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Abstract

Motivation: A representation method is an algorithm that calcu-
lates numerical feature vectors for samples in a dataset. Such vectors,
also known as embeddings, define a relatively low-dimensional space able
to efficiently encode high-dimensional data. Very recently, many types
of learned data representations based on machine learning have appeared
and are being applied to several tasks in bioinformatics. In particular,
protein representation learning methods integrate different types of pro-
tein information (sequence, domains, etc.), in supervised or unsupervised
learning approaches, and provide embeddings of protein sequences that
can be used for downstream tasks. One task that is of special interest is
the automatic function prediction of the huge number of novel proteins
that are being discovered nowadays and are still totally uncharacterized.
However, despite its importance, up to date there is not a fair benchmark
study of the predictive performance of existing proposals on the same
large set of proteins and for very concrete and common bioinformatics
tasks. Therefore, this lack of benchmark studies prevent the community
from using adequate predictive methods for accelerating the functional
characterization of proteins.
Results: In this study, we performed a detailed comparison of protein
sequence representation learning methods, explaining each approach and
comparing them with an experimental benchmark on several bioinformat-
ics tasks: (i) determining protein sequence similarity in the embedding
space; (ii) inferring protein domains; and (iii) predicting ontology-based
protein functions. We examine the advantages and disadvantages of each
representation approach over the benchmark results. We hope the results
and the discussion of this study can help the community to select the most
adequate machine learning-based technique for protein representation ac-
cording to the bioinformatics task at hand.
Availability: Full source code and data are available at:
https://github.com/sinc-lab/Comparison-of-Protein-learning
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1 Introduction

Automatic functional annotation of proteins can be considered critical
nowadays due to the rhythm of experimental data production [9]. For ex-
ample, as of December 2021, there are around 220,000,000 protein entries
in the UniProtKB; however, only 565,928 (less than 1%) of them have
been reviewed and manually annotated by expert curators. This is a huge
breach between sequencing and annotation capabilities.

This gap exists because of the high speed of experimental data ob-
tention and, on the opposite, the very low and time-consuming manual
curation of results. To aid experimental and curation-based annotation,
automated in silico approaches can be used. Thus, many computational
approaches have been proposed very recently [11, 39, 45, 54] to pre-
dict protein activities, properties, interactions, structure and functions
[3, 22, 23, 41].

Automatic function prediction (AFP) is the algorithmic assignment
of functional annotations —usually Gene Ontology (GO) terms— to pro-
teins of unknown function from those whose function has already been
determined experimentally [32]. Gene Ontology (GO) [8] is a hierarchical
network of interconnected concepts that has become the standard vo-
cabulary for describing protein function. The GO has more than 40,000
biological concepts over three sub-ontologies: Molecular Function (MF),
Biological Process (BP) and Cellular Component (CC). The most compre-
hensive benchmark for AFP is the Critical Assessment of Functional An-
notation (CAFA) challenge [56], in which participants predict GO-terms
for target proteins. In the first two editions of the said challenge (CAFA1
(2010-2011) and CAFA2 (2013-2014)), there was a significant improve-
ment between the participating methods, but in CAFA3 (2016-2017) this
trend was interrupted, except for GOLabeler [54], which outperformed its
competitors by using information (features) extracted from the sequence
instead of the protein sequence alone. This was a critical improvement
since, in many cases and especially in novel or recently sequenced species,
the only available information is the sequence. That is why sequence-based
methods for protein annotation prediction are highly used. Therefore, in
spite of the recent breakthrough of alpha-fold’s structure-based prediction
of protein annotation [? ], the amino acid sequence remains relevant and
is, yet, the most widely-used data source for function prediction, followed
by sequence-derived features such as domains and more recently, learned
representations named embeddings [32]. This was a critical improvement
since, in most cases, the only reliable information that can be found about
a given protein is its sequence, implying the importance of sequence-based
AFP. Nowadays, homology-based AFP tools such as BLAST are compet-
itive, but they do not work well for proteins with less than 60% sequence
identity to proteins with annotations. Together, these facts show that the
problem of AFP is far from solved, it is still a big challenge and remains
an open problem.
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Table 1: Protein representation methods reviewed in this study.
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In the last 6 years, several protein representation sequence-based mod-
els based on deep learning (DL) appeared, which given the raw sequence of
a protein calculate a feature vector that is a unique representation of the
protein, named embedding [36]. Then, a predictive model can efficiently
learn the features of samples and perform the downstream prediction task
by using these representations as input. This way, embedding models
perform a process named transfer-learning of knowledge from one task
to another [52]. Protein embedding has become a new and highly active
area of research [12], being now actively and increasingly used by the
community for the AFP task. For instance, DeepGOPlus predicts protein
functions by first building protein sequence embeddings from raw protein
sequences using multiple convolutional neural networks (CNN) [26]. Sim-
ilarly, DEEPred predicts GO terms from several features automatically
calculated from the protein sequence [45]. Meanwhile, goPredSim [30]
makes annotation transfer based on similarity of protein-sequence embed-
dings obtained from DL models. Up to date, there are a lot of protein
embedding methods available, which have all appeared after the CAFA3
and can be used for function prediction. However, there is no comparative
study to systematically evaluate the performance of the myriad of avail-
able protein embedding methods with an experimental benchmark, and
in the context of several and concrete bioinformatic tasks. For example,
for the AFP problem, which is still unsolved [56], the correct selection
of a protein representation method could boost the prediction methods
available nowadays.

In this study, we provide a comprehensive review of the most recent
protein embeddings available, with a benchmark analysis regarding the
potential of these methods for the computational tasks of (i) determining
protein sequence similarity in the embedding space; (ii) inferring protein
domains; and (iii) predicting ontology-based protein functions.

2 Protein representation methods

In recent years, a myriad of protein embedding methods has appeared [32].
A comprehensive summary of protein embedding methods that were devel-
oped in the last 6 years in literature is presented in Table 1. The columns
of Table 1 indicate each method name, year of publication, the ML al-
gorithm it implements, the embedding dimension, whether the method
allows a per-residue representation or not, and the corresponding pub-
lic repository. The embedding methods listed in the table were included
according to their availability, as open access tools or ready to use pre-
constructed feature vectors. A glossary of the terms used in the following
descriptions of the methods can be found in Supplementary Material.

CPCProt [31]: this model uses supervised learning and it is based on
maximizing the mutual information (MI) among proteins [48]. It proposes
to use the information content of a certain number of protein sequence
peptides (named patches) as a pre-training objective to capture motifs,
structural elements, regions of unusual amino acid composition or parts
of catalytic sites. Each patch is then passed through a multi-layer, convo-
lutional neural network (CNN) encoder to obtain a latent representation.
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Next, an autoregressive model produces a hidden state as well as a context
latent representation based on the hidden state produced by the previous
patch. In this way, the autoregressive model aggregates patch informa-
tion, captured by the latent space of the autoencoder. The training task
consists in finding an encoder able to map sequence fragments into mean-
ingful representations, and an autoregressive model able to successfully
summarize those representations of consecutive fragments, to construct
a contextual embedding of a complete sequence. The CPCProt encoder
consists of an embedding layer of 32 hidden dimensions, followed by 64
filters of length 4, 64 filters of length 6, and 512 filters of length 3. ReLU
activation is added to the output of each layer, and normalization is added
channel-wise. This model was pre-trained using protein domain sequences
from the Pfam database [15], that is 32,207,059 amino acid sequences.

deepGOCNN [27]: this model is based on supervised learning and
CNN [29]. It was the first deep learning model proposed for predicting
protein functions from amino acid sequences of up to 2,000 residues. The
resulting sequence is represented as a 21-to-2,000 one-hot matrix which
is independently processed by 16 1-D convolutional layers with increas-
ing filter lengths. Each layer has 512 equal-length filters able to detect
specific sequence motifs of a particular size. The output of each filter
is passed through a MaxPooling1D layer, transforming every filter into
a single score representing the presence of a relevant motif in the input
sequence. By stacking these scores, a feature vector of 8,192 components
is built. DeepGOCNN was trained in a supervised way using protein
sequences as inputs, and their corresponding GO terms annotations as
target output, provided by CAFA [56] for more than 66,000 protein se-
quences from UniProtKB. The model has multiple 1D convolutional layers
with different filter lengths where the smallest filter starts from length 8
and the following filters are increased by 8 units. The CNN layers do not
use dropout because there is a MaxPooling layer with maximum pool size,
thus every filter returns only a single value. This forces the CNN filters to
learn a set of similar patterns (motifs) and if the filter finds the pattern in
the sequence it returns a high value, which is pooled with the MaxPooling
layer. For this comparative study, we used the feature vectors built by
deepGOCNN as embeddings for our protein sequences.

