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2Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL, CONICET, Santa

Fe, Argentina.
3Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich,

Switzerland

Abstract: Objective: This paper tackles the cross-sessions variability of electroencephalography-based brain-computer
interfaces (BCIs) in order to avoid the lengthy recalibration step of the decoding method before every use. Methods:
We develop a new approach of domain adaptation based on optimal transport to tackle brain signal variability between
sessions of motor imagery BCIs. We propose a backward method where, unlike the original formulation, the data from
a new session are transported to a calibration session, and thereby avoiding model retraining. Several domain adap-
tation approaches are evaluated and compared. We simulated two possible online scenarios: i) block-wise adaptation
and ii) sample-wise adaptation. In this study, we collect a dataset of 10 subjects performing a hand motor imagery task
in 2 sessions. A publicly available dataset is also used. Results: For the first scenario, results indicate that classifier
retraining can be avoided by means of our backward formulation yielding to equivalent classification performance
as compared to retraining solutions. In the second scenario, classification performance rises up to 90.23% overall
accuracy when the label of the indicated mental task is used to learn the transport. Adaptive time is between 10 and 80
times faster than the other methods. Conclusions: The proposed method is able to mitigate the cross-session variability
in motor imagery BCIs. Significance: The backward formulation is an efficient retraining-free approach built to avoid
lengthy calibration times. Thus, the BCI can be actively used after just a few minutes of setup. This is important for
practical applications such as BCI-based motor rehabilitation.
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1 INTRODUCTION

Brain-computer interfaces (BCI) based on electroencephalography (EEG) can be used as a rehabilitation
approach to improve the functional ability of people with severe sensorimotor impairments [1–4]. In this
context, the brain activity associated to a mental motor task, or an actual motor attempt, must be decoded
to control an external device, such as a virtual reality avatar providing visual feedback [5], a robotic device
providing direct physical support [6], or the combination of both [7]. In order to implement and validate a
robust BCI, two phases need to be completed: i) a calibration phase, in which the subject-specific decoding
model is learned, mapping electrical brain activity patterns to output commands, and ii) a testing phase, in
which the learned model is applied and the actual command is generated [8]. However, different sources of
varibility in the EEG signal affect the ability to robustly detect the intended mental task. Changes at the level
of the subject, the electrode position or the type of feedback presented, are potential sources of variability.
The lack of stationary of the EEG can be observed between subjects but also within and between sessions of
the same subject [9]. Thus, in view of real-life EEG-based BCI applications, the decoding algorithm must
be able to deal with such variability in a non time-consuming manner.

Within the BCI community, a standard approach to tackle EEG variability consists of learning a new
decoding algorithm before each and every use (recalibration). Although such an approach can lead to good
classification performance (accuracy > 70%), it is not only time-consuming (generally a large amount of
data must be recorded) but it also neglects all the information from previously collected data. Another
strategy consists of finding the shared structure in the feature space across training data of multiple sessions
and subjects [10].
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The EEG’s nonstationarity can be thought of as a data distribution drift between calibration and testing
recordings [11]. Domain adaptation, a particular case of transfer learning (TL), provides a way of devising
models that can cope with such data shift [12]. In the context of BCIs, domain adaptation aims at addressing
the within or between-subjects variability by adapting features and/or classifier parameters from one domain,
e.g. one subject or session, to another domain, e.g. another subject or session of the same subject.

The feature extraction method most widely used in rehabilitative BCIs is the common spatial pattern
(CSP) algorithm, first used to distinguish between the mental imagination (motor imagery, MI) of opening
and closing the right vs. left hand [13]. In short, CSP spans band-pass filtered EEG data into a discriminative
subspace by applying a linear mapping which maximizes the variance of one class and minimizes it for
the other class [14]. Despite its popularity, CSP is sensitive to both data variations and small training
datasets [15]. Different solutions have been proposed to tackle these drawbacks, ranging from adaptations
at the level of the method itself [15], or changes in the classifier being used [16], to transformations of the
feature space [9, 17].

In the specific context of neurorehabilitation applications, a subject-specific MI-BCI system is expected
to be used across several sessions (days). The MI-decoding model will be subject to not only physiological
noise, but potentially also to the brain pattern changes induced with recovery. In this context, in order
to provide accurate feedback to the user as soon as the session begins, the decoding algorithm can be
either domain-invariant or domain-adaptive to cross-sessions distribution drifts. Whereas in the former
the decoding algorithm is designed so as to find common components between domains, in the latter the
data distribution drift is learned so as to make the calibration and testing distributions more similar. This
approach considers that samples (EEG trials) from two different domains (sessions) may have different data
distributions, but have the same conditional distributions of the mental tasks with respect to the data [18].

Every domain-adaptive method seeks to “match” the probability distributions coming from two different
domains: the source and the target. A recent approach within the BCI community for matching those
distributions consists of domain alignments based on simple geometrical transformations of the data. In
particular, the authors in [19] proposed what is called Riemannian alignment, a TL framework that consists
of re-centering the covariance matrices of both domains in order to make them comparable. The Riemannian
procrustes analysis (RPA) [11], which can be viewed as an improvement of the aforementioned TL method,
also re-centers data as the first step of a series of geometrical transformations. More recently, the Euclidean
alignment (EA) [20] was proposed with the main advantage of transforming the EEG trials in the Euclidean
space, and thus any machine learning pipeline can then be applied to the aligned trials. Another relevant
difference of EA as compared to RPA is that while the latter makes use of the available label information,
the former is a completely unsupervised TL method. Regardless of how the alignment is made, all these
methods transform data from both domains, and then a new classifier must be learned with the transformed
training data.

Within the machine learning community attention has been paid to the use of optimal transport (OT)
[21] as a TL approach. The use of optimal transport for domain adaptation (OTDA) was first proposed
in [22], where the authors make use of OT theory to compute the optimal coupling between two probability
distributions in a cost-effective manner. Once the optimal coupling is computed, the optimal transport is
constructed in terms of it, and the data from the source domain are then transformed to make its probability
distribution more “similar” to the distribution in the target domain. A new classifier is then learned using the
transported source data such that the label prediction in the target domain improves. The use of OTDA for
transfer learning in BCI has already been evaluated in [23] for P300-BCI applications. Although the authors
show that data distribution drift can potentially be addressed by keeping the classifier fixed and transforming
the testing data, the transportation plan was learned by using testing data, an approach that is not applicable
to online scenarios.

