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Abstract

Precision livestock farming optimizes livestock production through the use of

sensor information and communication technologies to support decision mak-

ing, proactively and near real-time. Among available technologies to monitor

foraging behavior, the acoustic method has been highly reliable and repeat-

able, but can be subject to further computational improvements to increase

precision and specificity of recognition of foraging activities. In this study, an

algorithm called Jaw Movement segment-based Foraging Activity Recognizer

(JMFAR) is proposed. The method is based on the computation and analy-

sis of temporal, statistical and spectral features of jaw movement sounds for
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detection of rumination and grazing bouts. They are called JM-segment fea-

tures because they are extracted from a sound segment and expect to capture

JM information of the whole segment rather than individual JMs. Two vari-

ants of the method are proposed and tested: (i) the temporal and statistical

features only JMFAR-ns; and (ii) a feature selection process (JMFAR-sel).

The JMFAR was tested on signals registered in a free grazing environment,

achieving an average weighted F1-score of 93%. Then, it was compared with

a state-of-the-art algorithm, showing improved performance for estimation of

grazing bouts (+19%). The JMFAR-ns variant reduced the computational

cost by 25.4%, but achieved a slightly lower performance than the JMFAR.

The good performance and low computational cost of JMFAR-ns supports

the feasibility of using this algorithm variant for real-time implementation in

low-cost embedded systems. The method presented within this publication

is protected by a pending patent application: AR P20220100910.

Keywords: Acoustic monitoring, ruminant foraging behavior, precision

livestock farming, pattern recognition, feature engineering, machine

learning.

1. Introduction

Precision livestock farming offers the unprecedented opportunity to im-

prove livestock management by switching the scale of observation from herds

to individuals. The individualized monitoring with regard to animal behavior

could provide rich and unique information on collective events related to the

health, nutrition and welfare status of animals (Hodgson and Illius, 1998).

The feasibility for deployment of animal sensing and information systems on
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farms (Andriamandroso et al., 2016) has been enhanced recently by new de-

velopments in animal-borne sensors, advanced communication and processing

technologies, enhanced data analytics and visualization techniques for easy

inspection of animal behavior, including behavior events and activities, loca-

tion and posture (Berckmans, 2014). However, the operational requirements

for such monitoring systems, primarily device portability, robustness and low

power consumption often emerges as major bottlenecks for further techno-

logical progresses (Stone, 2020). Some of these factors depend mainly on the

application and the characteristics of the proposed algorithms to solve the

task. As an example, algorithms with low computational cost are preferred

for continuous feeding monitoring in ruminants.

For free-grazing cattle, grazing and rumination usually represent the

largest fraction of the daily time budget. A close inspection of their lon-

gitudinal changes could be useful to accurately assess animal behavior and

optimize animal and pasture management. For example, decreased daily

grazing and/or rumination time could be interpreted as an indicator of severe

environmental stress (Herskin et al., 2004), anxiety (Bristow and Holmes,

2007), or emerging diseases (Welch, 1982), whereas increasing daily activity

and decreasing rumination time could flag the onset of estrus (Schirmann

et al., 2009) or calving events (Schirmann et al., 2013). Similarly, increasing

rumination time is associated with more saliva production and improved ru-

men and animal health (Beauchemin, 1991), whereas decreasing rumination

would flag a lacking effective fiber in the diets of cows (Beauchemin, 2018).

Grazing encloses behaviors related to feed search apprehension and consump-

tion and is composed by three types of distinct jaw movements (JM): biting,
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when herbage is apprehended and severed; chewing, when herbage is com-

minuted; and chew-biting when a combination chewing and biting of grass

occurs in a same JM (Galli et al., 2018; Laca et al., 1992; Ungar and Rutter,

2006). Rumination is characterized exclusively by feed chewing occurring

within regular feed swallowing-regurgitation cycles. One of the distinctive

characteristics of grazing and rumination is the hierarchical array of foraging

activities, duration and sequence of specific JM. Whereas chewing and biting

in a single JM last about a second or a fraction of a second, the sequence of

JM that defines a grazing or rumination bout usually expands from several

minutes to hours (Andriamandroso et al., 2016).

There are several remote sensing methods to monitor foraging behavior.

Among most popular methods are the accelerometers (Benaissa et al., 2019b;

Pavlovic et al., 2022, 2021; Shen et al., 2020), inertial measurement units

(Carslake et al., 2020; Li et al., 2022; Peng et al., 2019; Sakai et al., 2019)

and nose-band pressure sensors (Benaissa et al., 2019a; Chen et al., 2022;

Eslamizad et al., 2018; Zehner et al., 2017). These acquisition methods pro-

vide straightforward information of whole body movements or movement of

specific body parts, such as leg, neck or head movements (Lee and Seo, 2021).

The recognition of animal behaviors could be improved using various sensors

in different locations of the animal (Benaissa et al., 2019b; Brennan et al.,

2021). This approach is not always practical since it is more laborious for

both humans and cows and more expensive (Riaboff et al., 2020). A commer-

cial system formed by a nose-band pressure sensor with an accelerometer in a

halter measures foraging behaviors and provide detailed information associ-

ated. The raw data collected has to be processed by a software in a computer
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to obtain behaviors information, thus demanding handlers (Steinmetz et al.,

2020; Werner et al., 2018). Accelerometers and inertial measurement units

are used to recognize feeding, posture, and locomotion behaviors of grazing

cattle. In last decade, many methods to recognize the two main foraging

activities (grazing and rumination) using machine learning techniques have

appeared (Bishop-Hurley et al., 2014; Dutta et al., 2015). They mainly differ

in the behaviors of interest, sensor location and model engineering (Riaboff

et al., 2022). In this sense, the pattern recognition methods proposed by

Rahman et al. (2016) and Smith et al. (2016) distinguished both foraging

behaviors and others locomotion and posture behaviors. Moreover different

accelerometer locations were evaluated to recognize grazing and rumination

by Rahman et al. (2018). The work of Riaboff et al. (2020) discriminated

foraging behaviors in particularly posture positions. They were able to dis-

tinguish between standing and lying rumination among many other behav-

iors. Li et al. (2021a) expand the monitoring of feeding and others behaviors

from free ranging environment to indoor environment employing a convolu-

tional neural network. This deep learning approach performed good in both

environment but it was computational expensive for an implementation in

an embedded device. In fact, a low computational cost pattern recognition

system using a small set of features and classical machine learning classi-

fier was proposed by Arablouei et al. (2021). Previous works reached good

performance, but a deeper analysis of model generalization is still required

(Riaboff et al., 2022). Additionally, accelerometer based sensors are heav-

ily dependable on the correct location, orientation, and fastened by making

it not easily reproducible (Kamminga et al., 2018; Li et al., 2021a). Thus,
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head-placed microphones are usually preferred over accelerometers, inertial

measurement units, and nose-band pressure sensors. The good robustness to

free ranging environmental noises allows the precise monitoring of foraging

behavior (Martinez-Rau et al., 2022).