ESM [46]: this model uses unsupervised learning and it is based
on Transformers [50], which have emerged as a powerful general-purpose
model architecture for representation learning and generative modeling,
outperforming recurrent and convolutional architectures in natural lan-
guage settings. ESM uses a deep Transformer BERT [14] that processes
sequences of amino acids as input. BERT was originally designed for Nat-
ural Language Processing (NLP) based on unsupervised learning where
context within a text is used to predict missing words. Its main hypothe-
sis is that a word’s semantics can be derived from the contexts in which it
appears. ESM makes an analogy between words and sequences of amino
acids. The model was trained using the masked language modeling ob-
jective, where each input sequence is corrupted by replacing a fraction of
the amino acids with a special mask token, to predict the missing tokens
from the corrupted sequence. ESM was trained on 220 million sequences
in the UniProtKB database. In this comparison we have used ESM-1b
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because it was the best performing instance of the method according to
its authors.

GP [53]: this model is supervised and based on doc2vec [28], which
is in turn based on word2vec [35]. The latter approach learns embed-
dings or words with the skip-gram architecture, where the model uses the
current word to predict its surrounding context words, and the continu-
ous bag-of-words architecture, where the current word is predicted from
its surrounding context words. The doc2vec model extends word2vec by
learning embeddings for entire sentences, paragraphs, or documents. In
the context of proteins, GP trains a doc2vec model to predict a central k-
mer within a given protein based on local and global information. As local
information, the flanking k-mers are used, whereas the embedding of the
protein sequence is used as global information. GP was trained on 524,529
protein sequences obtained from UniProt, whose lengths range from 50 to
999 amino acids. After training, the embedding model was used to infer
encodings for supervised Gaussian process (GP) regression models [44].
The embedding model is trained on randomized UniProt sequences (by
shuffling the order of amino acids for each sequence, or by resampling
sequences of the original lengths according to the overall observed amino
acid frequency), instead of the original UniProt sequences, choosing its
hyperparameters by using 20-fold cross-validation on the training sets. It
was found by the authors that randomizing the UniProt sequences before
unsupervised training had a regularizing effect, preventing the embedding
model from overfitting to the set of proteins used for training. The ra-
tionale behind this is that the unsupervised embedding model is able to
learn the frequency with which different amino acids occur in the same
proteins. The noise and kernel GP hyperparameters were optimized by
maximizing the marginal likelihood.

PLUS-RNN [37]: this model is based on supervised learning and its
training involves 2 tasks: masked language modeling [14] that consists in
predicting residues randomly masked in the input protein sequence, and
same-family prediction [5] that involves predicting whether pairs of pro-
tein sequences belong to the same protein family. Given a pair of protein
sequences as input, PLUS-RNN embeds each residue into a 21-dimensional
vector, which is independently processed by a bidirectional recurrent neu-
ral network biRNN [17], of 3 layers. In each layer, there are 2 RNNs having
long short-term memory (LSTM) [21] as activation units. LSTMs are a
type of recurrent neural network capable of learning order dependence
in sequence prediction problems. Recurrent networks have an internal
state that can represent context information, and can keep information
about past inputs for an amount of time that depends on its weights
and on the input data. Thus, an input sequence can be transformed
into an output sequence while taking into account contextual information
[? ]. One of the recurrent networks sequentially processes the sequence
left-to-right to represent each residue as a new 1,024-dimensional vector
given its context; the other RNN does the same, but right-to-left. The
residue representations obtained by both networks are concatenated into
a single representation, which encodes information from both sequence
sides. PLUS-RNN was optimized with a dataset containing 14,670,860
protein sequences from 3,150 families publicly available in Pfam [15]. For
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this review, we averaged the vector representations per residue built by
PLUS-RNN in the third layer of both recurrent networks.

ProtTrans [16]: this model was trained using several Transformer
models [50], thus it is based on unsupervised learning. The authors trained
two auto-regressive models (Transformer-XL and XLNet) and four auto-
encoder models (BERT, Albert, Electra, T5) on data from UniRef50 and
the BFD database [47] containing more than 2,000 million proteins and
up to 393 billion amino acids. BERT (mentioned before) was the first
model in NLP which tried to reconstruct corrupted tokens, and is consid-
ered the de-facto standard for transfer learning in NLP. Albert reduced
BERT’s complexity by hard parameter sharing between its attention lay-
ers. Electra tries to improve the sampling-efficiency of the pre-training
task by training two networks, a generator and a discriminator. T5 con-
sists of an encoder that projects a source language to an embedding space
and a decoder that generates a translation to a target language based on
the encoder’s embedding. For ProtTrans, single amino acids were con-
sidered as input ”words”; each protein sequence in a line represented the
equivalent of ”sentences”; an empty line was inserted between each protein
sequence to indicate the ”end of a document”. The information learned by
the protein learning models were the vector representations from the last
hidden state of the Transformer. There are several ProtTrans instances
available (ProtBert, ProtAlbert, ProtT5, ProtXLNet and ProtElectra).
In this study, we used the instance ProtT5 trained with the BFD dataset
and fine tuned on UniRef50 because it was the best performing method
according to the authors [16].

ProtVec [3]: this model provides bio-vectors (BioVec) for biological
sequences in general, protein-vectors (ProtVec) for proteins (amino-acid
sequences) and gene-vectors (GeneVec) for gene sequences. Protein vec-
tors were built with supervised neural networks that represent a protein
sequence with n-gram modeling, where lists of shifted non-overlapping
words are generated with window size 3. In the training process of word
embedding in NLP, a large corpus of sentences should be fed into the
training algorithm to ensure sufficient contexts are observed. Similarly,
a large corpus is needed to train distributed representation of biological
sequences. The next step is to break the sequences into subsequences
(i.e. biological words), using n-grams directly in feature extraction. The
embedding was trained through a Skip-gram neural network [35], which
attempts to maximize the probability of observed word sequences (con-
texts). Such a constraint allows similar words to assume a similar repre-
sentation in this space. Authors used Word2Vec [36] for word embedding
since it was considered, at that time, as the best state-of-the-art method
for training word vector representation. The procedure was applied on
546,790 manually annotated and reviewed sequences of the Swiss-Prot
database, thus the training corpus had 546,790 Ö 3 = 1,640,370 sequences
of 3-grams (a 3-gram was considered as a “biological” word consisting of
3 amino acids).

rawMSA [38]: this model builds an embedding that can be used
to convert each residue character from a Multiple Sequence Alignment
(MSA) into a floating-point vector of variable size. This is adaptively
learned by a supervised deep neural network based on context. Unlike
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classical ML methods for the prediction of protein features, rawMSA does
not compress the MSA into a profile but uses the raw aligned sequences as
input and extracts useful features with a deep network. The input to the
deep network is a flat FASTA alignment, where each letter is mapped to
an integer ranging from 1 to 25 (standard residues and special cases). The
first layer of rawMSA is a shallow two-layer neural network named an em-
bedding layer. Then a 2D convolutional layer is stacked on top, followed
by a max-pooling layer. Convolution is performed along each column in
the MSA disallowing the information to spread across columns. The con-
volutional and pooling layers are followed by a stack of two bidirectional
LSTM layers, where each module contains 350 hidden units. The final
three layers are fully connected. All the convolutional layers have ReLU
activations and the outputs are zero-padded to match the two first di-
mensions of the inputs. rawMSA was trained on 29,653 protein chains
extracted from a 70% redundancy-reduced version of the Protein Data
Bank (PDB) [51] in April 2017 with a minimum resolution of 3.0 Å and
R-factor 1.0.