In this work, we provide a novel framework of domain adaptation based on OT for addressing the cross-
session variability in online MI-BCI. Considering real-time applications of BCI systems for motor rehabili-
tation, we are interested in finding a solution to the problem of long calibration times and classifier retraining
between sessions. In order to do so, we propose a new backward method, called backward optimal transport
for domain adaptation (BOTDA), which transforms target samples to boost the performance of the already
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trained classifier. Unlike the approach followed in [23], the transport operator is directly calculated in an
optimal way, without inverting the forward operator. By using BOTDA, both classifier retraining and long
calibration data before each session can be avoided. In addition, a complete online compatible workflow
for applying TL based on OTDA is presented here. This work is a contribution towards optimal strategies
for the development of robust MI-BCI systems. It opens new avenues for increasing time-efficiency and
performance of BCI-based neurorehabilitation approaches by better addressing EEG variability.

The organization of this article is as follows. Section 2 describes the problem, introduces OTDA as well
as our backward approach and explains the use of OT in the context of BCI. Section 3 describes the two
real multiple-sessions MI-BCI datasets used throughout this work. Experiments and results are presented in
Section 4 whereas discussions and conclusions, including future works, are in Sections 5 and 6, respectively.

2 TRANSFER LEARNING AND DOMAIN ADAPTATION BASED ON OPTIMAL TRANSPORT

This section introduces some of the mathematical assumptions and foundations of domain adaptation
based on optimal transport. The traditional as well as the proposed backward formulation are detailed.

2.1 ASSUMPTIONS AND MAIN DEFINITIONS

Throughout this work, we consider that a domain is a BCI session, and thus, the source domain Ωs refers
to the calibration session, whereas the target domain Ωt refers to the testing session. We analyze different
regularized OTDA versions proposed by Courty et al. [22] from two perspectives: i) the forward approach
(original), in which a forward transport mapping F is learned from the source to the target domain and ii) the
backward approach, our proposed new alternative, which learns a backward transport mapping B directly
from the target to the source domain. Fig. 1 illustrates the two aforementioned OTDA alternatives: i)
forward OTDA (FOTDA) and ii) backward OTDA (BOTDA). For learning the transportation plan by either
of the two OTDA alternatives, data from the new session is needed. With real-life applications in mind,
we provide a domain adaptation algorithm based on optimal transport for MI-BCI that can be completely
implemented online. In this context, we simulate two possible online scenarios: block-wise adaptation
and sample-wise adaptation. In the first scenario we hypothesize that the data distribution drift remains
unchanged from one data-block (testing run) to another, and therefore it can be learned from the previous
available data. On the contrary, in the second scenario, we assume that the data distribution is continuously
changing and thus the current testing trial should be considered in the transport learning process. Although
experiments were conducted as online simulations, throughout this work we shall indistinguishably refer
to them as online testing session since this is how our workflow was designed. That is, all the proposed
methods can be applied in fully online scenarios.

Figure 1: Illustration of two different domain adaptation approaches: forward OTDA, where the distribution
drift is learned from source to target domain and backward OTDA, where the transportation mapping is
learned from target to source domain. Here Ωs and Ωt denote the source and target domains, respectively,
and F and B denote the forward and backward transport mappings, respectively.
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2.2 PROBLEM FORMULATION

Consider two datasets, the source (S) and the target (T ) dataset, coming from two different MI-BCI
sessions (e.g., days). Each dataset is composed of EEG trials belonging to one and only one of two MI
classes. Let Ns and Nt denote the number of trials in the source and target domains, respectively, and
xsi ∈ Ωs,x

t
i ∈ Ωt the feature vectors, where Ωs, Ωt ⊂ Rd, K .

= {k1, k2} and ysi , y
t
i ∈ K are class labels.

Hence our datasets are

S .
= {(xsi , ysi ), i = 1, . . . , Ns} ⊂ Ωs ×K,

T .
=
{

(xti, y
t
i), i = 1, . . . , Nt

}
⊂ Ωt ×K.

We shall denote with Xs ∈ RNs×d and Xt ∈ RNt×d the feature matrices whose ith rows are xsi and xti,
respectively.

In every standard learning paradigm, the discriminative model is constructed using a training set (with
label information) and then evaluated on the unseen testing set. This learning-evaluation framework assumes
that training and testing sets are drawn from the same distribution. However, in multiple-sessions EEG-
based BCIs this assumption cannot be guaranteed since training and testing sets are collected at different
times by different system conditions, which may lead to poor classification performances. This issue can
be modeled as a covariate shift problem, in which changes in the distributions in the two domains are
considered (Ps(x

s) 6= Pt(x
t)), but it is assumed that the conditional distributions of the labels with respect

to the data remain the same (Ps(y|xs) = Pt(y|xt)). Assuming that the domain drift is given by a certain
transformation F : Ωs → Ωt, if such a transformation is known, one can then “adapt” the domains so as to
make the distributions similar, and thus prevent classification failure. The domain adaptation approach based
on optimal transport (OTDA) consists of estimating such a transformation F in a cost-effective manner [22],
as described in the following subsection.

2.3 A BRIEF INTRODUCTION TO OTDA

OT theory studies a problem known as the Monge-Kantorovich transportation problem [21], which,
roughly speaking, seeks to find a cost-effective way to transport mass between two probability distributions.
In this direction, it is said that OT solves and optimization problem which minimizes what is called trans-
portation cost. For Ω ⊂ Rd let P(Ω) denote the space of all probability measures with support in Ω. Given
Ωs, Ωt ⊂ Rd, a measurable mapping F : Ωs → Ωt, as above, and a measure α ∈ P(Ωs), the measure
σ ∈ P(Ωt) defined by σ(A)

.
= α

(
F−1(A)

)
for every σ-measurable set A ⊂ Ωt, is denoted by F#α. The

mapping F is said to be a push-forward or a transport map of α in σ, and σ is referred to as the push-forward
of α by F .

