

Intuitively, we can think about output discrepancies in a set of models as a notion of uncertainty,
which in ensemble models is usually estimated as the variance in the predictions of components of
the ensemble (Lakshminarayanan et al. 2017). If all models in an ensemble agree on a prediction, the
uncertainty for this sample is likely low. Conversely, if there is a high variance in the predictions across
the models, this indicates higher uncertainty. When we evaluate the discrepancy in the predictions
of models trained for a particular demographic group, we could interpret them as models within an
ensemble, and consequently the discrepancy in their predictions for a given subject could be seen as the
uncertainty of the ensemble. In that sense, our index quantifies the relative uncertainty estimated when
using ’ensembles’ of models trained with data from different demographic groups (numerator) and from
the same demographic group (denominator). If both are similar (ratio equal to 1), then we get a DIPDI
value close to 0 (log ratio 1) indicating that the problem shows no early signs of potential bias with
respect to the analyzed demographic values. However, higher discrepancies (uncertainty) for models
from different demographic groups will lead to DIPDI values significantly larger than 0, indicating bias
proneness for the task under analysis. In particular, an increase in DIPDI from model development
(training) to deployment could be interpreted as a red flag, triggering further detailed assessment.
We showed that DIPDI can also be used to understand how fairness transfers across distributions,
validating our assumption in scenarios involving label and covariate distribution shifts. Other types of
distribution shifts (Quinonero-Candela et al. 2008), and even compound shifts as discussed in Schrouff
et al. (2022) could also be considered, but would require further validation.

We note that while we have expressed DIPDI here as a global population average, the same rea-
soning could in principle be applied to population subsets defined by the intersection of multiple
demographic traits (i.e. intersectional fairness), or even on a subject-by-subject basis, closer to the
definition of individual fairness. Such predictive discrepancies as captured by DIPDI could serve to
flag subjects or sub-groups at higher risk of suffering biases, constituting another avenue of research to
explore in future work. Regarding counterfactual fairness approaches, DIPDI shares some resemblance
as it involves a form of hypothetical scenario analysis. However, DIPDI’s approach is more empirical,
focusing on the discrepancies in predictions of actual models trained on different populations, while
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counterfactual fairness measures often involve more complex causal modeling and assumptions. Fi-
nally, in relation to approaches based on fairness through unawareness that simply exclude protected
attributes from the model, DIPDI actively measures the impact of these attributes by training separate
models on different demographic groups. Overall, we believe that DIPDI offers a fresh perspective in
the fairness literature, focusing on the unsupervised setting, which is not commonly discussed in this
field, and may spark new discussions towards developing novel unsupervised bias discovery methods
to anticipate bias issues in the absence of ground truth.
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A DIPDI: General formulation and theoretical analysis

A.1 General formulation of DIPDI

In the main manuscript (Section 3.1) we introduced DIPDI for pools of 2 models for simplicity. How-
ever, having more models in each pool could help to reduce noise in the estimation. Thus, here we
introduce a more general formulation for pools A = {A1, ..., Am} and B = {B1, ..., Bm} of m models
each, with m denoting an even integer. The generalized formulation can be expressed as

ΦD(A,B) = 1

log2 m
log

[ ∏m
i=1 ND(Ai, Bi)∏m/2

i=1 ND(Ai, Am/2+i)ND(Bi, Bm/2+i)

]
. (3)

To illustrate, let us exemplify the case when m = 4:

ΦD(A,B) = 1

2
log

[
ND(A1, B1)ND(A2, B2)ND(A3, B3)ND(A4, B4)

ND(A1, A3)ND(A2, A4)ND(B1, B3)ND(B2, B4)

]
. (4)

By rearranging factors, we obtain

ΦD(A,B) =
1

2
log

[
ND(A1, B1)ND(A3, B3)

ND(A1, A3)ND(B1, B3)

]
+

1

2
log

[
ND(A2, B2)ND(A4, B4)

ND(A2, A4)ND(B2, B4)

]
(5)

ΦD(A,B) =
1

2

(
ΦD({A1, A3}, {B1, B3}) + ΦD({A2, A4}, {B2, B4})

)
(6)

In other words, our generalized formulation enables computing DIPDI for sets of m models, by
considering it as the average of pairwise DIPDIs for different subsets of size 2.