RBM [49]: here the authors, in contrast to any other method designed
for this task, propose the usage of Restricted Boltzmann Machines (RBM)
[20] for extracting the structural and functional features common to a pro-
tein family. RBM is a joint probabilistic model for sequences and repre-
sentations. It is formally defined on a bipartite, two-layer graph. Protein
sequences are displayed on the Visible layer, and representations on the
Hidden layer. Each visible unit takes one out of 21 values (20 amino acids
+ 1 alignment gap). This model can capture structure-related, functional
and phylogenetic features related to sub-families sharing evolutionary de-
terminants. Training RBM required intensive Markov Chain sampling.
This approach was tested with MSAs of 20 different protein families from
Pfam. The training was performed by maximizing, through stochastic gra-
dient with mini-batches of data, the difference between the log-probability
of the sequences in the MSA and a regularization cost.

SeqVec [19]: this supervised model uses the bi-directional language
model ELMo (Embeddings from Language Models) [42], which was origi-
nally designed for natural language tasks. It can be trained on unlabeled
text-corpora to predict the most probable next word in a sentence. By
learning a probability distribution for sentences, the model autonomously
develops a notion for syntax and semantics of a language. The trained
vector representations of a given word depend on its context, which has
the advantage that two identical words can have different embeddings,
depending on the words surrounding them. In SeqVec the ELMo concept
was applied to model protein sequences by treating them as sentences
and each amino acid as words. First, an input sequence is padded with
special tokens indicating the start and the end of the sentence/protein
sequence. Then character convolutions map each word/amino acid onto a
fixed-length latent space without considering information from neighbor-
ing words. The output of the CharCNN-layer is used by a biLSTM that in-
troduces context-specific information by processing the input sequentially.
Finally, the 2nd LSTM-layer tries to predict the next word given all pre-
vious words in a sentence. The forward and backward pass are optimized
independently in order to avoid information leakage. During inference, the

8

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
E

. F
en

oy
, A

. E
de

ra
 &

 G
. S

te
gm

ay
er

; "
T

ra
ns

fe
r 

le
ar

ni
ng

 in
 p

ro
te

in
s:

 e
va

lu
at

in
g 

no
ve

l p
ro

te
in

 le
ar

ne
d 

re
pr

es
en

ta
tio

ns
 f

or
 b

io
in

fo
rm

at
ic

s 
ta

sk
s"

B
ri

ef
in

gs
 in

 B
io

in
fo

rm
at

ic
s,

 V
ol

. 2
3,

 N
o.

 4
, 2

02
2.



hidden states of the forward and backward pass of each LSTM-layer are
concatenated to a 1024-dimensional embedding vector summarizing infor-
mation from the left and the right context. It was trained on UniRef50
(33 million sequences) using an architecture composed by a convolutional
layer, followed by two bidirectional LSTM layers. ELMo was designed
to reduce the risk of overfitting by sharing weights between the forward
and the backward LSTMs and by using dropout. For our analyses, the
vector representations per residue obtained by the two LSTM layers were
concatenated and then averaged to obtain a single vector per protein.

TAPE [43]: in this case authors used Pfam [15] as the unsupervised
pre-training corpus for TAPE. Training and testing sets were built using a
random 95/5% split, respectively. Perplexity metrics were calculated for
the held out families test set to measure out-of-distribution generalization
to proteins less evolutionarily related to the training set. TAPE provides a
12-layer Transformer [50] with a hidden size of 512 units and 8 attention
heads, having a 2,048 output size. The Transformer was trained with
masked-token prediction, which models each data point by replacing the
value of tokens at multiple positions with alternate tokens.

UniRep [1]: this supervised model uses a training sequence dataset
consisting of 24,000,000 UniRef50 amino-acid sequence entries, which are
filtered by a 50% similarity threshold from the UniProtKB. Authors trained
a 1,900-hidden unit Multiplicative LSTM (mLSTM) with amino-acid char-
acter embeddings. These RNNs learn by going through a sequence of
characters in order, trying to predict the next one based on the model’s in-
ternal hidden state. During training, the model gradually revises the way
it constructs its hidden state to maximize the accuracy of its predictions,
resulting in a progressively better statistical summary, or representation,
of the sequence. The model internal states were looked up in detail, find-
ing that the amino-acid embeddings learned contained physicochemically
meaningful clusters. It was also found that a single neuron positively cor-
related with alpha helix annotations, and negatively correlated with beta
sheet annotations. The mLSTM architecture has two internal states that
encode information about the sequence it is processing, the hidden state
and the cell state. The output of the model is built with the concatenation
of the final hidden state, final cell state, and average hidden state of the
LSTM model, where the concatenation of the different states provides a
protein representation vector with different levels of semantic information.

In summary, it can be stated that most models that approached pro-
tein representation as a supervised learning problem (such as CPCProt,
DeepGOCNN and rawMSA) used similar CNN architectures, with small
variants in the output layers (ReLU or MaxPooling). Very differently,
PLUS-RNN, SeqVec and UniRep used recurrent neural networks and
LSTMs; while GP and ProtVec proposed to use doc2vec and word2vec
for extracting features from protein sequences. Nevertheless, it is worth
noting that the architecture of SeqVec also includes a CNN, whose aim
is to read the input protein sequences. In contrast, RBM uses a classic
neural network with a very restricted architecture that was designed to
reduce the computation cost of making predictions. Most of these su-
pervised models were trained with UniProt and Pfam data. Regarding
unsupervised models, it is very interesting to note that all of them were
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based on Transformers but with different architectures, and each of them
trained in a different dataset. The best TAPE model had only 12 hidden
layers and was trained on Pfam; while ESM and ProtTrans are those with
more hidden layers (¿ 30) and both based on a pre-trained BERT.

3 Data, measures and experimental setup

3.1 Data

Proteins. We used a subset of the standard CAFA3 challenge dataset
[56]. For this study, we selected the model species and highly annotated
Homo sapiens proteins with lengths equal to or less than 700 amino acids,
due to the restrictions imposed from some of the methods compared, re-
sulting in a dataset of 9,479 molecules. In addition, to have comparative
results from less annotated and non-model species, we used a subset of
the protein sequences of Rattus norvegicus and Mycobacterium tubercu-
losis H37Rv from the CAFA3 dataset with a maximum length of 700
residues, obtaining 4,374 and 1,503 protein sequences, respectively.

Protein function annotations. Each protein had at least one GO
term in any of the three sub-ontologies BP, MF and CC. The tags assigned
to the given protein were propagated to the root of the corresponding sub-
ontology using goatools [25] with the is-a and part-of relations. The Gene
Ontology used was from the 2016-06-01 version, as it is contemporary to
the CAFA3 dataset. In this way, proteins were enriched with annotations
at several levels of the ontology tree, avoiding cases where a molecule is
annotated only with a very specific term, isolating it from similar, but
less studied, cases.