In this context, addressing the data distribution drift by the forward OTDA problem consists of finding
a transport map F of the source data distribution µs ∈ P(Ωs) in the target data distribution µt ∈ P(Ωt),
i.e. such that F#µs = µt. This adaptation problem can be tackled by following the next three steps: first,
estimate the measures µs and µt from the feature matrices Xs and Xt, then find a transport map F from µs
in µt, and finally use F to transport Xs. Although that sounds simple, searching for F in the space of all
possible transformations turns out to be an absolutely unmanageable problem and appropriate restrictions
on F must be imposed. In this line of work, the Monge approach [24] to the optimal transport problem
consists of finding, among all the possible transports F from µs in µt, an optimal transformation F0 as the
solution of the minimization problem

F0
.
= argmin

F s.t. F#µs=µt

∫
Ωs

c(x, F (x)) dµs(x),

where c : Ωs × Ωt → R+ is a given cost function.
A convex relaxation of the OT problem was introduced by Kantorovich et al. [24]. Given µs ∈ P(Ωs)

and µt ∈ P(Ωt), let Υ = Υ(µs, µt) be the set of all couplings between µs and µt, i.e. all joint probability
measures γ in P(Ωs × Ωt) whose respective marginals are µs and µt. The Kantorovich approach to OT
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consists of finding the optimal transportation plan, which is defined as the coupling γ0 given by

γ0
.
= argmin

γ∈Υ

∫
Ωs×Ωt

c(xs,xt) dγ(xs,xt). (1)

When the measures µs and µt are to be estimated from the feature matrices Xs and Xt respectively, as
in our case, the corresponding sample distributions take the form

ms =

Ns∑
i=1

psi δxs
i

and mt =

Nt∑
j=1

ptjδxt
j
, (2)

where psi and ptj are the probability masses at the points xsi and xtj , respectively, and δx ∈ P(Ω) denotes
the unit Dirac delta measure at the point x ∈ Ω. Usually psi = 1

Ns
∀i and ptj = 1

Nt
∀j. The continuous

Kantorovich formulation of OT (1) has an immediate correlate in this discrete case. In fact, if we now denote
by As

.
= Π1S and At

.
= Π1T the projections of the datasets S and T into Ωs and Ωt, respectively, and with

Γ the set of all discrete probabilistic couplings between the discrete measures ms and mt, i.e.

Γ =

γ = (γij) ∈ P(As ×At) s.t.
∑
j

γij = ms,
∑
i

γij = mt

 ,

then the discrete Kantorovich formulation of OT boils down to finding the optimal discrete transportation
plan, defined as

γ0
.
= argmin

γ∈Γ
〈γ,C〉F , (3)

where 〈·, ·〉F denotes the Frobenius inner product, and C = (cij), cij ≥ 0 is a cost function matrix with
cij = c(xsi ,x

t
j) representing the cost of moving a unit probability mass from xsi ∈ Ωs to xtj ∈ Ωt. Quite

often c is simply the square L2 norm or the Euclidean distance.
Several regularized versions of the discrete OT problem (3) exist. In [25], the authors proposed to add a

regularizer to the formulation in (3) in order to reduce the sparsity of the transportation plan. The optimal
coupling was then defined as:

γ0
.
= argmin

γ∈Γ
〈γ,C〉F + λWe(γ), (4)

where λ is a positive constant called regularization parameter, and We(γ)
.
=
∑

ij γij log(γij) is the ne-
gentropy of γ. This formulation of OT not only favors smoother versions of the transport by reducing its
sparsity, but it also allows for the use of computationally efficient algorithms based on the Sinkhorn-Knopp’s
scaling matrix approach [26]. In the sequel, we shall refer to this regularized OT version as OT-S.

In addition, to take advantage of the label information available in the source domain, an extra penalizer
term can be added to (4) in the following way:

γ0
.
= argmin

γ∈Γ
〈γ,C〉F + λWe(γ) + ηWc(γ), (5)

where η > 0 is also a regularization parameter and Wc(γ) is a regularization term which introduces label
information into the OT formulation. For instance, the group-lasso regularizer [27] on the columns of γ can
be used to penalize couplings that take any two samples in the source domain having different labels to the
same sample in the target domain, as follows:

Wc(γ)
.
=
∑
j

∑
k

‖γ(Ik, j)‖2,

where Ik denotes the set of indices of all the rows of γ corresponding to all the source domain samples of
class k ∈ K [22].
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For domain adaptation, once the optimal transportation plan γ0 is found, source samples have to be
transported to the target domain. For that, we need to define a transport map F in terms of γ0. This mapping
can be conveniently expressed for each xsi as the following c-based barycentric mapping:

x̂si = Fγ0(xsi )
.
= argmin

x∈Rd

Nt∑
j=1

γ0(i, j) c(x,xtj), (6)

for all i = 1, . . . , Ns.

In the discrete, regularized with class-labeled information formulation of OT (5), to which we shall refer
in the sequel as OT-GL, it is expected that each target sample receives masses from source samples in the
source domain that have the same label. For domain adaptation it is thus expected that the prior distributions
of the labels are preserved in both domains. Fortunately, this assumption is not a problem for the current
MI-BCI application considered throughout this work, as it will be explained in Subsection 2.5.

2.4 BACKWARD OTDA

The forward OTDA maps source samples into the target domain by the transport map Fγ0 and then a new
classifier is trained with those transformed source samples. If classifier retraining is to be avoided, rather
than transforming the source samples, target samples can be transported to fit the source data distribution.
However, we can not guarantee that the transport map Fγ0 defined in (6) be invertible. Although clearly a
transport map can be defined in terms of γT0 as x̂ti = FγT0

(xti), it might happen that γT0 as a coupling between
mt and ms is not optimal. With this in mind, we provide an alternative way to learn the mapping from the
target to the source domain, in which the inversion of the F operator is avoided, ensuring that the learned
mapping is optimal.