To better understand the definition of the products in Eq. 3, we can imagine an m × m matrix
where rows and columns represent models in groups A and B, respectively. For the products in the
numerator, we simply take the main diagonal of the matrix. For the products in the denominator, we
focus on the upper diagonal of m/2 elements. A visual representation of this idea is presented in Table
1, illustrating the scenario for the specific case where m = 4.

B →
1 2 3 4

A 1 ✓
↓ 2 ✓

3 ✓
4 ✓

(a) Inter-set pairs

A →
1 2 3 4

A 1 ✓
↓ 2 ✓

3
4

(b) Intra-set pairs within A

B →
1 2 3 4

B 1 ✓
↓ 2 ✓

3
4

(c) Intra-set pairs within B

Table 1: Illustration of product definitions for DIPDI when m = 4. The ✓denotes the presence of a
pair of models in factors ND(·, ·) of Eq. 5.

A.2 Theoretical analysis of the relationship between DIPDI and perfor-
mance gap

In order to generate an intuition behind why DIPDI may anticipate biases, we will resort to a theoretical
analysis in a simplified scenario. We will work with a binary classification problem, where the soft
scores of the models will be taken to be one dimensional and assumed normally distributed. We call
XA and XB the distributions of outputs for models from set A and B respectively. For simplicity, we
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will work with the outputs corresponding to the positive target class, which we take to correspond to
values on the left of the decision boundary, but the problem is symmetrical and the same derivation
can be replicated for the negative class. In Fig. 5a we illustrate this scenario with two model sets (in
blue and green) that produce different error rates, given by their corresponding shaded areas on the
other side of the decision boundary. Since XA and XB are normally distributed, we characterize them
by their respective means (µA and µB) and standard deviations (σA and σB). The error gap between

Figure 5: a) Sketch of the distributions of soft outputs for two sets of models A (in green) and B (in
blue). The respective error rates correspond to the fraction of outputs beyond the decision boundary
(dashed line), indicated as shaded regions of the same color. b) Scatter plot of the error gap vs. DIPDI
for multiple combinations of distribution parameters µB and σB, for fixed µA and σA. c) & d) Surface
plots for the error gap and DIPDI, respectively, for the same parameter configurations as in panel b).

these sets of models for a given decision boundary b can then be written by integration as

gap(A,B) =
∣∣∣∣∫ ∞

b

N (x ;µB, σB) dx−
∫ ∞

b

N (x ;µA, σA) dx

∣∣∣∣ . (7)

DIPDI is a measure of the mean discrepancy between outputs of two model sets, relative to the
mean discrepancies of outputs within sets. Without loss of generality, we can take the squared error
as the discrepancy function to simplify DIPDI in this analytical interpretation. Since we assume the
model outputs are normally distributed, the mean squared distance between outputs is given by

E
[
d2AB

]
= µ2

AB + σ2
AB, with (8)

µAB = µA − µB and (9)

σ2
AB = σ2

A + σ2
B. (10)

For points from within the same distribution, we have in turn
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E
[
d2AA

]
= 2σ2

AA, (11)

E
[
d2BB

]
= 2σ2

BB. (12)

So that in the limit of considering a large number of pairs of models, and for ND =
√

E [d2(·, ·)],
the DIPDI becomes

ΦD(A,B) = log

[
(µA − µB)

2 + σ2
A + σ2

B
2σA σB

]
. (13)

Note that DIPDI is then sensitive to both a difference in the mean and in the variance between
the model predictions from two sets. In Fig. 5b-d, we have kept the parameters of A fixed (µA = 0,
σA = 1) while varying those of B. The discrepancy grows if the distributions have different means,
and also if the variances are different. Intuitively, if the mean is closer or further away from the
decision boundary, the error rate will change. In that case the error gap is due to a systematic shift
in the predictions. In turn, if the variances are different, then the reliability of the two model sets are
different, and DIPDI can also sense that. Indeed we observe that higher DIPDI values correspond to
higher error gaps Fig. 5b. In what follows we provide analytic expressions for the relationship between
performance gap and output discrepancies when either the means or the variances of both sets are
different.

A.2.1 DIPDI and unreliability

We first study the case where µA = µB. Without loss of generality we take σA fixed and let σB vary
(see Fig. 6a). In this case we have

E
[
d2AB

]
= µ2

AB + σ2
AB = σ2

A + σ2
B (14)

ΦD(A,B) = log

[
σ2
A + σ2

B
2σ2

A

]
. (15)

Solving for σB, we can compute the gap as

gap(A,B) =
∣∣∣∣∫ ∞

b

N
(
x ;µB,

√
E [δ2AB]− σ2

A

)
dx−

∫ ∞

b

N (x ;µA, σA) dx

∣∣∣∣ . (16)

We see from this equation that, as long as µB < b so that the mean of XB is on the correct side of
the boundary, the gap is a monotonically increasing function of the mean discrepancy. Indeed, we can
see how the gap increases with DIPDI in Fig. 6b.