Domains. The corresponding information about protein domains for
the 9,479 Homo sapiens proteins used in this study was obtained from the
Pfam database [15] with the ProDy python package [55], making a total
of 3,872 domains. For Rattus norvegicus and Mycobacterium tuberculosis
H37Rv the number of domains is 2,474 and 1,199, respectively. It should
be noted that the Pfam domains of each protein were compared with
those annotated in UniProtKB, showing a 98% of agreement, thus the
Pfam domains were used. Each protein can be composed of one or more
domains, each playing a role in the protein global function. Some of these
domains are tightly related to a given function, for example the catalytic
domain of the kinase proteins; while others have a support role, such as
DNA binding domains.

3.2 Performance measures

To evaluate how well protein embeddings cluster according to their an-
notated Pfam domains, we used a clustering index. To this aim, we con-
sidered Pfam domains as clusters of proteins and measured the degree of
membership to clusters by using protein distances based on embeddings.
Although a number of such indices have been proposed, the silhouette
coefficient has shown superior performance for diverse problems. The sil-
houette coefficient is
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1

M

M∑
i

bi − ai
max(ai, bi)

, (1)

which is the average silhouette score over M proteins. This score is com-
posed of two components: ai is the mean distance between protein i and
all the other proteins annotated with its same Pfam domain Ci

ai =
1

|Ci| − 1

∑
j∈Ci,j 6=i

d(i, j), (2)

where |Ci| is the number of proteins annotated with domain Ci. Then bi is
the smallest mean distance of protein i to all the other proteins annotated
with different domains

bi = min
Ck 6=Ci

1

|Ck|
∑
j∈Ck

d(i, j). (3)

In both equations, d is the distance between protein i and protein j. The
best value of the silhouette coefficient is +1 (well-separated clustering)
and its worst value is −1 (invalid clustering). Values near 0 indicate
overlapping clusters.

The predictive performance of the methods studied here are measured
with standard recall or sensitivity (s+) and F1 evaluation metrics,

s+ =
TP

TP + FN
, (4)

F1 =
2TP

2TP + FP + FN
, (5)

where TP, TN, FP and FN are the number of true positives, true negatives,
false positives and false negatives, respectively. In the context of this
review, TP is the set of GO terms/Pfam domains associated with the
protein to be measured; while FP and FN are the number of false positives
and false negatives GO terms/PFam domains, respectively, predicted by
a classification method. The recall measures how good a classification
method is for recognizing the TPs of the task. It is also important to take
into account the number of GO terms/Pfam domain families predicted
but not related to the protein of interest, that is FP. Therefore, F1 is
used as a global comparative measure among methods. Friedman test
and critical difference (CD) diagram with posthoc Nemenyi test [13] were
used to assess the statistical significance of differences in the average F1

achieved by each model when predicting over each protein in each test
fold. In some experiments, the clustering coefficient of groups of proteins
was also calculated to assess results.

In order to measure the similarity between protein embeddings, the
cosine similarity was used, which is defined as

scos =
< a, b >

||a||||b|| , (6)

where a and b are embedding vectors, the numerator is the dot product
between the two vectors and || · || is the Euclidean norm. This similarity
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varies between -1 (total dissimilarity) and +1 (total similarity). For some
experiments, we also used the cosine distance which is defined as 1− scos.

To measure the degree of correlation between sequence and cosine
similarities obtained from pairs of protein sequences we calculated the
Spearman correlation coefficient as

ρ =
cov(r(X), r(Y ))

σr(X)σr(Y )

(7)

where X and Y are the BLAST for proteins (BLASTp) [2] similarities and
cosine similarities, respectively; cov is the covariance between them, and
σ are the standard deviations calculated separately for each set. Given a
set as input, the function r(·) ranks the values within the set returning
the positions that each value occupies when sorting them from the lowest
to the highest. This formula measures how monotonically correlated the
sets X and Y are, and varies between -1 (negative correlation) and +1
(positive correlation) with 0 indicating no correlation.

3.3 Experimental setup

In order to capture a higher order relationship between the embeddings
and the GO terms/Pfam domains we used two machine learning (ML)
methods widely used for classification tasks: k-nearest neighbor (kNN)
[18], with a range between k = 1 and k = 10 and using the cosine similar-
ity between embeddings for determining the neighborhoods; and a multi-
layer perceptron (MLP) neural network [7] with 3 hidden layers of size
1,024, 512 and 512, respectively, and an output layer of problem-specific
size: 3,872 for Pfam domains; and 1,203 for CC, 3,159 for MF and 9,634
for BP sub-ontologies, respectively. The model architecture used for both
Pfam and GO predictions is depicted in the Supplementary Figure S1.
The MLP has ReLU [40] activation function for each layer, except the
last layer which has a sigmoid activation to produce an output vector
with normalized components. The MLP model was fed with the em-
bedded proteins and used to predict the corresponding GO terms/PFam
domains, encoded as binary vectors. To make predictions, the predicted
vectors were transformed into binary vectors using a threshold of 0.3.
This threshold was determined based on preliminary experiments aimed
to study the impact of this value on predictions.

Model evaluation was performed as a typical 10-fold cross-validation
experiment. The performance measurement is defined as the average s+

and F1 calculated from the test predictions for all folds. To address data
redundancy, proteins with at least 80% sequence identity were forced to
share the same partition. Additionally, a more restricted experiment was
also performed with test data having less than 20%, 40% and 60% per-
centage pairwise sequence identity (PIDE) to the train set, which can be
found in Supplementary Figure S2, where the overall behavior and differ-
ences among methods remain but the F1 score is reduced since protein
annotations that are representative in the test set are absent in the train-
ing set because of the strict partitioning. The model was trained for 1,000
epochs employing binary cross entropy [6] as the loss function; and the
Adam optimizer [24] for weight optimization with mini-batches.
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4 Results

4.1 Embedding space visualization

A protein embedding useful for downstream tasks is expected to repre-
sent crucial molecular features of proteins, such as their physicochemical
properties as well as structural aspects. Protein embeddings encoding
similar molecular features should, then, share a common region in the
multidimensional embedding space. To have a very preliminary insight
into this, a visual and just qualitative comparison was performed. The
mathematical intuition behind the interpretation of the embeddings pro-
jections is that proteins with similar function should be close (near) in the
projected embedding space, while functionally unrelated proteins should
be separated and not overlapped. First, the protein embeddings were non-
linearly reduced to 2 dimensions using UMAP [34], which has proved to
be better for projecting the global structure of the embedding space [4].
After that, each molecule was painted with a different color, depending
on its corresponding Pfam domain.

The 10 domains shown in Supplementary Table S1 were selected to
highlight some interesting cases. For example, Immunoglobulin V-set
(PF07686) and Immunoglobulin C1-set (PF07654) domains are both Ig-
like domains involved in the immune system. Structural studies [10] have
shown that both domains share a common structural core and also share
a similar immunological function. Therefore, it would be expected for
their corresponding embedding representations to be grouped in similar
location or very close in the embedding space since both share similar
sequence properties.

Figure 1 shows the UMAP visualization of all the 12 methods reviewed
here only as a preliminary and broad qualitative analysis. As control, we
used UMAP projections obtained from vectors representing each protein
as its pairwise sequence similarities calculated with BLASTp. In each
visualization, each Pfam family of Supplementary Table S1 is depicted
with a different color. It can be seen that the families PF07686 (blue)
and PF07654 (orange) are very close to each other, or even overlapped
at least partially, in the embeddings of CPCProt, deepGOCNN, ESM,
PLUS-RNN, ProtTrans, SeqVec, TAPE and UniRep. In contrast, this
overlap is barely seen in the BLASTp projections, suggesting that classic
sequence similarities among proteins are not discriminative enough. Very
interestingly, in ProtTrans, SeqVec, ESM and TAPE, the blue and orange
dots are partly overlapped and very separated from the rest of the protein
families. However, in GP, ProtVec, RBM and rawMSA, those families are
not close in the embedding space, in some cases, those are even located
in opposite positions, far away.