The acoustic method has obtained very good results in recognizing and

classifying JM and cattle grazing foraging activities. Vanrell et al. (2018)

proposed an off-line acoustic method called regularity-based acoustic foraging

activity recognizer (RAFAR) that relied on autocorrelation for recognition

of grazing and rumination bouts. The main disadvantage of this algorithm

is the requirement of the entire sound record to achieve satisfactory perfor-

mance results. More recently, Chelotti et al. (2020) introduced BUFAR, an

alternative algorithm to RAFAR to enable on-line processing of sound sig-

nals. Both, RAFAR and BUFAR achieved better performance compared to

commercial rumination collars (Chelotti et al., 2020; Vanrell et al., 2018), yet

the two have also shown room of improvement for the recognition of grazing

and rumination.

The main objective of this work is to develop and test a new on-line

method for improved classification of grazing and rumination bouts in free

grazing cattle. The new method will use broad sets of temporal, statistical

and spectral features of the sound signal and it is therefore expected to mini-

mize previous grazing and rumination misclassifications, without significantly

incurring in additional computational costs. The new features are called JM-

segment features because they are extracted from a sound segment to capture

JM insight of the whole segment rather than individual JMs. The main ben-

efits for the new method are: (i) the grazing and rumination classification
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is independent of the JM classification, thus avoiding the errors associated

with this stage (Chelotti et al., 2018); and (ii) the ability to train an on-line

model without the need of using previously labeled JM, which is a significant

improvement that enable to train the method on large recording databases.

The paper is organized as follows: Section 2 introduces the proposed algo-

rithm and the new set of features. Databases used for model testing, the

variants of the proposed method and the measures of performance to assess

model suitability are described in Section 3. Section 4, describes the main

study results with a focused discussion presented in Section 5. Finally, a

brief conclusion is presented in Section 6.

2. Material and methods

2.1. Databases

In this study, two independent databases composed of sound recordings

of dairy cows were used. The first database (referred as DbM) was generated

from measurements obtained from July 31 to August 18, 2014, at the Michi-

gan State University’s Pasture Dairy Research Center facility at the W.K.

Kellogg Biological Station, located in Hickory Corners, Michigan. Sound

tracks were recorded on five experimental, high-production multiparous Hol-

stein cows (652.0 ± 5.4 kg of live weight; 2.3 ± 0.5 calvings; 102.0 ± 14.6

days in milk; 41.2 ± 3.9 kg of daily milk production) managed as part of

a larger herd (∼140 cows). The fieldwork was carried out following proto-

cols for robotic milking routines (3.0 ± 1.0 daily milkings), using two Lely

A3-Robotic milking machines (Lely Industries NV, Maassluis, The Nether-

lands). The cows had permanent access to pastures with a predominance
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of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens),

or with a predominance mixture of orchardgrass (Dactylis glomerata), tall

fescue (Lolium arundinacea) and white clover. The pastures were grazed in

two shifts, from 10:00 to 22:00 and from 22:00 to 10:00. In each shift cows

freely accessed a new paddock with the similar level of daily allowance (15

kg of dry matter/cow). Consequently, the average daily pasture allowance

was 30 kg of dry matter/cow. The forage quality of hand plucking samples

was determined through five parameters: in vitro of dry matter digestibil-

ity (IVDMD, Daisy II, Ankom Technology Corp.) the average content of

crude protein (CP, 4010 CN Combustion, Costech Analytical Technologies

Inc., Valencia, CA), Neutral Detergent Fiber (NDF), Acid Detergent Fiber

(ADF, Fiber Analyzer, Ankom Technology Corp., Fairport, NY), and Acid

Detergent Lignin (ADL). The values (mean ± standard deviation) estimated

for IVDMD, CP, NDF, ADF and ADL were 78.1 ± 3.0%, 18.7 ± 2.5%, 49.3

± 4.5%, 25.7 ± 2.0%, 3.3 ± 0.8% respectively.

Twenty four hour continuous acoustic recordings obtained on 6 non-

consecutive days were used. In each of the days the foraging behavior of

the five cows was recorded. Five independent equipment devices (halter, mi-

crophone and recorder) were used, and they were rotated on the five cows

throughout the six experimental days. Each equipment included a direc-

tional microphone pressed to the forehead of the animal connected to a digital

recorder. The microphones were placed against the forehead of the cow, held

and protected by an elastic band, to prevent microphone movement, isolate

noise caused by wind and protect microphones from sources of friction and

scratches. All recordings were performed with a 44.1 kHz sample rate and
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16-bit resolution, providing a nominal recording bandwidth of 22 kHz and a

dynamic range of 96 dB. The records were saved in Waveform Audio (WAV)

file format.

The audio recordings belonging to the second database (referred as DbZ)

were obtained in October 2014 during grazing feeding trials conducted at

the dairy farm of the Campo Experimental J. Villarino of Universidad Na-

cional de Rosario, Argentina. The protocols for handle and care of the cows

were previously evaluated and approved by the Committee on Ethical Use

of Animals for Research of the Universidad Nacional de Rosario. Five lac-

tating multiparous 3–5 year-old Holstein cows weighing 570± 40 were man-

aged along with a larger dairy herd (∼150 cows). The foraging behaviour

of the experimental cows grazing on alfalfa (Medicago sativa), fescue (Fes-

tuca arundinacea) and prairie grass (Bromus catharticus) mixed pastures,

were continuously monitored for 24 h during six non-consecutive days. Each

cows used one of the five equipment devices previously used to generate

the DbM database. The equipment devices were randomly assigned to the

cows at the beginning of the experiment and rotated daily according to a

5 x 5 latin-square design. Particularly at outside of the barn, the nature

and environmental conditions during this experiment have generated more

noisy audio signal than those obtained in the DbM database, associated to

machines, vehicles, winds and, subjection and movements of the equipment

devices, among others (Martinez-Rau et al., 2022).

Two experts with long experience in foraging behavior detection and dig-

ital analysis of acoustic signals identified the activities through direct ob-
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servation and listening of recordings, using the Audacity1 program. During

daylight hours, the activities (grazing, rumination, resting, drinking, etc.)

of each of the cows were checked out every 60 minutes. This information

was used to confirm or correct the grazing and rumination times obtained

from Audacity sound records. Activity blocks were identified, classified and

labeled, either as grazing, rumination, or other activities.

