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Abstract

The computational methods for the prediction of gene function anno-
tations aim to automatically find associations between a gene and a set
of Gene Ontology (GO) terms describing its functions. Since the hand-
made curation process of novel annotations and the corresponding wet
experiments validations are very time-consuming and costly procedures,
there is a need for computational tools that can reliably predict likely
annotations and boost the discovery of new gene functions. This work
proposes a novel method for predicting annotations based on the infer-
ence of GO similarities from expression similarities. The novel method was
benchmarked against other methods on several public biological datasets,
obtaining the best comparative results. exp2GO effectively improved the
prediction of GO annotations in comparison to state-of-the-art methods.
Furthermore, the proposal was validated with a full genome case where
it was capable of predicting relevant and accurate biological functions.
The repository of this project withh full data and code is available at
https://github.com/sinc-lab/exp2GO

1 Introduction

In the current post-genomics era the inference of the functions associated with
genes and their products, the proteins, is a necessary step for better under-
standing the development of living organisms [I]. As the number of sequenced
genomes rapidly grows, the overwhelming amount of newly discovered genes can
only be annotated initially by computational methods, which must provide a
reasonable trade-off between precision and recall.

The functions of genes are generally described with terms or annotations of
the Gene Ontology (GO) [2]. GO provides concepts organized in a structured
set, which are systematically used to describe or annotate genes. Terms farther
from the root node of the ontology describe more specific concepts, whereas
terms closer to the root describe high-level abstract or generic concepts. The
proximity between two terms in an ontology is named semantic similarity, and


https://github.com/sinc-lab/exp2GO

L. Di Persia, T. L6pez, A. A. Arce, D. H. Milone & G. Stegmayer; "exp2GO: improving prediction of functions in the Gene Ontology with expression data"
IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp. 1-10, 2022.

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)

can be thought of as the extent to which they share information. This similar-
ity information, which is contained in the level of specificity of the term that
subsumes them (a common ancestor node), can be measured as the information
content (IC) of this subsumer. As the specificity of the subsumer term raises,
the IC is higher [3].

Computational methods for predicting candidate gene annotations are needed
due to the fact that in-vitro biomolecular experiments to validate a gene func-
tion are costly, laborious and time consuming. In the last 15 years, several
works have dealt with the functional annotation of genes. One of the first ap-
proaches was mining the literature to extract keywords that were then mapped
to GO concepts [4]. Another early proposal was based on training a hierarchy
of support vector machines for each gene, to obtain the most probable set of
corresponding predictions [5]. An alternative model was a k-nearest neighbour
(KNN) classifier, used for predicting annotations based exclusively on the exist-
ing GO terms of the nearest genes [6]. A more recent work [7] proposed learning
more annotations according to patterns from available annotation profiles with
decision trees and bayesian networks. Although these methods worked satis-
factorily well in its own application domain, most of them did not take into
account the structural organization of the ontology.

More recently, the ontology structure was taken into consideration for pre-
dicting the functions of partially annotated proteins by a random walk algorithm
[8] and semantic kernels [9]. Alternatively, gene functions were extrapolated
based on a singular value decomposition of a binary matrix built from the set of
known annotations [I0]. However, those methods were incapable of predicting
the function of fully unannotated genes because they require an initial set of
well-known annotations. Moreover, none of these methods considered expres-
sion data, which is a very valuable source of information for genes that share the
same function. One method that considered expression data appeared in [11],
where a data fusion technique based on matrix factorization was proposed to
take advantage of multiple heterogeneous data sources, such as a binary matrix
with GO terms and a matrix of expression data. Following this approach, a ma-
trix factorization was proposed for the binary GO annotations matrix, adding
terms to genes which are partially annotated and then using a KNN classifier
for assigning GO terms to closer genes [12].

A widely cited study evaluated a very large number of methods representing
the state-of-the-art in protein function prediction at that time with a bench-
marking set of several organisms, named Critical Assessment of protein Func-
tion Annotation algorithms (CAFA challenge) [I 13]. The study concluded that
although the top methods performed well [14], there is still considerable room
for improvement over currently available tools for such automatic annotation
tasks. This can be due to several facts. On the one hand, existing approaches
do not exploit the richness of the structural and hierarchical organization in-
herent to the ontology. That is, the GO terms location within this hierarchy,
its position and distance in the ontology is not fully considered in the models.
On the other hand, expression data being one of the most useful and specific
information regarding the biological function is not used. The methods involved
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in the CAFA challenge provide annotation for proteins, where it is very difficult
to have expression data. However, for genes there are lots of expression datasets
available. That is why in this work we focus on the functional annotation at
gene level, being therefore able to use at the same time, expression and semantic
information for improving predictions.