Another interesting case to analyze is the kinase domains PF00069
(green) and PF07714 (red). Proteins annotated with PF00069 are ser-
ine/threonine kinases while PF07714 is assigned mainly to tyrosine ki-
nases. Both groups share the same function. The red and green dots
are together and overlapped, as expected, in all embeddings except in
BLASTp, GP, RBM and rawMSA, where those are mostly distributed
all over the space. It should be mentioned that in PLUS-RNN, SeqVec,
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Figure 1: Visual comparison of the protein representation methods: visual-
ization of the embedding space produced by each approach, using UMAP for
dimensionality reduction and highlighting 10 Pfam domains with interesting
features. Pfam domains with shared sequence features are expected to be close
in the dimensionally reduced space. The x and y axis correspond to the two
UMAP projected dimensions. It can be seen that, for example, the related
families PF07686 (blue) and PF07654 (orange) are close/ overlapped in the
embeddings of CPCProt, deepGOCNN, ESM, PLUS-RNN, ProtTrans, SeqVec,
TAPE and UniRep. This overlap is barely seen in the projections of BLASTp,
GP, ProtVec, RBM and rawMSA.
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TAPE and UniRep, these two families form a compact cluster and are
very separated from the rest of the families.

The domains PF13853 (brown) and PF00001 (purple) are transmem-
brane, alpha helix rich molecules, sharing not only a secondary struc-
ture but also subcellular localization. Relative to these proteins enriched
by alpha helices, the projections of protein sequences containing Ser-
ine protease domains PF00089 (light blue) should be located distantly
since the latter domain is mainly composed of beta sheets. These two
facts: PF13853 and PF00001 together or close, and at the same time
well-separated from PF00089 is verified in the projections of CPCProt,
deepGOCNN, ProtVec, SeqVec, TAPE and UniRep. Moreover, it is well-
known that Serine protease domains are divided into two broad categories
(chymotrypsin-like and subtilisin-like) which are captured by the pres-
ence of well-separated clusters of embeddings for ESM, SeqVec, UniRep
and PLUS-RNN. In the other embeddings, instead, these families are
widespread and mixed up with the other families.

Additionally, a large overlap between the projections corresponding
to proteins containing the Homeodomain PF00046 (black) and the RNA
recognition motif family PF00076 (pink) can be expected to reflect the
fact that both domains are capable of binding nucleic acids. This close-
ness is verified for CPCProt, deepGOCNN, ESM, PLUS-RNN, ProtTrans,
ProtVec, SeqVec, TAPE and UniRep. Finally, regarding separation of the
embedding projections corresponding to different families, the methods
that clearly separate into different clusters each domain family are ESM,
PLUS-RNN, SeqVec, TAPE and UniRep.

To better evaluate, in a more quantitative way, the capacity of the dif-
ferent embeddings for grouping the 10 Pfam domains selected, we carried
out a silhouette analysis. We measured the distances between the proteins
annotated with the 10 Pfam domains using the cosine of their angular dis-
tances defined in the space of their corresponding embeddings. Figure 2
shows the silhouette profile for each method where shaded areas plot the
scores obtained from protein pairs sharing the same Pfam domains. The
better the clusterings the higher the silhouette scores, reaching +1 as
maximum value. It can be seen that neither method can perfectly group
all the Pfam domains in the projected space, because of the presence of
negative silhouette scores in all cases. However, some methods present
scores that are high, indicating that they are relatively better than others
for clustering proteins according to their domains. To rank methods ac-
cording to their clustering capacity, we used the silhouette coefficient of
each method, which summarizes its profile for all domains and it is shown
as a solid vertical line in Fig. 2. The resulting rankings indicated that the
best clusterings were obtained by PLUS-RNN, ESM, UniRep and SeqVec,
which is in line with the qualitative UMAP projections. To further con-
textualize this result, we compared the silhouette coefficients with that
achieved by BLAST, indicated as a dotted vertical line. This comparison
revealed that six methods were better than BLAST in this task: PLUS-
RNN, ESM, UniRep, SeqVec, TAPE and ProtTrans. This result not only
highlights that protein embeddings can be a powerful tool for protein do-
main analysis but also demonstrates the advantages of using embedding
representations rather than primary protein sequences for bioinformatics
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tasks.

Table 2: Statistical correlation between BLASTp sequence similarities and co-
sine distances.

Method Spearman correlation
ESM 0.66
ProtTrans 0.63
PLUS-RNN 0.57
SeqVec 0.53
TAPE 0.53
deepGOCNN 0.51
UniRep 0.49
CPCProt 0.45
ProtVec 0.42
rawMSA 0.40
GP 0.34
RBM 0.27

4.2 Protein domain prediction

Since protein domains are intimately involved in protein functionality,
the correct identification of all the different domains present in a protein
could give insight into its function, localization and/or biological process.
Embeddings that can learn this information are highly desirable for pre-
diction. Thus, to quantify the ability of the embedding methods to be
used for functional domain prediction, that is, Pfam family prediction
using the cosine similarity between vector embeddings, we set up an ex-
periment using kNN, as indicated in Section 3.3.

The results can be seen in Figure 3 (top) where the curves for both
F1 and s+ are displayed in the y-axis, for the corresponding k-neighbors
from 1 to 10 in the x-axis. Interestingly, the predictions of all the meth-
ods share a common trend where the F1 and recall tend to decrease and
increase, respectively, as the number of k neighbors increases. This in-
dicates that, as k increases, methods are able to predict more accurately
the correct domains (higher recall) but at the cost of introducing more
false positive predictions (lower F1). It should be noticed that this trend
is in accordance with the results of the previous projection analysis; both
results point out that the embeddings sharing similar protein domains
are found close in the vector space. Therefore, as k increases, domain
inference becomes worse because of including more neighbors, which are
not necessarily close in the space as indicated by the F1. In addition, the
results also show that the predictive performance varies according to the
method used. The ESM method is shown to be noticeably above the rest,
regardless of the number k chosen. This method achieved an average F1

of 0.70 when considering only the first neighbor. An excellent result when
compared with the second-best, SeqVec, which has an F1 slightly below
0.60 in the same condition.
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PLUS-RNN ESM UniRep

ProtTrans SeqVec TAPE

CPCProt DEEPGOCNN ProtVec

1.0 0.5 0.0 0.5 1.0
Silhouette score

RBM

1.0 0.5 0.0 0.5 1.0
Silhouette score

rawMSA

1.0 0.5 0.0 0.5 1.0
Silhouette score

GP

PF07686
PF07654

PF00069
PF07714

PF00001
PF13853

PF00076
PF00046

PF00169
PF00089

Figure 2: Silhouette profiles for clustering Pfam domains. Panels show the sil-
houette profiles obtained from the embedding distances of each studied method.
Shaded areas plot the silhouette scores for protein pairs sharing the same (color-
encoded) Pfam domain. Vertical solid lines indicate the silhouette coefficient
summarizing profiles, whereas dotted lines show the coefficient of BLAST. It
can be seen that in spite no method can perfectly group all the Pfam domains,
some of them have high scores indicating that they are more capable of cluster-
ing proteins according to their domains.

The Pfam family domain prediction was also performed by using an
MLP model, as explained in Section 3.3. These results are shown in Fig-
ure 3 (bottom), where the y-axis reports average F1 results for the 10-fold
cross-validation setup. It can be seen that ESM is the best method with
F1 = 0.60, clearly separated from the rest of the methods. The next best
methods are SeqVec and ProtTrans with approximately F1 = 0.40. Then
UniRep with F1 = 0.30 and PLUS-RNN around F1 = 0.20. The remain-
ing methods achieved very low performance for the Pfam family domain
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prediction task using an MLP model. Notably, this result also shows that
the predictive performance of ESM is better than that of BLASTp-based
predictions, demonstrating that embedding representations for protein se-
quences are able to encode protein domains faithfully.