2.2. Background: Current acoustic method

In a previous work, Chelotti et al. (2018) introduced a JM recognition

algorithm that estimates sequences of JM using the sounds produced by

ruminants during foraging activities. It contains three distinct elements:

(i) a signal conditioning stage, which attenuates the effects of environmental

noises and disturbances, (ii) a set of extracted acoustical features and (iii) a

machine learning model that provides the algorithm with excellent discrim-

ination capabilities. Based on this algorithm, a foraging activity recognizer

called BUFAR was proposed by Chelotti et al. (2020). It analyses groups of

JM to recognize grazing and rumination bouts. It is comprised of (i) a buffer

segment, which comprises a sequence of estimated JM along a fixed period

of time, (ii) a set of descriptive statistical features for JM in the buffer that

includes JM rate and proportions for JM types, and (iii) a machine learning

model to enable discrimination capabilities of the algorithm. Accordingly,

rumination bouts were identified and determined by regular cycles of thirty

to sixty pure chews, occurring at a near constant rate of one JM per second,

and followed by brief sound pauses for feed cud swallowing and regurgita-

1https://www.audacityteam.org/
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tion (Galli et al., 2020). On the other hand, grazing bouts were determined

by uneven mixtures of bites, chews and chew-bites sequences that had no

particular order and occurred at near constant rate of one JM per second

(Chelotti et al., 2020).

2.3. Recognition system

A block diagram of the proposed system is shown in Figure 1. It consists

of a JM recognizer (Chelotti et al., 2018) and an activity recognizer, which is

inspired by BUFAR architecture. To improve the performance of the activity

recognizer, a novel set of discriminative features were developed for the ac-

tivity classifier. The system analyses the acoustic signal in non-overlapping

segments of 5 min length to determine the type of activity performed in

the segment. The use of non-overlapped segments has a computational cost

lower than the strategy of overlapped segments, and we observed similar

performance for both cases. First, in a pre-processing stage the acoustic

signal is conditioned to remove noises and disturbances, thereby improving

the signal-to-noise ratio. For this stage, a least mean square (LMS) filter

was used (Widrow et al., 1975). This adaptive filter has proven to be useful

for removing trends at low computational cost. Then, a decimation process

is applied and the sound envelope is obtained. After this, working with a

low-frequency signal (sound envelope) will reduce the computational cost of

the algorithm in the following stages. In the next stage, the candidate JM is

detected (JM detection stage) in order to divide the sound envelope, isolate

the JM, and extract the JM features. The signal envelope, the timestamp of

the detected JM and the JM features are stored in the segment buffer and

then processed to extract the novel set of activity features. These features
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are analyzed by the activity classifier to determine the activity performed

by the animal within the time segment. The new features are called JM-

segment features because they correspond to a sound segment and capture

JM insight of the whole segment rather than individual JMs features. Their

computation only requires the detection of events, regardless of their type

(i.e. bite, chew or chew-bite). Unlike the BUFAR method, this approach has

the advantage of being insensitive to JM classification errors. Although the

JM type is not used for the system, it might be obtained as an extra output

from the JM classifier. Both classifiers (JM and activity) are implemented

using a multilayer perceptron (Bishop, 2006). For both classifiers, the op-

timized hyperparameters were the learning rate and the number of neurons

in the hidden layer. For the activity classifier, the MLP structure consisted

of 21 neurons in the input layer, 20 in the hidden layer and 3 in the output

layer.

2.4. Proposed activity features

In order to improve recognition ability, we propose a set of temporal,

statistical and spectral features of JM for the foraging activity recognition,

which are named JM-segment features. Previous JM features included in

BUFAR were the proportion of chews (f1)2, the proportion of bites (f2), the

proportion of chew-bites (f3) and JM rate (f4), which may contain relatively

low information and discriminatory power. The new set of JM-segment fea-

tures is composed by:

2Numbers in brackets indicate the ordinal number of the feature within the set.
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Sound Pre-processing

Buffering

JM
classifier JM

Activity feature 
extraction

Activity 
classifier

Activity

Jaw movement
recognition

Activity
recognition

JM 
timestamp

{

{

Grazing
Rumination
Other

Bite
Chew
Chew-bite

JM
features

Sound
envelope

JM-segment
features

Proposed system

JM feature
extraction

JM
detection

Figure 1: General diagram of the architecture. Blocks inside the gray box are part of the

proposed system (JMFAR). The thickness of the arrows indicates the size of the feature

vector.

• JM rate : is the proportion of detected events (f4) within a given sound

signal segment.

• Statistics of JM amplitudes : includes mean (f5), standard deviation

(f6), skewness (f7) and kurtosis (f8) for maximum amplitudes of JM

that occur within a given sound signal segment.

• Statistics of JM durations : including mean (f9), standard deviation

(f10), skewness (f11) and kurtosis (f12) for duration of JM that occur

within a given sound signal segment.

• Spectral feature of the sound envelope : defined as energy in the 1.0-

to-1.5 Hz band (f13) relative to the total energy of a given sound signal

segment.

13

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
J.

 O
. C

he
lo

tti
, S

. R
. V

an
re

ll,
 L

. R
au

, J
. G

al
li,

 S
.A

 U
ts

um
i, 

A
. M

. P
la

ni
si

ch
, S

. A
lm

ir
ón

, D
. H

. M
ilo

ne
, L

. G
io

va
ni

ni
 &

 H
. L

. R
uf

in
er

; "
U

si
ng

 s
eg

m
en

t-
ba

se
d 

fe
at

ur
es

 o
f 

ja
w

 m
ov

em
en

ts
 to

 r
ec

og
ni

se
 f

or
ag

in
g 

ac
tiv

iti
es

 in
 g

ra
zi

ng
 c

at
tle

"
B

io
sy

st
em

s 
E

ng
in

ee
ri

ng
, V

ol
. 2

29
, p

p.
 6

9-
84

, 2
02

3.



• JM jitter variants : variation of the period between two consecutive

peaks (in this case JM) within a given signal segment (Farrús et al.,

2007). Alternative variants for this parameter include: absolute jit-

ter (f14), relative jitter (f15), five-point period perturbation quotient

(PPQ5) jitter (f16), and standard deviation of jitter (f17).

• JM shimmer variants : variation of maximum amplitude between two

adjacent peaks (in this case JM) within a given signal segment (Farrús

et al., 2007). Alternative variants for this parameter include: absolute

shimmer (f18), relative shimmer (f19), five-point amplitude perturba-

tion quotient (APQ5) shimmer (f20) and standard deviation of shimmer

(f21).

• Temporal features of the JM tachogram : the tachogram is the repre-

sentation, in the form of a discrete sequence, of the temporal distance

between consecutive peaks. Thus, patterns of regular JM sequences

are used for activity classification. This feature indicates the rate for

JM intervals with lengths between 3 and 10 s (f22).

• Spectral features of the JM tachogram : is the energy in the 0.017-

to-0.020 Hz (f23) and 0.00-to-0.02 Hz (f24) bands relative to the total

energy of the tachogram signal and provides information about the

swallowing-regurgitation events.

A qualitative analysis of the effect of proposed features on class separation

was performed. The data from the training set was used in the figures of this

section. In total, four free grazing sessions of four different animals were

considered, totaling about 24 hs of recordings. Figure 2 shows the result
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Figure 2: t-SNE analysis of JM-segment features.

of a dimensionality reduction analysis (Van der Maaten and Hinton, 2012)

applied to the set of JM-segment features proposed in this work. Grazing and

rumination are grouped in clear clusters without mixed data points between

them. A few proportions of activities other than grazing or rumination are

minimally mixed with rumination data points.