A.2.2 DIPDI and systematic errors

We then study the case where σA = σB. Again, without loss of generality we take µA = 0 fixed and
let µB vary (Fig. 6c). In this case we have

E
[
d2AB

]
= µ2

AB + σ2
AB = µ2

B + 2σ2
A (17)

ΦD(A,B) = log

[
µ2
B + 2σ2

A
2σ2

A

]
. (18)
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Solving for µB, we can compute the gap as

gap(A,B) =
∣∣∣∣∫ ∞

b

N
(
x ;

√
E [d2AB]− 2σ2

A, σB

)
dx−

∫ ∞

b

N (x ;µA, σA) dx

∣∣∣∣ (19)

Once again, we see from this equation that the gap is a monotonically increasing function of the
mean discrepancy, and a tight correlation between DIPDI and gap is present (see Fig. 6d).

Figure 6: a) & c) Sketch of the distributions of soft outputs for two sets of models A (in green) and
B (in blue). The respective error rates correspond to the fraction of outputs beyond the decision
boundary (dashed line), indicated as a shaded regions of the same color. In a) the models have the
same mean but different variance, while in c) the models have the same variance but different mean.
b) & d) Error gap vs DIPDI for models with either different variance (b) or different means (d).

B Experimental validation: Additional results

B.1 DIPDI on synthetic data: simulating distributions

Figure 7 shows examples of datasets simulated for the synthetic experiment in Section 4.1 of the main
manuscript. These datasets are generated by varying the proportion of male and female samples in
training, from 100% to 0% males with a step of 10% between each sampling. Then, each data point
of the distribution is interpolated to be between 1 and 100 years, adding a random noise of 10 years
to simulate real cases of age regression.
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Figure 7: Examples of datasets generated for the synthetic experiment in Section 4.1.

B.2 DIPDI on synthetic data: simulating model outputs

In this section, we verify the behaviour of DIPDI under controlled conditions using synthetic data by
simulating model predictions. We simulate the predictions of two sets of models A = {A1, A2} and
B = {B1, B2} when evaluated on samples from a synthetic dataset D and then systematically evaluate
DIPDI in scenarios with different levels of disagreement between A and B. The model discrepancy is
here simulated by the addition of a stochastic value of varying size (disagreement level) to the output
predictions (Figure 8a).

We consider the task of age estimation, so the outputs of models in A and B are assumed to
represent predicted ages. We start with a fixed sample Y drawn from a uniform distribution of ages
between 30 and 80, representing the ground-truth ages, yk ∈ Y. We simulate synthetic predictions for
the models in A and B by perturbing Y with Gaussian noise sampled from distributions nA ∼ N (0, σA)
and nB ∼ N (0, σB). Thus, for a fictitious data sample k with ground-truth label yk ∈ Y, the synthetic
model predictions are Ai(xk) = yk+nA and Bi(xk) = yk+nB. Varying the standard deviations allows
us to create scenarios where the predicted ages for the analysis groups are more or less similar, and
then analyze the behaviour of DIPDI under different discrepancy ratios (see Figure 8a).

DIPDI values for different discrepancy scenarios are displayed in Figure 8b, considering N = 1000
and σA and σB values in the range [1-10]. Note that when the outputs of A and B are similarly
perturbed (as shown on the diagonal of each image), then Φ is close to 0. However, when perturbations
are sampled from a wider Gaussian in one set than the other (as shown outside the diagonal of each
image), Φ tends to be higher than 0. This confirms the desired behaviour for our index: when intra-set
predictions are more consistent than inter-set predictions, the index returns larger values.

B.3 Subgroup analysis for age estimation

In this section, we present additional results in age estimation for ChestX-ray14 and UTKFace datasets.
These results complement the insights discussed in Section 4.3 of the main manuscript.

Tables 2 and 3 present results for ChestX-ray14 and UTKFace, reporting the mean absolute error
(MAE) values for male and female subgroups under different scenarios of gender imbalance in the
training data.