The semantics of Gene Ontology can be effectively captured and taken into
account through semantic measures. There are several semantic similarity mea-
sures available for comparing biological terms that annotate genes in an ontology
[15]. Any of these measures can be used to build a semantic similarity matrix
among all genes of an experiment in order to, for example, cluster genes. How-
ever, for the case of novel and unannotated genes, this matrix will have many
empty rows and columns. Completing this missing data is essential in order to
be able to infer a function for those genes, for which there is not any semantic
information available. These empty spaces in the matrix could be completed
from expression information related to all the genes. In this work, we propose
a novel method to complete the semantic distance matrix with expresion dis-
tances by using non-negative matrix factorization (NMF) [16]. After semantic
matrix completion, the GO terms can be inferred using a Bayesian approach.

The method proposed in this work, exp2GO, uses expression data of genes
and takes into account the ontology hierarchy to provide predictions for com-
pletely unknown genes. Therefore, it can be useful in the case of: i) a model
genome, when there is still a minority of unannotated genes; ii) a partially
studied genome, when sequencing data becomes available but, in the meantime,
annotation mostly based on homology with similar genomes has been done; iii)
and when there is a de novo sequenced genome initially annotated by homology,
and then these annotations are refined and extended when transcriptomics data
become available.

2 The exp2GO method

We propose a novel pipeline for inferring GO terms for unannotated genes (Fig-
ure 1). Starting from expression data (Figure 1A), the matrix dg with the pair-
wise expression distances among the expressions of all the genes under study is
calculated (Figure 1B). This is a full matrix, without missing rows or columns.
In the distance matrix dg, different expression experiments could be considered.
That is, if the prediction of a function related to a specific experimental condi-
tion for the organism under study is desired, then only expression data of this
condition should be used. Instead, if a wider function prediction is desired, not
just in the context of a specific experiment, all available expression data can be
used. In any case, the method will use the distance between the expression data
provided.

The GO annotations for well-known genes in the study are available; al-
though there are some genes that are completely unknown (Figure 1C), that
is, without GO terms associated. Among all these genes, a semantic distance
matrix dgo can be calculated (Figure 1D) using any of the already available
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Figure 1: Pipeline of exp2GO for inferring GO labels. A) Expression data.
B) Expression pairwise expression distance matrix dg among all genes in the
study. C) Semantic data: GO annotations for well-known genes (gene 1, gene
2, ...); some genes in the study are completely unknown (gene A, gene B, ...).
D) Semantic distance matrix dgo among all genes: with missing rows and
columns because many genes are not semantically annotated. E) and F) exp2GO
completes the missing distances in dgo, using the information available in B)
and D). G) Once the dgo matrix is completed, GO annotations are assigned
according to the reconstructed semantic space. From the closest set of genes
with known GO terms, the potential terms (according to a Bayesian model) are
sorted in descending order by their posterior probability. Finally, the candidate
GO terms with the highest accumulated probability (in yellow) are assigned to
each unannotated gene (gene A, gene B, ...).

semantic measures [15]. However, it should be noted that there will be miss-
ing rows and columns in this matrix because many genes are not semantically
annotated, then a semantic distance among them cannot be calculated. With
exp2GO it is possible to complete the missing distances in dgo, by using infor-
mation available in the full matrix dg and in the partial matrix dgo (Figure
1E-F). The proposed NMF approach completes just the last rows of the dgo ma-
trix. After its reconstruction, the symmetric part in the corresponding columns
is completed by copying the information of the completed rows (and transposing
it), thus forcing the symmetry. Once the dgo matrix is completed, GO annota-
tions are assigned according to the reconstructed semantic space. The potential
labels are obtained from the set of genes with known GO labels according to
a Bayesian model, by sorting the labels in descending order according to their
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posterior probability (Figure 1G). Finally, the candidate GO labels with the
highest accumulated probability are assigned to each unannotated gene. The
NMEF reconstruction of dgo and the GO labels assignment are explained in
detail in the next subsections.

2.1 Reconstruction of dgo

Both matrices (dgo and dg) are non-negative pairwise distances among genes,
although measured in different spaces. The main idea for completing the dgo
matrix is to learn a basis that is good enough to represent jointly the dg and
the known part of dgo. This basis learning can be done by using a weighted
and coupled NMF algorithm, as follows.