2.4.1. Statistical features for amplitude and duration

The foraging behavior of ruminants can be characterized by the temporal

sequence of JM, with sounds that vary according to given animal factors,

foraging events and biochemical and physical properties of the feed eaten.

For example, bites are characterized by a loud sound with a high amplitude

peak, when forage is apprehended between incisors and the dental pad, and

severed. Grazing chews produce loud sounds with lower intensity than bites.

Composite chew-bites combine sound characteristics of grazing chews (first)

and bites (later) during the same JM. Additionally, whereas exclusive bites
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and chews have a similar short duration, chew-bites have longer sound sig-

nals (Chelotti et al., 2018). Since grazing is composed by a mixed sequence

of bites, chews and chew-bites, the amplitude frequency distribution peaks

and spreads over a broader high amplitude region (Figure 3). Conversely,

ruminating chews are characterized by very low intensity sounds, associated

probably to the wetness, fragmentation and partial degradation of feed be-

ing processed (rumen turnover is at least fifteen hours). Since rumination is

composed of exclusive rumination chews, the amplitude frequency of rumi-

nation peaks in the very low amplitude region and is narrowly distributed

around peak frequency (Figure 3). Due to the presence of chew-bites, the

event duration distribution of grazing has a peak on the long duration region

and it is distributed over a wide range of values. The duration histogram of

rumination has similar characteristics to its amplitude histogram. Consid-

ering the asymmetric nature of amplitude and duration histograms, several

moments (mean, standard deviation, skewness and kurtosis) were evaluated

and considered as features.

2.4.2. Spectrum of the sound envelope

The spectrum of the sound envelope helps to discriminate among, grazing,

rumination and other activities. This spectrum characterizes the temporal

behavior of events according to the periodicity and variability of the type

of activity an animal performs. The spectra of rumination sound segments

show a very narrow frequency band determined by the low periodicity and

low amplitude of rumination chew. On the other hand, the spectra of grazing

sound segments show a broader frequency band determined by the irregular

and mixed nature and higher amplitude of chews, bites and composite chew-
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Figure 3: Histogram showing the amplitude distribution of JM associated with grazing

and rumination.

bites during grazing.

Figure 4 shows the average spectra of typical sound segments correspond-

ing to grazing (orange) and rumination (blue). The peaks of relative ampli-

tude correspond to the fundamental frequency (and its harmonics) of JM,

which could be useful to differentiate among grazing, rumination, and other

activities. Further, the ratio between the energy in the band 1.0-to-1.5 Hz

and the total sound segment energy was proposed as an additional discrimi-

nation feature. In this context, activities other than grazing and rumination

are not expected to present this characteristic spectral pattern, as such ac-

tivities may include periods of silence or different types of environmental

noise.

17

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
J.

 O
. C

he
lo

tti
, S

. R
. V

an
re

ll,
 L

. R
au

, J
. G

al
li,

 S
.A

 U
ts

um
i, 

A
. M

. P
la

ni
si

ch
, S

. A
lm

ir
ón

, D
. H

. M
ilo

ne
, L

. G
io

va
ni

ni
 &

 H
. L

. R
uf

in
er

; "
U

si
ng

 s
eg

m
en

t-
ba

se
d 

fe
at

ur
es

 o
f 

ja
w

 m
ov

em
en

ts
 to

 r
ec

og
ni

se
 f

or
ag

in
g 

ac
tiv

iti
es

 in
 g

ra
zi

ng
 c

at
tle

"
B

io
sy

st
em

s 
E

ng
in

ee
ri

ng
, V

ol
. 2

29
, p

p.
 6

9-
84

, 2
02

3.



0 1 2 3 4 5
Frequency(Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

am
pl

itu
de

Rumination
Grazing

Figure 4: Spectra of grazing and rumination sound segments.

2.4.3. Tachogram

A ruminant typically performs a bundle of JM per minute (between thirty

to sixty JM) and the rate variability of JM depends on the activity being per-

formed. The timestamps of detected events can be arranged into tachograms

showing the inter-event periodicity time-series (Figure 5). Grazing is com-

posed by a sequence of regular JMs and less frequent and irregularly dis-

tributed long pauses associated with walking or food searching (Figure 5.a).

Thus, the rate variability of JM for grazing shows a great frequency of inter-

events periods around one second (similar inter-events between successive

JMs) with occasional peaks of longer duration associated with exclusive food

searching (Bailey et al., 1996). On the other hand, rumination is composed

by groups of regular chews followed by periodic pauses of several seconds for

feed bolus swallowing and regurgitation. Thus, the rumination tachogram

will show values around one second (the period between successive JMs)

and regular peaks of three or more seconds corresponding to swallowing and
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Figure 5: Tachograms of five minutes of (a) grazing and (b) rumination. The JM-JM

interval refers to the time between two consecutive jaw movements.

regurgitation pauses (Figure 5.b).

In order to obtain a frequency representation, Fast Fourier Transform

(FFT) cannot be applied directly because it is an unevenly spaced signal,

and it requires a prior transformation. Signal resampling by interpolation

is the common strategy to address this problem. Once the spectrum is es-

timated, it is separated into frequency bands, which are related to the JMs

and swallowing-regurgitation pauses during rumination.

Figure 6 shows typical spectra of tachograms for grazing and rumina-

tion. The spectra show clear differences in the frequency band between 0 Hz

and 0.02 Hz. These differences are caused by the swallowing-regurgitation

pauses during rumination, whose periodicity is revealed by the low frequency

components close to zero. Both spectra show high intensity in very low fre-

quencies, which is related to the offset close to 1 s shown in both tachograms
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Figure 6: Spectrum of (a) grazing and (b) rumination tachograms.

(Figure 5). This contribution is not expected for activities other than grazing

and rumination, where this kind of periodic events may not be present. For

example, sip events are periodic but have a lower rate compared to chewing

and biting JM (Galli, 2008).

2.4.4. Jitter variants

Jitter is the variation of time period or latency that occurs between con-

secutive JM events (Figure 7). During grazing bites, chews and chew-bites

occur with an inter-event duration period that varies around 1 s; greater

inter-event time interval variation indicates greater jitter. During rumina-

tion, regular chews occur with an inter-event interval of lower variability

compared to grazing, thereby with lower jitter. Other activities showing

more irregular occurrence of detected events, will have greater jitter value

compared to grazing and rumination.
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Figure 7: Representation of jitter and shimmer measures in audio envelope.

There are alternative variants for the quantification of jitter:

• Absolute jitter (jitterabs) - is the average absolute difference between

consecutive inter-event periods within the given sound segment

jitterabs =
1

N − 1

N−1∑
i=1

|Ti − Ti+1| (1)

where Ti is the i− th time period between two consecutive events and

N is the number of inter-event periods in the sound signal segment

being analyzed.