When performing a more strict version of this experiment with simi-
larities ¡ 60%, 40% and 20% PIDE between train and test sets, the overall
behavior and differences among methods remained but the F1 score of
each method was reduced significantly as the problem became harder,
which was expected, as can be seen in Supplementary Figure S2. This
drop in performance mainly obeys to protein annotations that are repre-
sentative in the test set but absent in the training set due to the severity
of the partitioning.

In addition, we also repeated the experiment by partitioning training
data by using single-linkage hierarchical clustering on the GO annotation
similarity between proteins according to the Jaccard distance. That is,
the partitions based on GO similarities were used to train and evaluate
an MLP on the Pfam prediction task. The results showed that such data
partitioning had almost no impact on predicting Pfam domains (Supple-
mentary Figure S3), suggesting that GO annotations and Pfam domains
are not strongly correlated.

These experiments of Pfam and GO terms predictions were also per-
formed in 2 other non-model organisms: Rattus norvegicus and Mycobac-
terium tuberculosis H37Rv. This way the comparative study includes or-
ganisms equidistant on a scale from very-well to not-well annotated. The
results (Supplementary Figure S4) show that, as expected, the perfor-
mances are much lower when the species is not well-annotated, but very
interestingly the same trends than for H. sapiens regarding best and worst
groups of performing methods are observed.

4.3 Ontology-based Protein Function Prediction

To test the methods for GO terms prediction in each sub-ontology using
the cosine similarity between vector embeddings, we set up an experiment
using kNN and an MLP model, as explained in Section 3.3, whose results
are shown in Figure 4 for each sub-ontology from top to bottom: BP, CC
and MF, respectively. For each sub-ontology, column A shows the curves
for F1 on the y-axis, for the corresponding k-neighbors from k = 1 to
k = 10 indicated on the x-axis; Column B shows the violin plot for the
MLP predictions.

Looking at the F1 results in BP with kNN (top, column A), it can
be clearly seen that ESM is the best method in this task, with just one
neighbor. The score for ESM at k = 1 is F1 = 0.35. At increasing k, the
F1 decreases substantially, and for all methods, because there is a large
amount of false positives predicted. The worst methods here are rawMSA
and RBM. Analyzing s+ in BP (Supplementary Figure S5), it can be seen
that increasing the number of neighbors produces an increment in the
recall value, allowing for example the recovery of more than 80% of the
true GO terms on average in the case of ESM for k = 10. Here again, the
worst methods can reach only up to a 50% recall in the best case. The
corresponding clustering coefficients for the kNN (Supplementary Figure
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Figure 3: Pfam domain prediction from protein sequence embeddings. A) Re-
sults obtained with the kNN approach. On the y axis, the performance mea-
surements F1 and s+ vary depending on the number of k neighbors selected. B)
Performance of each method when used to train an MLP. The violin plots show
the mean F1 scores from the 10 fold cross-validation.

S6) show the same trend as s+ for all methods. However, as depicted in
the F1 curve, there is a price to pay for a high recall, because together
with a large number of neighbors a large number of unrelated terms are
recovered, which introduce several FP predictions.

In the case of the kNN results for CC (middle, column A) and MF
(bottom, column A) sub-ontologies, the same trend as with BP can be
seen, although with much higher scores. In CC the maximum F1 = 0.55
is reached by ESM with k = 1, followed by ProtTrans, SeqVec, PLUS-
RNN, UniRep, deepGOCNN, CPCProt and GP, being again rawMSA and
RBM the worst methods. In MF the maximum F1 = 0.50 for ESM with
k = 1, with all the other methods below it in the same decreasing order as
in CC. Similarly to before, a large s+ score can be reached (Supplementary
Figure S5), for example of 0.90 in CC, at the largest k, but at the cost
of a very low F1. The same is observed for the corresponding clustering
coefficients (Supplementary Figure S6).

In summary, the most accurate predictions can be seen when trying to
predict the GO terms of the CC sub-ontology followed by the MF and BP

19

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
E

. F
en

oy
, A

. E
de

ra
 &

 G
. S

te
gm

ay
er

; "
T

ra
ns

fe
r 

le
ar

ni
ng

 in
 p

ro
te

in
s:

 e
va

lu
at

in
g 

no
ve

l p
ro

te
in

 le
ar

ne
d 

re
pr

es
en

ta
tio

ns
 f

or
 b

io
in

fo
rm

at
ic

s 
ta

sk
s"

B
ri

ef
in

gs
 in

 B
io

in
fo

rm
at

ic
s,

 V
ol

. 2
3,

 N
o.

 4
, 2

02
2.



Figure 4: Ontology-based predictions. For each sub-ontology: protein sequence
embeddings were used to predict GO terms observing the impact of modifying
the k number of nearest neighbors with kNN (A). The violin plots (B) show the
performance of each method for predicting GO terms with an MLP. BLASTp
baseline in dotted line.
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in that order. This difference in predicting capabilities can be seen also in
the CAFA3 results across all methods and it seems to be related to how
clearly motifs are encoded in protein sequences. For example, signal pep-
tides that lead proteins to the different places within the cell (i.e. CC) are
usually well conserved across kingdoms and thus are more easily detected
by methods, whereas the role of a protein in a given biological process
depends on many other factors, not only protein sequence information.

The same function prediction task was performed by using an MLP
model, as explained in Section 3.3, whose results are shown as violin plots
Figure 4 in terms of the F1 scores obtained for each sub-ontology. In
comparison to kNN, the prediction capabilities of all the methods show
an increase when an MLP is used, mainly on the worst-performing meth-
ods (RBM and rawMSA). This can be explained by the fact that an MLP
is not only more powerful than a simple kNN, but also because its param-
eters are trainable. The number of proteins varies between sub-ontologies
depending on the annotation of each protein. The tendency of ESM out-
performing any other method remains, even though the distance shortens
regarding other methods with good performance such as ProtTrans, Se-
qVec or UniRep, the difference is still significant (pval¡0.001 in a binomial
test without ties).

The Friedman test and the CD diagram (Supplementary Figure S7)
on the BP sub-ontology results showed that F1 value for ESM relative to
all other methods is statistically significant and the best method for GO
terms prediction, while ProtTrans, SeqVec, UniRep and PLUS-RNN are
not statistically different amongst each other, and rawMSA and RBM are
the worst here. In the case of CC sub-ontology, there are no significant
differences among methods, with ProtTrans and ESM the best ones. On
the MF sub-ontology, again ESM is the best and well-separated from the
other methods while ProtTrans, SeqVec and UniRep are not statistically
different amongst each other. In contrast to the Pfam results, almost all
the methods show better performance than BLASTp-based predictions.
Since protein sequence embeddings are built from large protein databases,
they are better in capturing additional information beyond the primary
sequence. Hence, our results indicate that, in contrast to the primary se-
quence information which is exclusively used for BLASTp predictions, the
additional information that embeddings are able to capture shows to be a
relevant factor to boost predictive performance on the GO predictive task.
These experiments were also performed in 2 other non-model organisms:
Rattus norvegicus and Mycobacterium tuberculosis H37Rv. The results
(Supplementary Figure S8) show that the same trends in performance
among methods are observed. When using the partitioning with a much
harder 20% identity cutoff between training and testing sets, an expected
slight drop in F1 score can be seen across every embedder. Although,
the relative performance between the methods and the group of good per-
forming and worst performing methods remains the same (Supplementary
Figure S9).