In standard NMF, a data matrix X is decomposed in the product of two
matrices A and H, such as [I7]

X = AH + E, (1)

where X of n-by-m contains the original non-negative matrix, A of n-by-p is a
non-negative matrix that can be interpreted as a dictionary of atoms for syn-
thesizing X, and H of p-by-m has the coefficients to reconstruct X by linear
combination of the atoms of A. The inner dimension p is the dimension allowed
for the dictionary. If this value is lower than the original data subspace dimen-
sion, there will be an error in the representation, which is measured in matrix
E.

In our case we have two data matrices, dg and dgo that we want to express
using the same dictionary A, but each will have its own coefficient matrix. Thus,
we want to construct

dg = AH,+E, (2)
deo = AHs+ E>. (3)

In these equations, both dg and dgo are of n-by-n (as well as Fy and Es),
with n the number of genes, thus A is of n-by-p and H; and H, are of p-by-n.

Other types of biological data could be used instead of, or additionally to, ex-
pression, in order to provide meaningful similarity matrices such as for example
co-evolutionary data, phylogenetics, or co-occurrence in pathways. Replacing
expression data is direct. Adding other data sources is very straightforward, it
would just require to add equations like (3) in the cost function.

To learn the matrices A, H; and Hs, the following cost function will be
minimized [18]:

J(A, Hy, Hy) = ||dg — AH1||7 + Al|dgo — AHo||%, (4)

where || - ||2 = Y, > 7, is the squared Frobenius norm. The X\ parameter
regulates the relative proportion of information that is used from each term. A
large value of A will produce a dictionary to approximate the dgo matrix, but
allowing for worst performance in approximation of dg, and vice-versa.
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To take into account that some entries of dgo matrix are unknown we need
to add a weight matrix W before calculating the Frobenius norm of the approx-
imation semantic error, as follows [19] 18]

J(A,Hy, Hy) = ||dg — AH||3 + A[|W © (dgo — AH))| |7, (5)

where W is an n-by-n matrix defined by [W];; = 1 if [dgoli; is known, and
[W1;; = 0 otherwise; A is initialized to random positive numbers in [0, 1]; and
® represents an element-by-element product. This cost function is minimized
by an iterative process.

Another alternatives to symmetric matrix decomposition in the NMF con-
text can be considered. In the first place, we could use a symmetric factorization
of the kind d = UUT, with a cost function like J = ||dg — UUT||% + \|[|W ®
(dgo —UUT)||% [20]. For this setup, given that dp and dgo may have different
scaling ranges, the model would have poor capabilities to match both matri-
ces at the same time, since a common approximation is required (i.e. UUT).
Therefore, we would need to use a tri-factorization of the kind d = USU”, and
a cost function like J = ||[dg — US1UT||% + MN|W © (dgo — US2UT)||%, with
diagonal scalings S; and S [2I]. For this cost function, the information used
for the reconstruction of the unknown rows in dgo can only be extracted from
the corresponding rows of dg. That is, USyU T can take any value in the last
rows because dgo (and W) have zeros for the unknown genes. Then, the last
rows of U can only be learned from the last rows of dg and in these rows only
the scaling factors in So can model differences between dgo and dg. This way
we would not be exploiting the information from the known part of dgo, and
no fusion would be done in the reconstructed rows. Conversely, the proposed
model takes full advantage of the known parts from both distance matri-
ces. In this setup, the information of the common dictionary A is propagated
to both H; and Hs and thus the reconstructed part for the unknown rows of
dao will have effectively contributions from both dg and dgo, producing a
more effective fusion. To show this, an experiment comparing the symmetric
tri-factorization with diagonal scalings and our approach was performed with
real data (Supplementary Figure 1).

Assuming known H; and Hs, the update for A is

A =A o(dgH + \W ©dgo)H; )

@ ((AH)HT +\W © (AH»))HJ +¢), (6)
where € = 0.0000001 is a small constant to avoid division by zero, and © repre-
sents element by element division. Once updated, each column of matrix A is
normalized to have unitary 2-norm.

Then, with the updated A taken as fixed, H; and Hs are updated by
Hi=H © ((A"dp) @ (AT(AH)) +¢)) (7)
Hy = Hy ® ((AT(W @ dgo)) @ (AT(W © (AHa)) +¢)) , (8)



L. Di Persia, T. L6pez, A. A. Arce, D. H. Milone & G. Stegmayer; "exp2GO: improving prediction of functions in the Gene Ontology with expression data"
IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp. 1-10, 2022.