Given that in BCI applications it is common to acquire a set of data at the beginning of each new session
for updating the model (recalibration), the transportation plan can be learned from the target to the source
domains (see Fig. 1). This novel approach addresses the data drift from the target domain (new session) into
the source domain (old session), reason for which we shall refer to it as backward OTDA (BOTDA). With
ζ0 and Bζ0 we will denote the optimal transport plan as obtained by (4) or (5) when the backward approach
is used, and the corresponding transport map, respectively. Hence, target samples can be transformed as
follows:

x̂ti = Bζ0(xti)
.
= argmin

x∈Rd

Ns∑
j=1

ζ0(i, j) c(x,xsj), (7)

for all i = 1, . . . , Nt.

In summary, BOTDA learns a mapping from the target to the source domain in a cost-effective manner,
and the classifier (already trained with the source data) is tested with the transformed target data. Since the
implementation of BOTDA relies on the same optimizer as FOTDA [25, 28], from the algorithmic point of
view the novelty relies on how to build the source and the target datasets.

2.5 OTDA APPLIED TO BCI

In the present work it will always be assumed that the discriminative model is learned using data from the
source domain (calibration session) and then evaluated in the target domain, representing a new BCI session.
In spite of the OTDA approach that we investigate within this paper, in order to learn the transportation
plan, data from the target domain are always needed. In this work, we shall refer as transportation set,
V = {(xvi , yvi )}Nv

i=1 ⊂ T , Nv � Nt, to such portion of data coming from the target domain which is used
to learn the transportation plan. With Xv ∈ RNv×d we shall denote the transportation feature matrix whose
ith row is xvi .

Unlike other classification problems in which target data are fully available, for online brain signal de-
tection the target data become available one trial at a time. This is undoubtedly a restriction to the way the
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data distribution drift can be learned. With this in mind, we simulate two possible online scenarios to learn
the mapping: block-wise adaptation and sample-wise adaptation. In the first scenario we assume that the
new BCI session is divided into data blocks of nt trials each, which we call runs.With the aim of keeping the
recalibration time as short as possible while having enough data to learn the mapping, we set nt = 20, which
comprises around 10 trails per class1. In addition, we hypothesize that the distribution drift of a testing run
is equal to the distribution drift of the previous runs. We also assume here that the first session is meant
for calibration whereas the first run of the new session (target domain) is meant for recalibration purposes,
R0 =

{
(xti, y

t
i)
}nt

i=1
. The remaining nr runs are considered as online testing runs (R1, . . . , Rnr ). In this

context, the prior available data in the target domain must be wisely used to learn the OT mapping. In this
direction, for every OTDA alternative, we decide to learn the mapping using all the available testing data up
to the current rth run, as follows:

Vr
.
= R0 ∪

r−1⋃
j=1

Rj , r = 1, 2, . . . , nr. (8)

Now, how can we make sample-wise learning of EEG distribution drift? In rehabilitative BCIs, a syn-
chronous paradigm is used for both the calibration and the testing-with-feedback phases. In a synchronous
BCI, generally by means of a visual cue, the system indicates the user when to start making a certain mental
task [29], and thus the feedback provided to the user in the evaluation phase is based on what he/she did and
can be compared to what he/she should have done. Given that in such cue-based environments the indicated
mental task of a trial is always known, we provide a way of continuously adapting the data by considering
the current ith trial as part of the transportation set, i.e. we define:

Vi
.
= R0 ∪

i⋃
j=nt+1

{
(xtj , y

t
j)
}
⊂ T , ∀i = nt + 1, . . . , Nt (9)

It is important to highlight here that the current label information included in Vi is only used in the BOTDA
with group-lasso penalty.

For MI-BCI, a simple but effective discriminative model can be built based on CSP and a linear classifier,
such as linear discriminative analysis (LDA) [30]. Within this standard setup, applying OTDA involves four
main steps (calibration, mapping learning, data transformation and classifier evaluation), as shown in Fig.
2. In the calibration phase (C), the calibration data from the source domain are used for learning the
CSP features (C1) and an initial LDA classifier (C2). In the online testing session (T), the trained CSP
model (represented here by the matrix W ) is applied at the target domain (T1) in both the transportation
and the testing sets. Both OTDA mappings (forward and backward) are learned using the transportation
and the calibration sets (T2). While in the BOTDA alternative (light yellow arrow) testing features are
transformed (T3) to feed the already trained classifier (T4), in the case of FOTDA (light orange arrow) the
transformation is applied on the calibration feature set (T5) and then a new classifier ĝ(·) is trained using the
transformed data matrix X̂s (T6). This classifier is evaluated with the original testing feature set Xt (T7).
Note that the label information will only be used for learning the mapping when the OT-GL formulation is
used in either of the two OTDA alternatives, as explained below.

In this work four OTDA alternatives are tested. Although for each method the training or testing features
can be different, the discriminative model is always CSP+LDA. We compare the classification performances
of each OTDA approach against: a BCI model without transfer learning, a recalibration procedure already
used in rehabilitative BCI [31], and two state-of-the-art data alignment methods. Subsequently, all investi-
gated processing methods are summarized:

• Standard with calibration (SC): train the model with source data (calibration) and do the classifica-
tion on the target dataset (new session) with no transformation whatsoever.

1Larger nt values were tested, namely nt equals to 40 and 80, yielding to similar overall classification results as when nt = 20
but with more associated computational time.
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Figure 2: Schematic representation of the OTDA pipeline from calibration (C) to online testing (T) when
either the backward (light yellow arrow) or the forward approach (light orange arrow) is being used. Note
that: already trained models from Calibration Session to the New Session are drawn with dashes lines;
methods are depicted in white boxes; the outputs of each model are shown in gray boxes; and feature sets
are drawn in light blue rectangles. Since the outputs (predicted class) of the forward and the backward
alternative may not be the same, two different colors were used to show the output label in each path.

• Standard with recalibration (SR): employ model retraining (CSP+LDA) by updating the training
data with the previous testing run and eliminating the oldest one, as proposed by Ang et al. [31]. Note
that this strategy is made on the raw data space, before feature extraction, and thus a new CSP model
is constructed at each data updating step.

• Riemannian procrustes analysis (RPA): the sample covariance matrices are geometrically trans-
formed (translated, scaled and rotated) in a semi-supervised way [11]. The approach is performed
in the Riemannian manifold. After the source and the target data are transformed, the Minimum-
Distance to Mean (MDM) classifier [32] is trained and tested on the transformed target dataset.