Figure 9 shows the cumulative score (CS) values for ChestX-ray14 and UTKFace for male and
female subgroups under different gender imbalance scenarios in the training data. The CS quantifies
the proportion of test samples (N) for which the absolute error e falls below a specified threshold of n
years. This calculation is defined as follows:

CS(n) =
Ne≤n

N
,

where Ne≤n represents the number of test images for which the absolute age error is less than or equal
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(a)

(b)

Figure 8: (a) Synthetic data construction. Examples of predicted ages simulated for models in A and
B, for increasing levels of prediction disparities (left to right). (b) DIPDI on synthetic data. Both σA
and σB range from 1 to 10. Each fold represents a new run of the experiment with different random
seeds. The DIPDI index is computed by averaging 3 simulations for each σA.

Training (Male-Female) Testing on Male Testing on Female

100-0 4.633 (0.125) 5.823 (0.301)
75-25 4.679 (0.189) 4.888 (0.109)
50-50 4.795 (0.149) 4.717 (0.149)
25-75 4.802 (0.153) 4.565 (0.105)
0-100 5.265 (0.189) 4.527 (0.109)

Table 2: Mean absolute error (MAE) (mean ± std) for age estimation on ChestX-ray14 across sub-
groups (male, female) for models trained with different gender imbalance ratios.

to the corresponding threshold value.

B.4 Subgroup analysis for younger vs older classification

In this section, we present additional results regarding the classification of celebrities from the CelebA
dataset in younger vs older. These results complement the insights discussed in Section 4.3 of the main
manuscript.

Figure 10 shows normalized confusion matrices computed by subgroups (male, female) aggregating
all folds for models trained with different gender imbalance ratios. Table 4 presents the Equality of
Opportunity (EOD) metric (Hardt et al. 2016). These values, computed as the absolute difference over
folds, reveal more unfair performance on younger vs older classification for models trained on highly
imbalanced datasets, what is consistent with the behaviour of DIPDI shown in the results from the
main manuscript (Figure 2).
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Training (Male-Female) Testing on Male Testing on Female

100-0 6.170 (0.207) 9.006 (0.442)
75-25 6.301 (0.277) 6.275 (0.368)
50-50 6.530 (0.208) 6.004 (0.319)
25-75 6.785 (0.284) 5.780 (0.326)
0-100 7.468 (0.418) 5.719 (0.427)

Table 3: Mean absolute error (MAE) (mean ± std) for age estimation on UTKFace across subgroups
(male, female) for models trained with different gender imbalance ratios.

Training (Male-Female) EOD

100-0 0.096 (0.043)
75-25 0.030 (0.021)
50-50 0.034 (0.025)
25-75 0.052 (0.043)
0-100 0.363 (0.071)

Table 4: Equality of Opportunity (EOD) (mean ± std) for younger vs older classification on CelebA
for models trained with different gender imbalance ratios.

B.5 DIPDI for age estimation and younger vs older classification

Table 5 presents additional results for DIPDI on age estimation and younger vs older classification
tasks as discussed in Section 4.4 of the main manuscript. We observe that DIPDI produces values larger
than 0 when training data is highly imbalanced in gender attributes indicating a greater propensity to
bias.

A, B ChestX-ray14 UTKFace IMDB-WIKI CelebA

100-0, 0-100 0.576 (0.103) 0.918 (0.241) 0.799 (0.271) 1.447 (0.247)
75-25, 25-75 0.027 (0.040) 0.126 (0.063) 0.273 (0.278) 0.065 (0.167)
50-50, 50-50 -0.005 (0.065) 0.010 (0.074) -0.106 (0.224) 0.014 (0.213)
25-75, 75-25 0.012 (0.073) 0.080 (0.050) 0.558 (0.196) 0.177 (0.163)
0-100, 100-0 0.530 (0.114) 0.883 (0.159) 0.993 (0.346) 1.501 (0.280)

Table 5: DIPDI (mean ± std) for age estimation (ChestX-ray14, UTKFace and IMDB-WIKI) and
younger vs older classification (CelebA). Groups A and B consist of two models trained with different
gender imbalance ratios. Test data is gender balanced.
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(a)

(b)

Figure 9: Cumulative scores (CS) for age estimation on ChestX-ray14 (a) and UTKFace (b) by sub-
groups (male, female) for models trained with different gender imbalance ratios. Age threshold n spans
from 0 to 15 years.
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(a)

(b)

Figure 10: Normalized confusion matrices computed on male (a) and female (b) subgroups for models
trained with different gender imbalance ratios.
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