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)

where Hy, Hj are initialized to random positive numbers in [0, 1]. This iteration
(through (6), (7) and (8)) is repeated until convergence, detected by a threshold
on the relative error reduction of both terms of the cost function:

9 _ eE(t) . eGO(t) <7 (9)
colt—1)  ccolt—1)

where eg(t) = ||dp — AH1||% at iteration ¢, ego(t) = ||[W © (dgo — AHa)||% at
iteration ¢, and 7 is a small threshold (in our experiments we used 7 = 0.001).
This is not a classical weighted NMF approach. We have adapted the approach
proposed in [18] to our problem, where an NMF with two weighted terms is used,
coupled with one common matrix for both terms. Our problem formulation is
equivalent, but we use weights only in the second term. A more detailed analysis
of convergence is provided in the Supplementary Material.

Once we have learnt a proper dictionary that expands jointly dg and dgo,
we can use it to fill the unknown parts of dgo. If gene i does not have labels
in GO, the i-th row and the i-th column of dgo will be unknown. Assume that
we have grouped all unlabelled genes at the lowest part of the matrix (if this
is not the case, it can be easily done by a preprocessing, saving the ordering
information in order to be able to undo it). For example, genes 1 to ¢ have
known labels and genes ¢ + 1 to n do not have GO labels. Thus rows and
columns ¢ + 1 to n of dgo will have unknown values. The reconstruction of
those missing rows and columns will be done in three steps:

1. Learning of the first ¢ columns of the unknown rows of dgo: the learned
atoms in A have n known elements, thus they can be used to expand the
missing rows. In this way, the product AH> will contain information for
the first ¢ columns of the unknown rows, as shown in the scheme of Fig.
1 B).

2. Learning of the first ¢ rows of the unknown columns: as matrix dgo
is symmetric, this means that in step [1] we have also reconstructed the
first ¢ rows of the missing columns, by transposition of the reconstruction
obtained in that step. This is shown in Fig. 1 C).

3. Learning of the last part of the missing row and columns: the only part
of matrix dgo that remains unknown is the small submatrix at the lower
right part from rows ¢ + 1 to n and columns g + 1 to n. To learn this
unknown part a new iteration must be done. Using A again, fixed, a new
H, is learnt but now changing the weight matrix W to have 0 only in the
unknown lower right part, and using the partially reconstructed matrix
dco. This is shown in Fig. 1 D).

Then the new H, is updated as
Hy = Hy © (AT(W © dgo)) @ (AT(W © (AH)) + €)), (10)

and this is iterated until convergence when

(1 - mo(”))) < (11)

ego(n —1
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After convergence, the reconstruction of the missing part of the dgo matrix
is given by the corresponding part of AH,. It should be noticed here that,
although we have included this last step of reconstruction for completeness, Ho
has the semantic distances among non-annotated genes and therefore, it will
not be used afterwards in the inference.

Taking the sub-matrix from rows ¢ + 1 to n and columns q + 1 to n as a
matrix M we have an approximation of this missing part. But dgo needs to
have symmetry, and due to the approximation error the obtained sub-matrix
M may not be perfectly symmetric. To correct this, a symmetric matrix M;
is obtained as M; = (M + MT)/2, and used to finish the matrix completion.
After these 3 steps we obtain the reconstruction of the complete dgo matrix.

Regarding computational complexity, summing up all the multiplications/divisions
required for one iteration of updates, the algorithm is O(n?p). This operations
count assumes a direct implementation, but a version parallelized with CuPy
[22] is also provided, which significantly reduces computation time.

2.2 GO terms assignment

Let us define G = {g;}, j = 1,...,m as the set of genes with known GO labels
in one specific GO sub-ontology. L; = {{;i} is the set of all labels in gene g;
and L = UL; the set of all labels associated to G. Then, using a Bayesian
estimation, for ¢ € L

pltlg) o p0)-plaild) (12)
= LY ig) Y Slang,) (13)

gj/eeLj

where I(/, g;) is an indicator function with value 1 if gene g; was labelled with
label £ and 0 otherwise; S(g;,g,) is a similarity measure among genes g, y g,
and C' is a normalization constant. The exponent ~ allows considering only the
terms of the closest genes. This is particularly important when there is a large
number of genes involved. In this work we used the similarity

2

S(gi-9;) [T dg,.9)) 1, (14)
which is always in the interval [0,1]. Then L is sorted in descending order by
p(¢|g;), and those labels with the highest probability are assigned to the gene g,
up to a maximum of accumulated probability u. In this Bayesian inference, the
GO tree structure is taken into account by combining the a-priori probabilities
of the GO terms from the GO, including their ancestors propagated in the tree,
together with their semantic distance, which takes into account the GO terms
location in the tree and their hierarchical relationships.
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3 Data and performance measures

We tested our proposal with three organisms: Saccharomyces cerevisiae, Ara-
bidopsis thaliana and Dictyostelium discoideum. These organisms have been
chosen because of their comprehensive set of functional annotations, that is,
most genes are annotated with GO. This provides a precise way of measuring
performance.