• Relative jitter (jitterrel) - is the average absolute difference between

consecutive inter-event periods divided by the average inter-event pe-

riod of the sound segment

jitterrel =
1

N−1

∑N−1
i=1 |Ti − Ti+1|
1
N

∑N
i=1 Ti

(2)

• PPQ5 jitter (jitterppq5) - is the five-point period perturbation quotient

computed as the average absolute difference between an inter-event

period and the average of that period and the four closest neighbor

periods, divided by the average period of the sound segment
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jitterppq5 =
1

N−4

∑N−2
i=3

∣∣Ti − 1
5
(Ti−2 + Ti−1 + Ti + Ti+1 + Ti+2)

∣∣
1
N

∑N
i=1 Ti

(3)

The absolute jitter quantifies the variability of the inter-event periods

in a sound segment without taking into account the average period. Thus,

the absolute jitter loses sensitivity when the inter-event period changes. This

problem is solved by the relative jitter, which scales the absolute jitter by the

average period of the sound segment. It expresses the inter-event variability

as a fraction of the average period, providing a good sensitivity to inter-

event period changes. However, these alternatives (equations 1 and 2) focus

only on event variability, introducing a high variability in the jitter indexes.

To incorporate information of event neighbors, the PPQ5 jitter is employed.

This jitter variant considers the average of a period and the four nearest

neighbor periods to compute the inter-event period information.

2.4.5. Shimmer variants

Shimmer is defined as the variation of peak to peak signal amplitude (dB)

between events (Figure 7). During grazing, bites, chews and chew-bites occur

along a wide range of signal amplitudes; thus the shimmer between events has

a high value. During rumination, rumination chews exhibit lower variation

in signal amplitude, or have a lower shimmer value compared to grazing.

Other activities have no regularity in their amplitude, showing a shimmer

value higher than grazing and rumination (not shown).

There are alternative variants for the calculation of shimmer:

• Absolute shimmer (shimmerabs) - is the variability of the peak-to-peak

amplitude in decibels, which is computed as the average of absolute
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base-10 logarithm of the ratio between the amplitudes of consecutive

events, multiplied by 20,

shimmerabs =
1

N − 1

N−1∑
i=1

|20log(Ai+1/Ai)| , (4)

where Ai is the i− th extracted peak-to-peak amplitude and N is the

number of detected events in the sound segment.

• Relative shimmer (shimmerrel) - is the average absolute difference be-

tween amplitudes of consecutive events divided by the average ampli-

tude of events in the sound segment,

shimmerrel =
1

N−1

∑N−1
i=1 |20log(Ai+1/Ai)|

1
N

∑N
i=1Ai

(5)

• APQ5 shimmer (shimmerapq5) - is the five-point amplitude perturba-

tion quotient, or the average absolute difference between the amplitude

of an event and the average of the amplitudes of that event and the four

closest neighbors events, divided by the average amplitude of events in

the sound segment.

shimmerapq5 =
1

N−4

∑N−2
i=3

∣∣Ai − 1
5
(Ai−2 + Ai−1 + Ai + Ai+1 + Ai+2)

∣∣
1
N

∑N
i=1Ai

(6)

Like jitter, the absolute shimmer quantifies the amplitude variability be-

tween consecutive events in a sound segment without taking into account

the average amplitude, thus it loses sensitivity when the average amplitude
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changes. This problem is solved using the relative shimmer, which scales

the absolute shimmer by the average amplitude of the sound segment. The

relative variant expresses the inter-event amplitude variability as a fraction

of the average amplitude, thereby providing a good sensitivity to inter-event

amplitude changes. However, these shimmer variants (equations 4 and 5)

focus only on event variability, introducing a high variability in the shimmer

indexes. To incorporate information of event neighbors the APQ5 shimmer

is employed. This shimmer variant considers the average of amplitude of a

given event and the four closest neighbors to compute this inter-event am-

plitude information.

3. Experimental setup

3.1. Variants proposed

Different combinations of the proposed algorithm were analyzed. Ta-

ble 1 shows the features used by the former reference method (BUFAR),

the proposed method called JM segment-based Foraging Activity Recognizer

(JMFAR), and the variants analyzed. Two aspects were taken into account:

(i) the recognition performance and (ii) the computational cost. The variants

analyzed were:

• JMFAR: This variant is the proposed method considering all new fea-

tures.

• JMFAR-sel: This variant considers the resulting features after applying

a feature selection method on the set of JM-segment features.
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Table 1: Features used by BUFAR, the proposed method JMFAR and its variants.

Method Features

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24

BUFAR • • • •

JMFAR • • • • • • • • • • • • • • • • • • • • •

JMFAR-sel • • • • • • • • • • • •

JMFAR-ns • • • • • • • • • • • • • • • • • •

• JMFAR-ns: This variant does not consider the spectral information

(f13, f23 and f24) in order to reduce the computational cost and memory

requirements of the algorithm (25% of reduction). This is desired to

reduce the power consumption and increase the battery-life in wearable

devices.

For all the proposed methods features related to JM classification (f1, f2

and f3) were excluded.

The feature selection was performed with a wrapper method using a ge-

netic algorithm as a search method. As the internal classifier of the wrapper,

a multilayer perceptron similar to the external classifier was used. The pa-

rameters used were a mutation probability of 0.2, a crossover probability of

0.5, a population size of 50 individuals and a maximum of 30 generations

(Kohavi and John, 1997). For this process, a 5-fold scheme on the training

set was used. The accuracy was used as the scoring measure in the selection

process. The features that were selected at least in two folds were included.

For this study, a set of 24 h of recordings belonging to DbM (32.0%

grazing, 50.3% rumination and 17.6% of other activities) were used to train

and optimize parameters and hyper-parameters of the activity classifier and
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they were never used again. Classifiers were trained3 following a 5-fold cross

validation on the training set. Finally, the test results were obtained inde-

pendently from a separate test set of 137 h of recordings belonging to DbM

(48.4% grazing, 38.6% rumination and 13.0% of other activities) and another

test set of 30 h of recordings belonging to DbZ (38.3% grazing, 23.7% rumina-

tion and 38.0% of other activities). All recordings were selected taking care

that they correspond to a free ranging environment (i.e. outside of the feed-

ing barn). Evaluation on DbM indicated the performance of the algorithm

variants in similar train/test conditions (animals, diet and field conditions,

among others), whilst test on DbZ was used to evaluate the generalization

ability of the JMFAR on signals recorded under different experimental con-

ditions (animals, diet and field conditions, among others).

3.2. Performance assessment

The weighted average F1-score (Blair et al., 1979) was computed as a

weighted metric for the precision and recall of methods. This metric summa-

rizes the overall performance of methods and for their specificity for classifi-

cation of grazing and rumination. In a previous work the authors presented

results at the frame and at the block-level using spider-plots (Chelotti et al.,

2020). However, in order to obtain each individual measure per signal, the

proportion and duration of each activity were assumed to be equal. Although

the information in the spider-plots is useful, in this work the actual length

of time is taken into account and presented in a summarized and more ac-

curate form. The F1-scores were computed using sequences of 1 s frames for

3This stage was implemented in python using the scikit-learn package.
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the analysis. For each audio signal three F1-scores were computed, one for

rumination, one for grazing, and one average score weighed by the number

of frames for each activity. F1-scores range between 0.0 and 1.0 and values

close to 1.0 indicate better activity classification performance.