• Euclidean alignment (EA): performs an unsupervised data alignment using the arithmetic mean of
all covariance matrices to transformation the data in the Euclidean space [20]. Like RPA, both source
and target data are adapted. The decoding model is then learned in the transformed source samples
and applied to the transformed target dataset.

• FOTDA-S: employ Sinkhorn OTDA formulation (4) to learn the mapping between the source and
target domains. Source samples are then transformed to train a new classifier in which target samples
are tested.

• FOTDA-GL: employ group-lasso OTDA formulation (5) to learn the mapping between the source
and target domains. Source samples are then transformed to train a new classifier in which target
samples are tested.

• BOTDA-S: employ Sinkhorn OTDA formulation (4) in the backward approach so as to learn the
mapping from the target to the source domains. Target samples are transformed to feed the already
trained classifier with the source data.

• BOTDA-GL: employ group-lasso OTDA formulation (5) in the backward approach so as to learn the
mapping from target to source domains. Target samples are transformed to feed the already trained
classifier with the source data.

3 DATABASES

Two different EEG-based BCI datasets were used in this study, each comprising at least two MI-BCI
sessions of multiple participants. Since we aimed at providing an adaptive strategy for online testing in a
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motor rehabilitation scenario, where typically only binary decisions are required (e.g., to trigger an external
device), both datasets comprised two MI classes.

Dataset-1: this dataset was collected from 10 naive able-bodied BCI users (3 females, 4 left-handed,
mean age ± SD = 25.45 ± 2.50 years) on two different days (sessions) with a session-to-session separation
of 5 days maximum. The experiment was approved by the local ethics committee (BASEC-Nr. Req-2017-
00631, Cantonal Ethics Commission, Zurich, Switzerland). A portable 64-channel EEG system (eegort
Ant Neuro, Netherlands) was used for brain signal recording, with a sampling frequency of 512 Hz. Surface
electrodes were placed in accordance with the international 10-20 system, using CPz as reference and AFz as
ground electrodes. EEG signals were band-pass filtered between 0.5 Hz and 40 Hz. Two mental tasks were
performed by the subjects: i) the kinesthetic imagination of movement of their dominant hand (grasping
movement) and ii) a rest/relax condition. Each session was composed of four runs separated by short breaks.
Each run consisted of 40 trials (20 for each condition), yielding a total of 160 trials at the end of each session.
No feedback was provided to the subject during the sessions. For more information refer to [33]. For the
experiments detailed below, we downsampled the EEG signals to 128 Hz, extracted EEG segments from
0.5 to 2.5 s after the onset of the visual cue, and selected 28 electrodes covering the sensorimotor areas, in
accordance to [34].

Dataset-2: known in the literature as BNCI2015001. It is a publicly available dataset2 by Faller et
al. [35]. The EEG data were obtained from 12 able-bodied BCI-naive volunteers (5 female, age 24.8 ±
3.0 years) which participated in at least two MI-BCI sessions (maximum day time frame was 5 days). The
EEG recordings were acquired with the g.GAMMAsys active electrode system (electrode positions at FC3,
FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz and CP4) along with a g.USBamp amplifier (g.tec, Guger
Technologies OEG, Graz, Austria) at a sampling frequency of 512 Hz. During acquisition, the signals
were bandpass filtered between 0.5 and 100 Hz with an additional notch filter at 50 Hz. In each session,
the participants performed 5 runs of 40 trials (i.e. 200 trials) of hand MI vs. feet MI. Only the first run
of each session was without providing visual feedback. As before, the EEG signals were windowed from
0.5 to 2.5 s after the onset of the visual cue. Signals were band-pass filtered between 0.5 and 40 Hz, and
then downsampled to 128 Hz. Although for some participants three BCI sessions were acquired, for fair
comparison purposes, only the first two sessions were used for the experiments.

4 EXPERIMENTS AND RESULTS

In order to keep the focus on the transfer learning rather than on the classifier, we used the traditional
CSP and LDA frameworks with diagonal loading [15]. Thus, after filtering each EEG trial between 8 and
30 Hz, six spatial filters were used for feature learning with CSP. A subject-specific CSP+LDA model using
calibration data was built to analyze the impact of OTDA. Each OTDA alternative was applied at the CSP
feature level space, as shown in Fig. 2. Two different online scenarios were tested: i) block-wise adaptation
and ii) sample-wise (continuous) adaptation, as described in subsections 4.1 and 4.2, respectively. The
simulations as well as the corresponding source codes implemented in this work are publicly available3. We
used the POT library [28] for learning the regularized discrete transportation plans, the MNE library [36] for
implementing CSP and filtering the EEG data, the Scikit-learn library [37] for learning the linear classifier
and the open Python code of RPA [11].

4.1 DATA DRIFT LEARNED FROM PREVIOUS DATA

As explained in Section 2.5, for this part of the study the new BCI session was divided into runs of 20
trials each. Given the number of trials of each dataset, we ended up having 7 testing runs for Dataset-1 and 9
for Dataset-2. We tested the four OTDA alternatives (FOTDA-S, FOTDA-GL, BOTDA-S and BOTDA-GL)
against the two not domain-adaptive methods (SC and SR) as well as the two data alignment methods (RPA
and EA). For the OTDA alternatives, to learn the transportation plan at each rth testing run, we used the
transportation set Vr as defined in (8). In order to boost the transport learning process, we selected a small

2Available at http://bnci-horizon-2020.eu/database/data-sets
3https://github.com/vpeterson/otda-mibci. The provided examples were run over Subject S9 of Database-1.
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number of source samples to learn the mapping. Since it has been shown that the proportions of samples
between the source and the target distributions influence the transport [38], this source subset consists of
M = Nv trials randomly selected from the source dataset. This process was repeated 20 times, and the best
subset of samples was selected based on classification accuracy. Within this validation procedure, the regu-
larization parameters were also selected by means of a grid search process (λ, η ∈ {0.1, 0.5, 1, 2, 5, 10, 20}).
In order to statistically analyze the differences between the performances yielded by each method, the non-
parametric Friedman test and the post-hoc Nemenyi test at level of significance α = 0.05 were applied.