YEAST dataset: Gene expression data generated in Saccharomyces cere-
visiae. In [23] several characteristics were collected in order to study cluster
analysis of expression patterns. From an original dataset of 2,467 genes, only
those with no missing values were considered, that is, a total of 605 genes with
79 microarray expression values. GO annotations with evidence codes EXP,
IDA, IMP, IGI, IEP, TAS, and IC, with relation type “is-a” and “part-of”, were
considered following the recommendations of the CAFA challenge [I3]. For the
first experiment (Section 4.1) only GO annotations for Biological Process (BP)
were considered, making a total of 583 genes. For the second experiment (Sec-
tion 4.2), in order to make a fair comparison with a related method that uses
NMF, GO terms annotated to fewer than 3 genes were excluded, leaving 422
genes for BP, 386 genes for Molecular Function (MF) and 442 genes for Cellular
Component (CC).

ARA dataset: Gene expression measured in Arabidopsis thaliana leaves.
The original work aimed to study the effects of cold temperatures on circadian-
regulated genes in this plant [24]. Genes under light-dark cycles at two control
temperatures (20°C and 4°C) and also involved in diurnal cycle and cold stress
responses were selected for the study. From a total of 1,546 genes with 32
microarray expression values, only those annotated with evidence codes and re-
lation types recommended by CAFA were considered. For the first experiment
(Section 4.1) 656 genes remained with BP annotations. For the second experi-
ment (Section 4.2) after the filter, 521 genes remained for BP, 315 genes for MF
and 740 genes for CC.

DICTY dataset: Gene expression data of 1,219 genes of the amoeba Dic-
tyostelium discoideum from dictyBase [25]. This dataset has been included in
the experiments for fair comparison with a closely related state-of-the-art work
on data fusion, [I1], on exactly the same conditions. The gene expression mea-
surements include different time-points of a 24-hour development cycle for 14
experiments, annotated with evidence codes and relation types recommended
by CAFA. For the experiment in Section 4.1, 707 genes remained with BP an-
notations. For the experiment in Section 4.2, after the occurrence filter, 652
genes remained for BP, 366 genes for MF and 630 genes for CC.

ARA2 dataset: It involves genome-wide transcriptomic data from A. thaliana.
RNAseq data were retrieved from the ATTED-II coexpression database [26].
The gene expression table used included 2,120 RNAseq transcriptomes from
22,761 genes and data were already normalized using the ComBat method [27].
To select sufficiently expressed samples, 90% of the highly expressed genes were
selected. In summary, there were 20,842 genes with sufficient expression level.
Among them, only 12,013 genes had BP annotations as well [28].
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The prediction quality of each model was assessed with cross validation using
a leave-one-out scheme, where we consider one gene at a time as unlabelled and
predict the labels for that gene using the information from the rest. Genes with
less than 10 GO terms were not considered in the performance measures. The
classical classification measures of sensitivity (s*), precision (p), and harmonic
mean of sensitivity and precision (F}) were used:

TP

+ o= 15
5 TP+ FN’ (15)
B TP 15)
P = TPiFp
S+p
F, = 2°P 17
1 S++p’ ( )

where TP is the number of true positives, F'P the number of false positives and
FN the number of false negatives, respectively. The s™ measures how good is a
classification method for not missing the true positives. The precision measures
the relation between true positives and false positives. To take into account
both sensitivity and false positives, F; is used as a global comparative measure
among the prediction methods.

The optimal hyperparameters were found with a grid-search in the yeast
dataset over A € (0.001,2.0), atom size p € (20, 100), maximum iterations num-
ber ta. € (100,10,000), and v € (0.50,15). Alternative distances for expres-
sion data were tested, including: euclidean, correlation and cosine distance.
Several semantic distances were tested such as cosine, Lin and Relevance with
combination strategy BMA, minimum and average [I5]. The optimum hyper-
parameters found were: cosine for expression distance and minimum Relevance
for semantic distance, p = 80, A = 0.001, v = 6 and t,,4, = 500.

Friedman test and critical difference diagram [29] with post-hoc Nemenyi test
were used to assess the statistical significance of differences in the performance
achieved by each model.