We repeated this experiment by using an alternative partitioning of
the training data by using single-linkage hierarchical clustering on the
Pfam annotation similarity between proteins calculated with the Jaccard
distance. That is, the partitions based on Pfam similarities were used
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Figure 5: Ontology-based protein function prediction detail: for each sub-
ontology, curves plot the predictive performance of each embedding method
as a function of the term depth. The predictive performance is the F1 score
averaged over all the terms at a given depth. Baseline BLASTp predictions
shown in gray.

to train and evaluate an MLP on the GO prediction task. The results
(Supplementary Figure S10) showed that such data partitioning had a
moderate impact on the capacity of embeddings for predicting GO terms
from CC but strong for terms from the other two sub-ontologies. This
points out that protein domains encode crucial information for predicting
BP and MF, which is expected as they are partly governed by the spe-
cific electro-chemical properties of protein domains. In contrast, the low
impact on predicting CC localizations is also expected because they are
determined by transit-peptide signals which are not represented as Pfam
domains.

Finally, to better and more accurately quantify the performance of
the trained MLPs for predicting protein annotations as a function of the
depth of the GO terms in each sub-ontology. In protein function tasks, the
biological concepts represented by deeper GO terms are more specific in
comparison to their ancestor terms. Thus, accurate predictions for deeper
terms can be more informative for diverse bioinformatics problems, such
as predicting protein-protein interactions in terms of their protein func-
tion similarities. Figure 5 plots the in-depth predictive performance of
each representation method measured in terms of F1 obtained by the
same MLP as for Figure 4, which shows a flattened performance for each
method. Here, the x-axis ranges the different depth values, while the y-
axis represents the average F1 score calculated over all the GO terms at a
given depth. Because all the methods achieved the maximal F1 score (1.0)
at the root term of each sub-ontology (GO depth=0), these results were
excluded to allow a better visualization for more informative GO terms
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(GO depth¿0). By analyzing the results obtained for each sub-ontology,
the BP terms were the most difficult to predict for all the methods, be-
cause they show the lowest predictive performances in comparison to the
other sub-ontologies. This is in agreement with our previous results and
those reported in the CAFA 3 challenge [56], suggesting that correct pre-
dictions of BP terms require not only sequence information but also addi-
tional sources of information. On the other hand, the F1 scores of the CC
and MF terms were similar to each other but higher than those of the BP
terms, which is expected as CC and MF functions are usually represented
as well conserved patterns in protein sequences. The predictive perfor-
mances decrease as the GO depth increases on the three sub-ontologies.
Although two exceptions can be seen, at depths 15 and 13-14 on CC
and MF respectively, due to the fact that these cases only have 1-3 GO
terms, resulting in highly biased averages. In agreement with our previous
analysis, the results also show ESM as the best method for predicting pro-
tein functions, which is followed by ProtTrans, SeqVec, PLUS-RNN and
UniRep. Moreover, in comparison to all the other methods, ESM yielded
the best predictions, being very close to the BLASTp performance, at
almost all the depth values across the three sub-ontologies. In particular,
it is very interesting to see how, in this very deep analysis, ESM in the
prediction of GO terms for MF shows a quite stable performance in the
intermediate levels, being almost as high as in the first ones at the deep-
est levels. This is a remarkable result since those are the more interesting
and important GO levels. The corresponding statistical test is shown in
Supplementary Figure S11 where it can be seen that for BP, almost all
methods are significantly different among them, with BLASTp and ESM
the best ones followed by ProtTrans and SeqVec. In CC and MF, it is
much more difficult to distinguish among methods.

To further analyze the performance of the embeddings from the per-
spective of learning, we investigated the confusion matrix derived from
the GO terms predicted by each embedding and the true GO terms an-
notating the training proteins, which were used as classes. Analyzing
the confusion matrices allowed us to see in detail how the performance
was affected in small classes (i.e., low annotation frequency terms). We
have calculated the confusion matrix per method for each GO term sep-
arately. Next, we computed the F1 score from each confusion matrix and
compared it against the frequency of the term according to protein an-
notations used as training data. The results (Supplementary Figure S12)
show that, regardless of the sub-ontology, high F1 scores are generally ob-
tained for the large classes (highly frequent terms) while the small classes
(low frequency terms) have a very variable range of F1 scores and worst
performance depending on the specific GO term. These analyses corrob-
orated the observed tendency shown in Figure 5, where all the methods
make better predictions for GO terms that are frequently found in the
training set, which commonly correspond to those found close to the root
of the GO.
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4.4 Comparison of BLAST vs per-protein and per-
residue embeddings

0.00 0.20 0.40 0.60 0.80 1.00
BLASTp sequence identity

0.00
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0.80

1.00

s c
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0.00 0.20 0.40 0.60 0.80 1.00
BLASTp sequence identity

ProtTrans
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0.00 0.20 0.40 0.60 0.80 1.00
BLASTp sequence identity

PLUS-RNN

Spearman=0.57
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BLASTp sequence identity

SeqVec

Spearman=0.53

Figure 6: Sequence similarity encoded by full embeddings. Points depict protein
pairs whose cosine similarities scos are calculated from per-protein embeddings.
Sequence BLASTp similarities (x-axis) versus embeddings scos similarities (y-
axis). Legends show Spearman correlations (the higher the better).

We investigated whether protein embeddings were able to preserve, in
their own space, protein distances measured according to the sequence
similarities calculated by BLASTp [2]. To this aim, we compared the
sequence similarities between protein sequences obtained with BLASTp
versus the cosine similarity between their corresponding per-protein em-
beddings, for all methods here evaluated.

The resulting comparisons for the top-4 embeddings are shown in Fig-
ure 6 (full results in Supplementary Figure S13), where point clouds depict
protein pairs whose coordinates show their BLASTp (x-axis) and cosine
scos (y-axis) similarities, and colors (blue for ESM, green for ProtTrans,
red for PLUS-RNN and orange for SeqVec) indicate per-protein repre-
sentations. The results show that for protein pairs with BLASTp scores
higher than 80%, the cosine similarity of their corresponding embeddings
was also high for almost all the embedding methods. This indicates that
proteins sharing high sequence identity are represented by embeddings lo-
cated relatively close to each other, that is, with cosine similarities close to
1. It can also be seen that the cosine scos similarity is much less variable
than the sequence similarities calculated by BLASTp, leading to a poor
correlation between both similarities and, thus, scos has a low capability
of discriminating proteins. In fact, sequences with low sequence similar-
ity have scos > 0.80 for most embedding methods. Most protein pairs
obtain cosine similarities between 0.95 and 1.0 regardless of its BLASTp
sequence similarity, indicating the embeddings have low discrimination
power among dissimilar sequences.

To further quantify the latter correlation, we ranked embedding meth-
ods according to their capability for preserving BLASTp sequence similar-
ities. To this aim, point clouds were summarized as curves by averaging
the scores over evenly spaced intervals of BLASTp sequence similarities.
Next, the Spearman correlation coefficient [33] was calculated from each
resulting curve, to quantitatively measure the correlation between the
BLASTp and cosine values.
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The results for each method here evaluated are shown in Table 2, with
correlation coefficients ordered in descending order from high to low val-
ues. The results indicate that ESM and ProtTrans obtained the largest
coefficients, 0.66 and 0.63 respectively, indicating that their embeddings
are the best in preserving the BLASTp sequence similarities. On the
other hand, GP and RBM showed the lowest coefficients, indicating that
their embeddings are not good for capturing BLASTp sequence similar-
ities. In general, these results reveal a moderate overall correlation for
the other methods between the BLASTp sequence similarities and cosine
similarities. These results are consistent with previous observations for a
specific embedding method [12], however, our comparisons using 12 em-
bedding methods revealed that it is a common behavior rather than a
method-specific phenomenon. This suggests that up-to-date protein vec-
tor representations are unable to fully preserve specific protein sequence
information, probably because the embedding methods collapse the whole
protein sequence information into a single low-dimensional vector. This is
a very interesting finding since modern methods used for AFP are gener-
ally based on protein representations, and according to our experimental
data, this implies that there could be difficulties in predicting protein
functions governed by fine-grained sequence elements.