For Dataset-1, the overall accuracy across subjects is shown in Table 1. Columns correspond to runs,
organized in increasing order, while the last column shows the average performance across runs. Rows are
organized in three subgroups: standard, data alignment and OTDA methods. It can be seen that all domain
adaptive methods despite EA achieved similar classification performance between each other (p-value >
0.11), whereas all transfer learning method are significantly different than the non-adaptive one (p-value <
0.02). Significant differences where found between EA and all OTDA alternatives (p-value < 0.01). For
the first testing run, accuracy improvements of 9.5%, 5.5% and 6.5% as compared to SC, SR and RPA,
respectively, can be achieved by means of the free re-training model based on BOTDA. A similar tendency
between the full retraining model (SR) and the different domain-adaptive alternatives is observed in most of
the testing runs.

Table 2 shows the classification results achieved on average across subjects for Dataset-2. It is organized
as Table 1, where rows and columns separate methods and testing runs, respectively. As before, there is not a
clear winner between the OTDA alternatives. In addition, note BOTDA-S present competitive classification
performance as compared to the RPA and EA method along the different testing runs (p-value > 0.07).
Detailed plots of the results as well as the statistics made can be found in the supplementary material.

Table 1: Overall classification results (accuracy in %) yielded by each tested method for Dataset-1 in the
block-wise adaptation scenario. Columns correspond to testing runs. Last column aggregates the average
across runs.

R1 R2 R3 R4 R5 R6 R7 av

SC 64.0 65.0 66.5 70.5 71.0 70.0 72.0 68.4
SR 68.0 69.0 71.5 81.0 74.0 75.5 71.5 72.9

RPA 67.5 70.5 71.5 75.5 75.0 68.0 76.5 72.14
EA 77.0 73.5 71.5 75.5 73.0 74.0 70.5 73.6

FOTDA-S 73.5 68.5 70.0 72.5 73.5 71.0 70.5 71.4
FOTDA-GL 71.5 68.5 70.5 73.5 72.5 70.5 70.5 71.1
BOTDA-S 73.0 71.5 71.0 73.0 70.5 72.5 69.0 71.5

BOTDA-GL 73.5 66.5 71.5 74.5 71.5 70.5 69.5 71.1

Table 2: Overall classification results (accuracy in %) yielded by each tested method for Dataset-2 in the
block-wise adaptation scenario. Columns correspond to testing runs. Last column aggregates the average
across runs.

R1 R2 R3 R4 R5 R6 R7 R8 R9 av

SC 77.9 78.8 74.6 72.5 74.6 75.8 74.6 77.5 74.6 75.6
SR 80.8 81.7 78.8 80.0 79.2 79.6 79.6 85.0 78.8 80.4

RPA 77.5 76.3 72.9 80.8 77.5 79.6 80.0 83.3 79.2 78.6
EA 77.1 75.8 83.3 82.9 78.8 78.8 79.6 79.2 80.0 79.9

FOTDA-S 74.2 80.2 78.3 78.7 75.4 77.5 77.5 77.5 76.7 77.4
FOTDA-GL 77.1 79.6 79.6 77.9 76.25 78.8 78.8 75.8 76.7 77.8
BOTDA-S 78.3 76.3 78.8 77.9 75.4 76.7 80.0 76.7 78.8 77.6

BOTDA-GL 73.8 77.1 77.5 76.7 75.0 76.3 77.9 75.8 75.4 76.2
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4.2 DATA DRIFT LEARNED FROM CURRENT AND PRIOR DATA

In the previous experiment we considered that the estimated distribution drift of prior runs was similar
to the data variation of a posterior set of trials. Although this assumption allows to learn the mapping for
online data adaptation, it may not always be true given the high nonstationarity of the EEG signals, and thus
continuous drift learning should be performed.

Since for learning the transportation plan a set of trials from the target domain is always needed, as
before, we used the first 20 trials of the new session for recalibration purposes. For every testing trial, we
learned the mapping by using not only all prior available data, but also the current trial, as defined in (9).
Following the same methodology described in Subsection 4.1, the transportation plan was learned by using
the corresponding transportation set Vi and a small subset of M trials of the source dataset. Considering the
online time processing restrictions, this small subset of M trials was selected following the same selection
process explained in Subsection 4.1 but using onlyR0, thusM = 20. Here we simulated a continuous online
session. At the end of this experiment, the classification accuracy, per each subject and processing method,
was evaluated based upon the label assigned to each trial during the testing phase. For completeness we also
evaluated the performance of the calibrated classifier with no adaptation (SC), the standard with recalibration
(SR) method and the two data-alignment methods (RPA and EA). Note that the information of the indicated
mental task is actually used only by SR, RPA and BOTDA-GL. Statistical analyses were performed also
here by means the Friedman test and the post-hoc Nemenyi test at level of significance α = 0.05.

Tables 3 and 4 show the accuracy reached in the testing phase by each tested method for each subject of
Dataset-1 and Dataset-2, respectively. In both tables the average accuracy across subjects (last row denoted
as ‘av’) shows that BOTDA-GL performs better (p-value < 0.05) than the rest of the OTDA alternatives as
well as the SC method, reaching mean accuracy levels of 88.85% and 90.23% for Dataset-1 and Dataset-
2, respectively. These values correspond to relative improvements of 20% and 14% with respect to the
method without adaptation (SC) for each dataset, respectively. Although, no significant differences were
found between BOTDA-GL and SR, RPA and EA, for most of the cases BOTDA-GL achieved the highest
accuracy values (7/10 for Dataset-1 and 9/12 for Dataset-2). The rest of the OTDA alternatives achieve
similar classification results as the standard calibration method (SC).