4 Results and discussion

4.1 Comparative results with matrix factorization meth-
ods for data fusion

In this section, a leave-one-out cross validation was used for comparison in the
same conditions with a related method in data fusion. For each testing gene, the
original GO annotations were artificially removed. Then, the semantic distances
related to these annotations were reconstructed by exp2GO. In this way, in each
iteration we train our model in all the genes less one, and predict the functions,
assumed unknown, for the remaining testing gene. In particular, D. discoideum
was included in this study for fair comparison, on exactly the same conditions,
with a closely related state-of-the-art proposal [II], which also uses gene ex-
pression data and it is based on penalized matrix tri-factorization [30]. This

10
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Figure 2: Violin plot with the comparative performance in several species for the
BP sub-ontology. Average cross-validated F-score (F1) and standard deviation
is reported for exp2GO; matrix tri-factorization function-centric (DFMF-func),
matrix tri-factorization gene-centric (DFMF-gene). Black triangle: reference
results using the original dgo, instead of the reconstructed one.

proposal, named data fusion by matrix factorization (DFMF), performs data
fusion by directly considering any data that can be represented in a matrix,
including for example feature-based representations, ontologies, associations or
networks. In [I1], it is mentioned that classical data integration can be achieved
by fusing input data (early integration) or by fusing predictions (late integra-
tion) but not by directly combining heterogeneous representation of objects of
different types. We have considered here the two versions of DFMF as proposed
by the authors: gene-centric (DFMF-gene), where the threshold for function
assignment is based on the average of the gene function labels; and function-
centric (DFMF-func), where the threshold is set according to the mean number
of genes having the function.

Figure 2 shows a violin plot with the comparative results in several species
for the BP sub-ontology. The values reported are average F; for the methods
exp2GO, DFMF-func and DFMF-gene. The black triangle on top of exp2GO
indicates the F; that could be achieved if the original dgo were used instead of
the reconstructed matrix. This value has been included as reference, in order
to show the maximum possible performance that could be obtained only by the
Bayesian inference if the dgo reconstruction were perfect.
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It can be seen in Figure 2 that for YEAST (green violins), exp2GO obtained
the best Fy = 0.3867, largely outperforming the DFMF methods (0.1540 and
0.0560). In the ARA dataset (red violins), exp2GO obtained again the best
Fy = 0.2765 while the DFMF methods provided very low performance (0.1090
and 0.0350). Finally, for the DICTY dataset (blue violins), exp2GO, again,
outperformed the comparative methods, achieving F} = 0.3908, more than twice
the DFMF best value (0.1910). In this case, it should be highlighted that
exp2GO achieved the same F} than if the original dgo were used. In summary,
the performance of exp2GO in comparison to DFMF is 2.5 times higher in
YEAST (0.3867 vs. 0.1540), and twice better in ARA (0.2765 vs. 0.1120) and
dicty (0.3908 vs. 0.1910). This is a remarkable result and a strong indication
that the expression data used in the dgo reconstruction by exp2GO has added
important information for the correct prediction of GO terms.

In summary, for all datasets evaluated here it can be seen that the best
performance was clearly obtained by exp2GO. Regarding the computational
resources needed and the stability of convergence, it should be noted that in
spite of exp2GO being an algorithmically complex method, its convergence is
fast for this application. For example, for the YEAST dataset, running on 4
Intel Xeon processors and 1 Tesla P100 GPU, exp2GO parallelized with CuPy
took on average 5.09 s to converge (using the maximum number or iterations
timaz ). Furthermore, variance of the method in label assignment under random
initialization was very low. For example, for one gene in 100 independent runs,
it has a standard deviation of 0.016 for F3.

4.2 Comparative results in CAFA-like challenge setup

To quantitatively study the performance of exp2GO in a more challenging sce-
nario, we evaluated it in the setup like the proposed by the CAFA challenge
[1,13]. According to the CAFA rules, the function prediction challenge involves
different times used as training and testing datasets. For CAFA3, the first time
is when the challenge is released (2016) and a second reference time is the dead-
line for the submissions of the predictions (2017). In the challenge, two classes
of genes/proteins are considered. On the one hand, the no-knowledge (NK)
proteins are those that do not have experimental annotations in any of the GO
sub-ontologies, initially, but have accumulated at least one GO term with an ex-
perimental evidence code during the prediction period. On the other hand, the
limited-knowledge (LK) proteins are those which already had one or more GO
terms experimentally annotated in at least one of the three GO sub-ontologies
at the initial time.