The results obtained above showed that the classifiers trained with
protein embeddings are unable to make good predictions for the deeper
GO terms, which are the most interesting ones. This suggests that pro-
tein sequence embeddings are not encoding fine-grain sequence informa-
tion, which might be preventing classifiers from predicting specific protein
functions. This lack of fine-grain information in embeddings can be pro-
duced because they represent proteins as a single vector usually built by
reducing per-residue information.

Therefore, we evaluated the impact of using reduced (per-protein) em-
beddings versus per-residue representations, on preserving protein dis-
tances, measured as sequence similarities calculated by BLASTp. To this
aim, the protein similarity between protein pairs was compared with the
cosine similarity calculated from their corresponding per-residue embed-
dings. Since variable-length embeddings are obtained when using per-
residue embeddings, the experiment was conducted on a subset of 1,506
protein sequences with very similar lengths, ranging from 309 to 365
residues, that were homogenized by adding gaps on their C-terminal ends.
Each protein was then represented as a long vector by flattening the per-
residue embeddings. As a control, the cosine similarities were also calcu-
lated for the same representations but reduced per-protein, to be able to
conduct a comparative analysis between both representations.

The results of the experiment are shown in Figure 7 for the best meth-
ods ESM, ProtTrans and SeqVec, respectively (full results in Supplemen-
tary Figure S14). In the figure, each point depicts a protein pair whose
coordinates show their BLASTp (x-axis) and cosine scos (y-axis) simi-
larities, and colors (blue for ESM, green for ProtTrans and orange for
SeqVec) indicate per-residue and reduced (gray) representations, respec-
tively. This figure shows that, regardless of the method, the use of per-
residue embeddings improves significantly the discrimination of protein
pairs with low sequence similarity. Note that such level of discrimination
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Figure 7: Sequence information encoded by per-residue embeddings. Points de-
pict protein pairs whose cosine distances scos are calculated from reduced (gray)
and per-residue (non-gray) embeddings, respectively. Legends show coefficients
of determination (the higher the better) calculated when fitting a linear regres-
sion for each type of embedding. Per-residue embeddings correlate more with
sequence similarity than per-sequence embeddings.

is not achieved when using the reduced embeddings, where all protein
pairs obtain cosine similarities between 0.95 and 1.0 (the gray points at
the top of the figure) regardless of its BLASTp sequence similarity. To
quantify the observed tendencies, a linear regression was performed for
each type of embedding. Regressions revealed that cosine and BLASTp
similarities are more strongly and positively correlated when per-residue
embeddings are used. The contribution of using per-residue information
is also observed on their coefficients of determination, calculated from re-
gressions, which are higher than those obtained by their reduced counter-
parts: for ESM 0.65 when using a per-residue embedding versus 0.29 when
using the reduced version; for ProtTrans 0.66 when using a per-residue
embedding versus 0.28 when using the reduced version; for SeqVec 0.62
versus 0.21. Note, however, that although the per-residue embeddings are
better than the per-protein embeddings for protein representations, the
former are considerably larger, occupying a substantial amount of com-
puter memory. Nevertheless, the size of the per-residue representations
can be reduced by using lower floating point precision. We experimentally
evaluated this by halving the float-precision format of the per-residue em-
beddings and measured again their level of correlation with the pairwise
BLASTp similarities (Supplementary Figure S15). The results suggest
that no significant loss of correlation was observed, indicating that low-
ering floating point precision is a viable solution for reducing embedding
size.

5 Discussion

Nowadays, in spite of the recent breakthrough of alpha-fold’s structure-
based prediction of protein annotation, sequence-based prediction remains
the most widely-used approach. This is especially true for novel species,
since their protein sequences are the most common available information.
As a consequence, many learned protein sequence representation methods,
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named embeddings, have appeared in the last 6 years for tackling the
problem of automated protein function prediction given the ever-growing
availability of protein sequences.

Most of the representation methods reviewed here have approached
the problem with supervised machine learning, many of them through
CNNs and recurrent networks of varying architectures trained on UniProt
and Pfam data. The few proposals based on unsupervised models are all
based on Transformers, the newest and highly performant deep learning
architecture, which is showing breakthrough results in a large number of
practical problems.

The different comparisons among embedding methods included in this
study have shown that ESM, ProtTrans and SeqVec were the best methods
for most bioinformatics tasks evaluated here: protein similarity in the
embedding space, inference of protein domains, prediction of GO terms
and BLAST similarity correlation. In particular, for GO terms predictions
at different depth levels of the structural hierarchy of the GO, it was
remarkable to see how ESM achieved a high performance at almost all
levels. This is relevant because accurate predictions for deep GO terms
are of high interest for different fields in biology, since they represent very
specific protein functions.

It is worth mentioning the difference in results with a recent review
on protein embeddings [? ], which used a different benchmark of human
proteins from UniProtKB/Swiss-Prot annotated with UniProt-GOA of
date 2019 for testing, while we used a larger set of proteins from 3 species
of the standard CAFA3 challenge. Additionally, while the mentioned work
used SVM we used kNN and MLP for the predictions. Finally, the set of
methods evaluated was different.

Regarding the per-protein versus per-residue preferable representation
of the embedding methods, the experiments revealed that the use of per-
residue embeddings leads to embedding similarities that more faithfully
reflect sequence similarities. Since a positive correlation was observed for
the per-residue embeddings of diverse methods, the benefits of using per-
residue information seems to be a general rather than a method-specific
effect. To the best of our knowledge, per-residue information is not yet
directly exploited by existing predictive methods. Hence, it can be a key
factor to be used by future methods to further boost predictive power.
However, per-residue embeddings present some disadvantages, such as
having many vectors as the number of residues composing a protein, in-
creasing the size of the embedding significantly and requiring more com-
putational resources to process it. Besides considerably increasing the
representation size, this also leads to variable-length representations for
proteins, which can introduce new processing challenges in downstream
tasks.

Nevertheless, these challenges posed from using per-residue embed-
dings can be partially faced by using models capable of processing variable-
length data, such as recurrent neural networks, in order to reduce the
per-residue information into fixed-length representations per protein in a
more data-driven way. It was also found that per-residue embedding size
can be effectively reduced by halving the point floating precision used for
computationally representing them because this has no impact on the fi-
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nal accuracy. Altogether, these analyses allow us to state that the use of
per-residue information is the next big challenge in protein representation
learning and where future efforts should be directed in this area, in order
to be able to capture finer-grained information encoded throughout the
full length of the protein sequences.

6 Conclusions

In this study, we provided a comprehensive review and experimental com-
parison of 12 protein sequence representation learning methods that have
appeared in the last 6 years. We have compared them on several and very
concrete bioinformatics tasks: (i) ability of protein embeddings to pre-
serve protein similarities according to BLAST sequence similarities; (ii)
ability of protein embeddings to encode similar molecular features in a
common region in the multidimensional embedding space; (iii) ability of
the embedding methods to be used for functional domain prediction; (iv)
testing of the protein representations for automatic function prediction,
that is, GO terms prediction in each sub-ontology using the similarity
between vector embeddings.

We also compared the reduced per-protein versus the per-residue rep-
resentation available for some embedding methods, analyzing the advan-
tages and disadvantages of each representation approach. We hope the
results and the discussions of this study can help the community to select
the most adequate machine learning-based representation technique for
protein data representation, according to the bioinformatics task at hand.

Key points

� We provide a comprehensive review and experimental comparison of
12 protein representation learning methods from the last 6 years.

� Each method has been explained briefly and compared experimen-
tally on the same data set of protein sequences.

� The protein embedding have been compared in 3 very concrete bioin-
formatics tasks: (i) determining protein sequence similarity in the
embedding space; (ii) inferring protein domains; and (iii) predicting
ontology-based protein functions.

� We hope this study can help the community to better understand
these newly provided protein representations, in order to select the
most adequate according to the bioinformatics task at hand.
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