The analysis of each audio signal provided a list of blocks where the start,

end, and type of activity are specified. These blocks were partitioned to 1 s

non-overlapping frames sequences. Due to the fact that activity bouts last

several minutes or even hours, using 1 s frames provides a very detailed reso-

lution of results. Further, any modification of the limits of an activity block

below 1 s can be discarded from the point of view of the recognition problem.

This transformation was applied both to the algorithm output and ground

truth of each signal. After this transformation there are corresponding pairs

of sequences of labeled frames for the ground truth and each analyzed algo-

rithm. Thus, conventional metrics for classification problems can be used.

4. Results

4.1. Comparative performance of BUFAR and JMFAR methods

The boxplots of Figure 8 show the weighted F1-score for BUFAR and

JMFAR algorithms. Each data point considered for the graphic corresponds

to an analyzed audio signal belonging to the DbM database. The interquar-

tile range for F1-scores of BUFAR spans from 0.55 to 0.91 and has a median

of 0.86. By contrast, the JMFAR algorithm shows a narrower range and

distribution of F1-scores. The interquartile range of JMFAR spans from 0.83

to 0.97 and has a median of 0.93. Score differences between BUFAR and

JMFAR have shown to be significant (p=0.012) according to a Wilcoxon
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Figure 8: Weighted average of frame F1-score computed in the DbM database.

signed-rank test comparison (Wilcoxon, 1947).

Figure 9 shows the confusion matrices for the BUFAR and JMFAR. Rows

represent frames and their actual activity label, whereas columns represent

the frames and activity label as they were assigned by the algorithm. Each

cell [i, j] provides the proportions of frames from the activity class i that

were categorized as activity j by the algorithm. The cells along the diag-

onal indicate the correct classifications. A classifier that provides correct

labels for each frame would generate a unit matrix. Off diagonal cells repre-

sent different kinds of errors for incorrectly classified frames. Matrix values

range from 0.0 (white) to 1.0 (dark blue). The matrix for BUFAR shows

that 65% of grazing and 78% of rumination frames were correctly classified.

Further, 23% of grazing frames were incorrectly labeled as rumination. On

undetected frames, the underestimation of activities was 12% for grazing and

18% for rumination. JMFAR confusion matrix shows better results for the
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Figure 9: Confusion matrices for the BUFAR and JMFAR algorithms. The improvement

in performance for grazing recognition is clear.

activities of interest. Recognition was correct for 84% of grazing and 78%

for rumination. Confusions among rumination and grazing were similar (11

and 12%) and undetected frames were much lower, 4% for grazing, and 11%

for rumination.

Previous results can be interpreted temporally as a function of sound sig-

nal length. For example, if a 180 min audio signal corresponds to 60 min

of grazing, 60 min of rumination and 60 min to other activities, classifica-

tion results would have been as follows. The BUFAR algorithm would have

predicted 42.6 min of grazing and 66.6 min of rumination, with 13.8 min of

true grazing activity mislabeled as rumination and 2.4 min of true rumina-

tion mislabeled as grazing. Similarly, classifications by JMFAR would have

improved to 65.4 min of grazing and 56.4 min of rumination, with 7.2 min of

true grazing mislabeled as rumination and 6.6 min of true rumination mis-

labeled as grazing. Additional spider plots for classifications of grazing and
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rumination by BUFAR and JMFAR algorithms are available in the supple-

mentary material. Plots use the same metrics as in Chelotti et al. (2020),

allowing for direct study comparisons of methods.

Finally, in order to evaluate the robustness of the algorithm, the model

originally trained on signals belonging to the DbM was validated on sig-

nals belonging to the DbZ. The boxplots in Figure 10 show the weighted

F1-score for BUFAR and JMFAR algorithms evaluated on DbZ. Each data

point considered for the graphic corresponds to an analyzed audio signal

belonging to the DbZ database. The interquartile range for F1-scores of

BUFAR spans from 0.71 to 0.85 and has a median of 0.78. By contrast,

the JMFAR algorithm shows a narrower range and distribution of F1-scores.

The interquartile range of JMFAR spans from 0.79 to 0.88 and has a median

of 0.82. Score differences between BUFAR and JMFAR have shown to be

significant (p=0.031) according to a Wilcoxon signed-rank test comparison

(Wilcoxon, 1947).

4.2. Variants of the proposed algorithm

Figure 11 shows the confusion matrices for JMFAR and variants JMFAR-sel

and JMFAR-ns. The JMFAR-sel variant only uses 12 of the proposed JM-

segment features, allowing savings on computational costs. However, benefits

are quickly offset by weaker classification results. Correct classifications were

82% for grazing and only 53% for rumination, with a 47% of undetected ru-

mination frames. The JMFAR-ns variant achieves satisfactory results for

grazing and rumination (76% and 78%, respectively), with a lower misclas-

sification between these activities (9% and 5% respectively). This variant

has lower computational cost and buffer memory size, since spectral features
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Figure 10: Weighted average of frame F1-score computed in the DbZ database.

were excluded from classification analyses.

A summary of the average performance and computational costs for

JMFAR and variants are presented in Table 2. The JMFAR improves the

previous recognition accuracy of BUFAR by 9.5%, with a computational

cost in the same order of magnitude. In general the use of fewer classifica-

tion features in JMFAR-sel and JMFAR-ns leads to a deterioration of the

recognition accuracy compared to JMFAR. Remarkable is the deterioration

of the recognition accuracy of rumination for JMFAR-sel (25%), despite the

improvement in computational cost. The average decline of recognition ac-

curacy for JMFAR-sel was 13.5% compared with JMFAR and 4% compared

to BUFAR, which occurred without incurring major alteration of computa-

tional costs. The JMFAR-ns also shows a decline in recognition accuracy

compared to JMFAR (this decline was 6% for grazing, 2% for rumination),

and an improvement of recognition accuracy compared to BUFAR (the im-
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Figure 11: Confusion matrices of the algorithm variants analyzed.
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Table 2: Overall performance and computational cost of BUFAR and JMFAR variants.

Method
Average accuracy

(%)

Computational cost

(operations/s)

BUFAR 71.5 37,966

JMFAR 81.0 50,445

JMFAR-sel 67.5 43,736

JMFAR-ns 77.0 37,645

provement was 13% for grazing, and 2% for rumination). The computational

cost was numerically lower for JMFAR-ns than BUFAR.

5. Discussion

The individualized monitoring of grazing and rumination patterns could

offer insights on sward–animal interactions affecting daily herbage intake,

thereby providing unprecedented opportunities to optimize grazing manage-

ment, enhance animal production or meet individualized requirements for

animal nutrition, health, well-being and welfare (Beauchemin, 2018). This

study is limited to free grazing environment. Typical indoor scenarios, as

a barn, could present additional challenges to the proposed method due to

environmental noises. In addition, practical factors such as device place-

ment, bumps and splashes could affect the performance of the system. These

specific situations should be addressed in future studies.