Two releases of GO annotation (GOA) files of the three species (S.cerevisiae,
A. thaliana and D. discoideum) were downloaded in different dates: the first one
on 2016-06-01, and the other one on 2017-02-01. Since the GO structure changes
with time (new terms are added), only GO terms shared in both times were
considered. This information was downloaded for the 3 sub-ontologies: BP,
MF and CC. The GOA file of each species gathers the available associations
between genes and GO terms. These associations were expanded according
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Figure 3: The Fj,4, for the comparative methods in the CAFA challenge setup
for several species: YEAST (green bars), ARA (red bars) and DICTY (blue
bars) in the MF, BP and CC sub-ontologies. The baseline method BLAST is
indicated with a black line. On top: statistical significance of results is presented
with the critical difference (CD) diagram.

to the GO hierarchy and the True Path Rule [I5], which indicates that if a
term is annotated to a gene, then all ancestors of this term are also inherently
annotated to the same gene. Results are reported according to the CAFA rules,
with the maximum Fj-measure (Fy,qz), which considers predictions across the
full spectrum from high to low sensitivity.

In this setup, we compared exp2GO with one baseline method and two
state-of-the-art methods: a method based on the sequence similarity (measured
by aligment with BLAST [31]), which has been used as baseline in the CAFA
challenge [13], NMF-GO [I2] and deepGOplus [I4]. NMF-GO is a very recent
method that completes the gene-function association matrix using NMF, impos-
ing constraints with the semantic distance between functions terms calculated
with the Lin measure [I5]. This method has already been compared to an-
other 6 methods, clearly outperforming all. We followed the indications of the
NMF-GO authors on the experimental setup: training on the historical GOA
files (released in 2016) and validating predictions on the more recent GOA file
(released in 2017). DeepGOplus was also proposed very recently and it is based
on deep learning. This method has outperfomed all the winners of the CAFA3
challenge.

Figure 3 shows the comparative results in the CAFA challenge setup for
exp2GO, BLAST, NMF-GO and deepGOplus. The baseline method BLAST is
indicated with a black line. In the MF sub-ontology, exp2GO is clearly superior
to NMF-GO, deepGOplus and BLAST in YEAST (green bars) and DICTY
(blue bars), with almost the same result that deepGOplus in ARA (red bars).
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The exp2GO scores here are Fi,,, = 0.6587 for YEAST, F,4. = 0.5975 for
ARA and F,4; = 0.6760 for DICTY. In the BP sub-ontology, the hardest one,
exp2GO is superior to all other methods and with important differences among
them. For example in DICTY (blue bars) exp2GO has F,q, = 0.5547 while
deepGOplus reached F, 4, = 0.4123 and NMF-GO reached only F,,,, = 0.1487.
In YEAST and ARA, again exp2GO is superior, up to 5 times better than NMF-
GO. In the CC sub-ontology, the exp2GO scores are the highest for all species.
The same trend than with the previous results can be observed and analogous
conclusions can be achieved: exp2GO is far better than the baseline BLAST,
with Fj, 4. higher than the other methods.

In order to provide a statistical analysis of results, a Friedman test was
done, showing that differences in the F,,,, results are statistically significant
(p < 6.6E-20). Critical difference diagram (Figure 3, top) shows that exp2GO
is the best method for gene function prediction. It should be noticed that the
gain in performance of exp2GO in comparison to other methods is significant, as
this statistical analysis indicates. The performance for exp2GO in comparison to
NMF-GO in BP (the hardest sub-ontology) is 5 times more in YEAST (0.456 vs.
0.085), 6 times higher in ARA (0.374 vs. 0.069) and 5 times better in DICTY
(0.555 vs. 0.149). These are very large gains in performance for exp2GO in
comparison to another NMF-based method.

Notably, these gains are achieved by exp2GO without a downside, since the
other methods are more complex. From a computational point of view, in the
comparison between exp2GO and NMF-GO it should be noticed that the last
one needs extremely large matrices, of size m x m, while exp2GO only needs
two matrices of size n x n. This is an important difference because NMF-GO
operates with matrices of thousands of terms, whereas exp2GO only requires
working with matrices that involve hundreds of genes for the NMF fusion. In
the case of deepGOplus, it needs each sequence in order to build an embedding
and feed it into a convolutional neural network, with a very high computational
cost. Therefore, in any case, exp2GO requires simpler and smaller inputs, and
thus, it has lower computational cost than the other methods.

All the experiments in this section used distance matrices. However, NMF
methods usually tend to underestimate near zero values (i.e. the most similar
genes). Since distance matrices are normalized, d € [0,1], we replicated the
experiments by defining similarity matrices as s = 1 — d. The results were
slightly worse, with drops in the F},,, for all species and sub-ontologies. This
might be because, in this prediction task, it is more important to distinguish
between the non-similar cases than to better detect the similar cases. That is,
the efficient detection of non similar genes annotations has more impact on the
final results, since it avoids the assignment of many incorrect labels.