Table 3: Accuracy reached by each subject for Dataset-1 (S1-S10) for each one of the evaluated methods
in the sample-wise adaptation scenario. The average across subjects is aggregated at the last column. Best
results appear in bold.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 av

SC 77.86 82.14 48.57 57.86 65.71 87.86 52.14 87.86 72.14 52.14 68.43
SR 85.00 87.86 81.43 77.86 78.57 89.29 81.43 92.86 82.14 71.43 82.79

RPA 97.14 89.29 80.71 81.43 84.29 95.71 87.86 90.71 88.57 87.86 88.357
EA 81.43 84.29 70.00 77.14 77.86 89.29 82.14 92.86 80.71 65.71 80.14

FOTDA-S 78.57 82.86 47.86 55.00 70.71 84.29 76.43 82.86 78.57 54.29 71.14
FOTDA-GL 78.57 82.14 47.86 55.00 71.43 85.00 75.71 83.57 78.57 54.29 71.21
BOTDA-S 68.57 78.57 50.00 52.86 73.57 87.86 72.14 88.57 75.71 55.00 70.29

BOTDA-GL 100.00 95.00 55.71 79.29 85.00 97.14 88.57 91.43 98.57 97.86 88.86

It is also interesting to compare the computational cost associated to running each adaptive method. We
ran our experiments on an Intelr CoreTM i7-6700K CPU @ 4.00 GHz × 8 with 56 GB of RAM. For the
sake of comparison, the optimal hyper-parameters search was not included for these time measurements.
Therefore, Table 5 shows the computational time of adapting each new trial in this sample-wise scenario for
the SR, RPA, EA and BOTDA-GL methods. For Dataset-1, our proposed BOTDA-GL method is 9.6, 79.9
and 18.7 times faster than the SR, RPA and EA methods, respectively. Those values are 11.65, 38.04 and
18.6 for Dataset-2. Although here we only show the computational time of the BOTDA-GL method, it is
worth mentioning that all the other OTDA alternatives result in similar computational times.
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Table 4: Accuracy reached by each subject for Dataset-2 (S1 - S12) for each one of the evaluated methods
in the sample-wise adaptation scenario. The average across subjects is aggregated at the last column. Best
results appear in bold.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 av

SC 96.67 96.67 90.00 88.33 86.11 71.11 87.22 57.22 71.11 60.56 53.89 48.89 75.65
SR 98.89 97.78 91.67 89.44 92.78 84.44 94.44 68.89 83.89 70.00 73.89 66.67 84.40

RPA 98.33 97.22 92.78 90.00 93.89 85.56 93.33 84.44 86.67 75.56 79.44 76.67 87.83
EA 98.89 97.22 91.11 90.56 88.89 81.67 91.67 68.33 82.78 68.33 69.44 72.78 83.47

FOTDA-S 98.33 96.67 88.89 82.78 62.22 67.78 88.33 60.00 68.33 65.00 63.33 64.44 75.51
FOTDA-GL 99.44 96.67 89.44 85.00 85.56 74.44 90.00 62.22 66.11 65.00 63.33 64.44 78.47
BOTDA-S 98.33 96.11 87.22 88.33 86.67 72.22 86.67 62.78 71.67 65.00 64.44 52.78 77.69

BOTDA-GL 100.00 98.89 96.11 91.67 100.00 85.00 88.33 93.33 100.00 76.11 100.00 53.33 90.23

Table 5: Overall computational time (seconds) of the SR, RPA, EA and BOTDA-GL methods for online
adaptation.

Dataset-1 Dataset-1

SR 0.326 ± 0.008 0.337 ± 0.015
RPA 2.711 ± 0.557 1.099 ± 0.324
EA 0.634 ± 0.109 0.537 ± 0.089

BOTDA-GL 0.034 ± 0.010 0.029 ± 0.014

5 DISCUSSIONS

In this work we investigated the use of optimal transport as a transfer learning approach for addressing
EEG variability between sessions of MI-BCI, aiming at avoiding classifier retraining. We have provided
a complete framework for applying OTDA, taking into account the constraints of rehabilitative MI-BCI
applications. Moreover, we have also proposed a new backward alternative which allows for learning the
distribution matching from the target domain (new session) to the source domain (calibration session). In
addition, two online simulated adaptive scenarios were tested: i) block-wise adaptation and ii) sample-wise
adaptation, with the main difference between these two scenarios being the way that the distribution mapping
is learned. Finally, we have also explored two regularized OT formulations for learning the transportation
plan ((4) and (5)).

In the first part of this work, we assumed that data distribution drift of a block of trials (run) can be
estimated using previous available data. The results showed that for most of the cases there are no signifi-
cant differences between any of the OTDA alternatives and both SR and RPA. It is important to underline
here that BOTDA has the advantage of avoiding classifier retraining, and thus, from the machine learning
viewpoint, BOTDA presents a more challenging problem than either of the other adaptive strategies. The
lack of significant difference between BOTDA and both SR and RPA indicates that similar classification
performance can be achieved avoiding classifier retraining when BOTDA is applied. With regard to the EA
approach, we observed that it outperforms all other methods, being as good as SR. This method, as well
as all the other considered adaptive methods, requires the training of a new classifier before a new testing
block starts. Furthermore, in this scenario, we also note that adding the group-lasso penalty to the BOTDA
formulation does not contribute to increasing classification performance. This can be explained by the fact
that without classifier retraining, BOTDA-GL only relies on the optimal transportation plan learned with
label information from a set of previous trials different from the current testing run. Finally, the fact that
after a certain point, domain adaptation does not contribute towards classification improvement can be ex-
plained by the “saturation” effect in transfer learning [39], which establishes that when a sufficient amount
of data from the target domain is available, a good classifier can already be trained without transfer learning.
However, for MI-BCIs applications in motor rehabilitation, therapy session time is typically limited. Thus,
having a machine-learning solution for avoiding long calibration times before each session is of utmost im-
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portance. In fact, for such practical application, it could allow dedicating more therapy time to provide the
biofeedback to the patient rather than to retrain the decoding model, where no feedback can be provided.
The improvements found by using BOTDA at the first testing runs without classifier retraining not only
mitigates the well-known decrease in classification performance at the beginning of a new session, but it
also constitutes a step forward in the search for more efficient and robust methodologies for applying BCIs
to neurorehabilitation.