The acoustic method has some advantages over pressure sensors and ac-

celerometers. The sound quality obtained by placing a microphone on the

forehead of the animal enabled algorithm to very precisely discriminate the

sounds associated with diverse jaw movements during grazing and rumina-
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tion. Moreover, this precise detection capability enables to further expand

the method to estimate the dry matter intake, to recognize the ingested forage

species and also to obtain information about the surrounding environment

(Galli et al., 2020; Li et al., 2021b).

In this study the reliability and accuracy of applying on-line acoustic

methods to monitor grazing and rumination patterns were assessed and com-

pared. The proposed system was built using signal processing and machine

learning concepts. Repositories of acoustic data collected with lactating dairy

cows on a robotic milking facility were used for the process. Overall, increas-

ing the number of temporal, statistical and spectral features in the classifier

improved the accuracy of algorithms, whereas the inclusion of greater num-

ber of features and classification steps slightly increased computational costs

compared to previous algorithms for operation on-line (i.e. in portable em-

bedded systems).

In this work, different sets of JM-segment features were evaluated for

incorporation in a foraging activity recognizer called JMFAR. The pro-

posed JMFAR algorithm showed better overall performance compared to

BUFAR (Chelotti et al., 2020), a former algorithm developed on a bottom-

up approach for recognition of foraging activities in cattle (Figures 8 and 9).

JMFAR achieved 84% and 78% for grazing and rumination recognition, re-

spectively and a misclassification between grazing and rumination frames of

12% and 11%. Furthermore, the recognition of grazing was improved from

65% to 84% compared to the former algorithm BUFAR. This is an impor-

tant achievement because BUFAR can misclassify about 35% of true graz-

ing frames either as rumination (23%) or other non-grazing activity frames
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(12%). A less significant misclassification problem of BUFAR could be seen

for rumination, where 18% of true rumination frames could be incorrectly

assigned to other non-grazing activities. Hypothetically, the issue of mis-

classifications by BUFAR could be associated with a limited availability of

statistical information on JM in the classifier. In BUFAR most of the activity

classification lies on the accuracy of JM classification. In this sense, the new

algorithm JMFAR overcomes these limitations by using new JM-segment

features of acoustic data, which makes the new activity classifier fully in-

dependent of the JM-classification. Indeed, JMFAR bridges completely the

step for JM classification previously addressed by BUFAR. In JMFAR and

the variants tested, new arrays and variants of JM-segment features of sound

data such as the jitter, the shimmer and the sound spectra, are increasingly

relevant. This sequence view rather than a simple group view of detected

JM, clearly makes the difference in the quality of activity classifications. The

sequence patterns of acoustic features and their differences between grazing

and rumination are the key distinctive elements between these two activities

and for other non-grazing and non-rumination activities.

The robustness of the algorithm was also evaluated (Figure 10). The

new algorithm, originally developed using signals belonging to the DbM, was

tested on signals belonging to the DbZ. Performances of BUFAR and JMFAR

algorithms under this schema were slightly lower than the obtained from

testing on signals belonging to the DbM. Again, JMFAR improved the results

for BUFAR in terms of F1 score (medians of 0.82 and 0.78 respectively).

This external validation approach represents a challenging scenario due to

databases are generally obtained under different experimental conditions.
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Among the variants tested, the JMFAR-sel which relied on a supervised

selection for JM-segment features, achieved the most modest results (Fig-

ure 11). This shows that in order to reduce the computational cost, retaining

only the most discriminative features, relevant information is lost. The over-

all performance of JMFAR-ns, a variant that excluded spectral features in

the classifier, showed a slightly lower accuracy compared to JMFAR (77% vs

81% from Table 2), although computational costs were reduced in JMFAR-ns.

This variant achieved the lowest confusion of classification between grazing

and rumination frames (which were 9% and 5%) yet it had a tendency to

underestimate grazing and rumination by 13% and 19%, respectively. Hypo-

thetically, this underestimation could be due to an exclusion of the 1.0-1.5 Hz

energy band from the analysis, which is associated with regularly performing

JM, increasingly significant in grazing and rumination chewing. Interesting

results were observed when both JM-classification and JM-segment features

were used together. In this case, the overall performance was 84% and 81%

for grazing and rumination, respectively. This implies an overall improve-

ment of 3% for rumination in comparison with BUFAR, which could be

due to a lower confusion of classification between grazing and rumination.

The addition of JM proportional information, in particular the addition of

proportions of chews during rumination, improved the recognition perfor-

mance of rumination and overall. This findings support the hypothesis that

greater classification accuracy is the result of distinct contributions aggre-

gating across sets of discrimination features (i.e. statistical, temporal or

spectral), thereby improving the overall activity recognition process.

In practice, for on-line analyses tallying a daily monitoring with 8.00 h

36

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
J.

 O
. C

he
lo

tti
, S

. R
. V

an
re

ll,
 L

. R
au

, J
. G

al
li,

 S
.A

 U
ts

um
i, 

A
. M

. P
la

ni
si

ch
, S

. A
lm

ir
ón

, D
. H

. M
ilo

ne
, L

. G
io

va
ni

ni
 &

 H
. L

. R
uf

in
er

; "
U

si
ng

 s
eg

m
en

t-
ba

se
d 

fe
at

ur
es

 o
f 

ja
w

 m
ov

em
en

ts
 to

 r
ec

og
ni

se
 f

or
ag

in
g 

ac
tiv

iti
es

 in
 g

ra
zi

ng
 c

at
tle

"
B

io
sy

st
em

s 
E

ng
in

ee
ri

ng
, V

ol
. 2

29
, p

p.
 6

9-
84

, 2
02

3.



of true grazing, BUFAR would have indicated the equivalent median of

9 h 28 min (interquartile range of 8 h 13 min - 12 h 14 min), while JMFAR

would indicate the equivalent median of 7 h 59 min (interquartile range of

7 h 19 min - 8 h 35 min) of classified grazing. Assuming literature values

of 1.5 kg/h of dry matter consumption (Galli et al., 2018), previous val-

ues correspond to an approximate consumption with a median of 14.2 kg

(interquartile range 12.3 - 18.3 kg) and 12.0 kg (interquartile range 11.0 -

12.8 kg) for BUFAR and JMFAR respectively. Certainly, additional research

would be necessary to evaluate the application of acoustic methods for es-

timation of herbage dry matter intake. As the pioneer work by Laca et al.

(2000) has provided the proof of concept for the use of ingestive sounds for

prediction of herbage dry matter intake of sheep (Galli et al., 2011), cat-

tle (Galli et al., 2018), and potentially other herbivore species. For example

chewing and biting sounds apparently enclose statistical, energy and possibly

spectral information that could be used as metrics for accurate estimations

of dry matter intake (CV 17%) of cows and even when those cows are con-

fronted with forages that have varying physical and chemical composition yet

comparable sound signal properties and metrics. Despite progresses, further

work is still necessary to apply extractions of acoustic and information from

JMFAR and variants for scalable predictions of herbage dry matter intake

across animals.

In this study, JMFAR and variants explored likely trade-offs between clas-

sification performance and the associated computational costs (Table 2). The

former JMFAR, considering all new JM-segment features, requires 50,445 op-

erations per second (ops/s). There are two variants that have attempted to
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minimize the computational cost. The JMFAR-sel, reduced the reference

computational cost by 13.3% at expense of reducing the overall performance

from 81.0% to 67.5%. The JMFAR-ns variant, required 37,645 ops/s, and yet

it has reduced costs by 25.4% the performance was reduced from 81.0% to

77.0%, despite the fact that this variant had better performance and lower

computational cost compared to the preceding algorithm BUFAR. In the

JMFAR-ns variant the classifier input set was reduced to 17 features in the

time domain, avoiding performing fast Fourier transformations, which are

not always feasible to realize in low power microcontrollers. The exclusion

of spectral features reduced 99.9% the computational cost associated to con-

form the set of activity features. Thus, fewer features included in this variant

and avoidance for prior classification of JM would have been responsible for

all computational cost improvements. A detailed analysis of the computa-

tional cost is included in the Appendix A. The requirement for random

access memory (RAM) is another key feature for the on-line implementa-

tion of algorithms in portable embedded systems. As a reference, a simple

8-bit data representation with storage rate of 100 Hz, would have required

30 kB of RAM to store a segment of a given sound envelope. Furthermore,

the implementation of JMFAR and JMFAR-sel variants would have required

an addition of 30 kB of RAM to store the spectral representation of the

sound envelope. Thus, after consideration of a proportional consumption of

power, the JMFAR-ns variant is suggested as the most appropriate method

for implementation in a low power microcontroller-based system.

This work was performed with the same number of animals as in previous

studies (Chelotti et al., 2020; Vanrell et al., 2018), with a total of 250 hours
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analyzed. This is a first step, in which we test the performance of the system

with a homogeneous group of animals. Future work will contemplate the

expansion of these results to a much wider range, including a larger number

of animals and incorporating different frames, sexes, breeds and age. The

level of variation between cows in this experiment should not represent a

problem for the application of the method, in fact but, in principle it could

be extrapolated to groups of cows homogeneous in breed, size and age. The

degree of variation between individuals is important because it will determine

the generality of predictions based on chewing sounds. Chewing activity

could present individual differences due to the influence of sex, body weight,

physiological state and age, but this should not necessarily cause differences

in ingestive or ruminant chewing. The cows used in this trial were similar in

live weight, age and size, but could differ in the size and structure of their

teeth, as well as the size and shape of their heads that produced different

chewing sounds. In the worst case scenario, these uncontrolled sources of

variation could suggest that a calibration of the recording equipment for

each individual might be required when the animals are not uniform.

6. Conclusions

A novel acoustic method for the recognition and estimation of grazing

and rumination bouts has been proposed. The proposed JMFAR is based

on JM-segment features, i.e. that the computation of each feature is in-

dependent of the JM identification. The proposed features were: statistics

of JM amplitudes and JM durations, spectral features of the sound enve-

lope, JM jitter and JM shimmer variants, temporal and spectral features
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of the JM tachogram. The algorithm has shown an improved performance

in comparison with the BUFAR method based on JM-classification features.

Variants relying on maximum numbers for JM-segment features achieved the

best overall classification results with slight trade-offs on computational costs,

and memory requirements for use in portable embedded systems. Among the

variants analyzed, the one that ignores spectral information showed the best

trade-off between recognition performance and computational cost.
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Appendix A. Computational cost

The computation cost of the JMFAR variants depends on the sampling

frequency, the considered segment length and the number of features used

by the activity classifier. In this analysis a sampling frequency of 2 kHz, a

segment length of 5 min and two JM per second were considered in order

to get a simple comparison with other methods. Worst-case scenarios were

considered for each stage in order to get a theoretical upper bound. The

required number of operations per stage of computation for JMFAR was:

1. Signal pre-processing: A detrending filter requires 5 operations per

signal sample. Then, 10,000 ops/s are required.

2. JM detection: 27,200 ops/s are required to compute the subsampled

envelope, generate a time-varying threshold and detect the jaw move-

ment.

3. JM feature extraction: This task involves 300 ops/s.

4. Buffering: 6 ops/s are required to store the timestamp, and the ampli-

tude and duration features.

5. Activity feature extraction: the worst-case scenario for activity feature

extraction considers 2 event/s, which is equivalent to 600 events per

segment.
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(a) JM rate (f4): this feature requires only 1 op/segment.

(b) JM statistics:

i. mean amplitude (f5) and mean duration (f9): each feature

requires 600 ops/segment.

ii. standard deviation amplitude (f6) and standard deviation du-

ration (f10): 1801 ops/segment per feature are required.

iii. skewness amplitude (f7), skewness duration (f11): compute

each feature requires 2,401 ops/segment.

iv. kurtosis amplitude (f8) and kurtosis duration (f12): compute

each feature requires 3,001 ops/segment.

(c) Spectral feature of the envelope signal (f13): compute the energy

in the 1.0-1.5 Hz band requires 1,830,252 ops/segment.

(d) JM jitter and shimmer variants:

i. absolute variants: absolute jitter (f14) requires 2396 ops/segment

and compute the absolute shimmer (f18) requires 2398 ops/segment.

ii. relative variants: absolute jitter (f14) and absolute shimmer

(f18) are used to compute relative jitter (f15) and relative

shimmer (f19), respectively. Each feature requires 601 ex-

tra ops/segment.

iii. perturbation quotient variants: partial calculations of feature

(f15) and partial calculations of feature (f18) are used to cal-

culate the PPQ5 jitter (f16) and the APQ5 shimmer (f20),

respectively. Additional 4770 ops/segment are required per

feature computed.

iv. standard deviation variants: absolute jitter (f14) is used to

calculate the standard deviation of jitter (f17). Additional
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2,997 ops/segment are required. Similarly, the feature (f15)

is used to compute the standard deviation of shimmer (f21)

involving 4,195 ops/segment.

(e) Temporal feature of the JM tachogram (f22): worst-case scenario

requires 1,201 ops/segment.

(f) Spectral features extraction of the JM tachogram requires both

an interpolation, a frequency domain transform, and an energy

computation involving 2,009,479 ops/segment. Additionally, the

computation of energy in the 0.017-0.020 Hz (f23) and 0.00-0.02

Hz (f24) bands requires 5 and 53 ops/segment, respectively.

6. Activity classifier (MLP): considering all extracted features (21) and

the largest number of neurons in the hidden layer (20), the activity

classification task requires 2,279 ops/segment.

The overall computation cost of JMFAR is: 37,506 ops/s + 3,881,604 ops/segment.

To compare the algorithm with an on-line method with the same block length,

the computational cost can be estimated at 50,445 ops/s.
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