In our second experiment we analyzed a way to implement OTDA in online sequential scenarios where
labeled data are available after every experimental trial. The classification results shown in tables 3 and 4
clearly indicate the advantages of using the current trial in the BOTDA-GL configuration, whereas for the
other tested alternatives of OTDA, the incorporation of the current trial to the transportation set does not
improve classification performance. Interestingly, although in this context both SR and RPA strategies use
the indicated mental task of the current trial to make the adaptation and learn the decoding model, overall,
it is better to use the classifier already trained in the source domain and transport the current trial by means
of BOTDA-GL. Additionally, we note here that there are few cases in which classification performance is
not improved by BOTDA-GL. These cases are in fact shedding light on the idea that using the indicated
mental task (known by the system) does not always represent the mental task truly performed by the user.
Thus, only good classification results will be achieved if the patterns provided by the user are discriminative
enough for the corresponding mental task. In the case of stroke rehabilitation, patients may exhibit mental
fatigue after repetitively performing the intended mental tasks [40]. In such situation the use of BOTDA
could be a valuable solution to cope with the lack of ability of stroke survivors to maintain the same mental
state throughout the whole BCI session.

Approaches that use the current label information for adaptive BCI have already been evaluated [16,41],
in which the testing class information was used to update the weights of a linear classifier. When BOTDA is
being used, the classifier trained with data from the calibration session is kept fixed. Given that BOTDA-GL
transformed testing data based on label information, i.e. penalizing the learned mapping so as to transport
samples of the same class together, this approach will fail if the features do not match with the indicated
mental task. This could explain the reduced decoding performance observed in some subjects (S3 an S4 in
Dataset-1, and S7 and S12 in Dataset-2). On the contrary, although RPA also makes use of the indicated
mental task, the classifier is re-trained, and thus this issue becomes less evident. As discussed by the authors
in [42], if a user is not able to produce stable and distinctive EEG patterns, then the algorithm fails in
matching the target sample to its supposed label class. In this direction, the classification reached by each
subject in the new session could be interpreted as a quantification of how well the subject performed the
indicated mental task. Although more research is needed, we believe that this supervised transfer learning
based on our proposed backward OT could be a valuable alternative for avoiding the current pitfalls on how
the user is trained and how the feedback is presented to the user during MI-BCI [43].

The computational time required for adapting each trial in the sample-wise scenario revealed that BOTDA
is about 10 times faster than the fastest conventional method tested (SR). This result is important if we ex-
trapolate the associated computational time of more complex decoding algorithms. The low computational
time can be explained by two reasons: i) the decoding model is kept fixed, without any retraining needs,
and ii) once the transportation plan is learned, the sample transportation (see Eq.(6)) consists in simple
matrix multiplications [22]. The fact that by means of BOTDA the adaption is less time-consuming than
re-training a simple decoding model reveals a huge advantage when considering real-time decoding, where
the feedback presenting time should be kept as short as possible [44, 45]. Such an advantage, together with
the ability to transport discriminative trials and boost the classification performance of an already trained
decoding model, makes BOTDA-GL a promising, effective and efficient method for online applications.

In the last years the use of TL based on deep learning to tackle the variability in BCI has gained more
relevance. Although different challenges exist for using deep learning methods to successfully train models
in neuroscience, recent works have shown that deep learning architectures can be used for such applications
[46–48]. However, most of the existing works aim to address the cross-subject variability and not the cross-
session variability, the former being easier to implement since the cost of producing sufficient high-quality
data and annotations is lower with respect to multi-subjects multi-sessions datasets. Nevertheless, given the
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rapid advance in the deep learning community, future research directions should explore the use of such
techniques.

In this work, we have presented evidence that OT can be used for TL in MI-BCI in the context of a motor
rehabilitation application. When data becomes available in blocks (i.e., group of multiple trials), we showed
that classification performance can be improved for the first testing runs. For such scenarios, we suggest
to use the BOTDA-S formulation. On the contrary, when data is available after each experimental trial,
together with the indicated mental task information, BOTDA-GL should be preferred. Previous works have
also shown the impact of using OT for domain adaptation in BCIs. In particular, the work in [23] focused
on the use of OTDA for multi-subject P300 based-BCIs. Although the beforementioned work described a
simulated online scenario, our approach cannot be directly compared, since, as opposed to our work, all
available target data was used to learn the transport. Here, we have provided a workflow for using OTDA
in real-life MI-BCI applications. Additionally, the authors in [11] introduce the RPA method and compared
its performance against OTDA, applied in the Riemannian manifold. Unfortunately, there is no enough
information on how the method is modified and implemented for running it in such domains. In regard to
this, an interesting paper showing how to use OTDA in the Riemannian manifold has recently appeared [49].
Future work should explore further analyses in this direction.

Although we have focused on synchronized MI-BCI for motor rehabilitation, the proposed BOTDA
method is not restricted to such applications. For asynchronous BCI, where the user himself/herself chooses
which task he/she wants to do and when to do it, the block-wise adaptation scenario can still be used by
relying on a short calibration block of few trials to learn the transportation map. For such asynchronous BCI
applications, BOTDA-S can still be used without any limitation. This method yields comparable classifica-
tion results as compared to BOTDA-GL in the block-wise adaptation. Moreover, since BOTDA is applied at
the level of the feature space, the workflow presented here can be easily adapted for any other BCI paradigm
with either two or more classes.

6 CONCLUSIONS

In this paper we described and studied different strategies based on optimal transport for tackling cross-
session variability in MI-BCI. Our results show that when data from the new BCI session is available in
blocks (runs), classification accuracy can be increased by up to 9.5% by BOTDA as compared to the tradi-
tional recalibration approach, with only 20 trials of the new session required for the adaptation. In addition,
when considering the current trial with its mental task information within the OT learning procedure, we
found that BOTDA-GL improves up to perfect classification when the user is able to produce discriminative
brain patterns, trimming down the computational time to only 30 ms. These findings indicate that BOTDA-
GL is a promising approach for providing accurate and rapid feedback in cue-based environments. Further
research is needed to demonstrate the applicability of BOTDA-GL as a user performance metric, which is
part of our future research plans.

The use of transfer learning for tackling the EEG nonstationarity is gaining more and more attention
within the BCI community. Methods based on data alignment and deep learning are at the top of the
list. In the future, we plan to combine the advantages of these transfer learning strategies to try to further
improve classifier robustness. In addition we plan to conduct multiple-session MI-BCI experiments for
further validating the proposed strategies in real online scenarios.
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