4.3 Genome-wide data

In order to get a better sense of the type of results obtained with exp2GO in the
context of a complete genome, we performed an experiment with 12,013 genes of
the ARA2 dataset, which included 2,120 transcriptomic experiments (features)

14



L. Di Persia, T. L6pez, A. A. Arce, D. H. Milone & G. Stegmayer; "exp2GO: improving prediction of functions in the Gene Ontology with expression data"

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)
IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp. 1-10, 2022.

for each gene.

To verify whether exp2GO can give preference to GO terms related to a
specific condition, we first tested the performance of the algorithm on 10 genes
annotated to the GO category “defense response” (G0:0006952). These genes
were randomly selected, but preserving a similar distribution of the number of
annotations with respect to all genes in this category. The results (Supplemen-
tary Table 1) indicate that exp2GO gave preference to defense-response GO
terms for those test genes, since it annotated all 10 test genes with “response
to stress” (GO:0006950), which is a direct ancestor term of “defense response”,
and also to the more generic ancestor “response to stimulus” (GO:0050896).

Then, we selected extensively studied genes with important roles in Ara-
bidopsis development and/or responses to external stimulus and performed a
manual inspection of the categories predicted by exp2GO with respect to the
set of true annotations. For these genes, their original GO annotations were ar-
tificially removed and the semantic distances related to these annotations (the
dco missing parts) were then reconstructed by exp2GO. After that, GO labels
were assigned to the test genes according to the statistical procedure described
in Section 2.2. The details of the GO labels inferred for those genes can be
found in Supplementary Table 2, where the first column shows the GO terms
inferred by exp2GO alone, and the third column shows the GO terms inferred
by exp2GO that coincide with the original GO terms for each gene.

The first gene studied was Phytochrome B (PhyB, AT2G18790), a well-
characterized red light sensor. The categories correctly identified by our method
capture some of the most important aspects of PhyB known function, for in-
stance, “photomorphogenesis” (GO:0009640), “circadian rhythm” (GO:0007623)
and “regulation of transcription, DNA templated” (GO:0006355) [32]. Inter-
estingly, also “protein autophosphorylation” (GO:0046777) was correctly pre-
dicted, which could intuitively be considered a category with low probabilities
of being inferred from expression data. Additionally, exp2GO predicted for
PhyB several categories which, despite not being true annotations, are closely
related to them (Supplementary Figure 2). exp2GO found terms such as “pos-
itive regulation of transcription, DNA-templated” (GO:0045893) and “nega-
tive regulation of transcription, DNA-templated” (GO:0045892) that are direct
children of the true annotation “regulation of transcription, DNA-templated”
(GO:0006355), also found by the algorithm. Moreover, the term “transcrip-
tion, DNA templated” (GO:0006351), a direct ancestor of the same category,
was also found. Analogously, “protein phosphorylation” (GO:0006468) was
found by exp2GO together with its true positive children category “protein au-
tophosphorylation” (GO:0046777), previously mentioned. Another interesting
result was obtained in relation to the true annotation “chromatin organization”
(GO:0006325). exp2GO did not predict this term, but predicted the children
category “chromatin silencing” (G0:0006342) and the related category “gene si-
lencing” (G0:0016458). These more informative categories are valid since there
are published results supporting the involvement of PhyB in these processes
[33].

The annotation of another well-studied gene was inspected. Pathogenesis-
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related 1 (PR1, AT2G14610) is a gene involved in the salicylic acid-mediated
response to pathogens (Supplementary Table 2 and Supplementary Figure 3).
As with PhyB, among the categories identified by the method there were many
related to true annotations as well as ancestor GO terms (Supplementary Fig-
ure 3). For example, exp2GO predicted the term “response to bacterium”
(GO:0009617), ancestor of the true annotation “defense response to bacterium”
(GO:0042742); the term “salicylic acid mediated signaling pathway” (G0O:0009863),
ancestor of the true annotation “systemic acquired resistance, salicylic acid me-
diated signaling pathway” (G0O:0009862); and the term “response to bacterium”
(GO:0009617), ancestor of the true annotation “defense response to bacterium”
(GO:0042742).

Lastly, the results for the gene AGAMOUS (AG, AT4G18960) were in-
spected. AG is a transcription factor essential for flower development as it
is responsible for floral organ identity determination [34]. Some of the main
aspects of AG function were recovered by the GO terms inferred by exp2GO,
for instance, “regulation of flower development” (GO:0009909), “stamen devel-
opment” (GO:0048443) and “plant ovule development” (GO:0048481). As in
previous cases, there were many categories closely related to true annotations
(Supplementary Figure 4). For example, exp2GO predicted “meristem mainte-
nance” (GO:0010073), children of the true annotation “meristem development”
(G0O:0048507); and “flower development” (GO:0009908), indirect ancestor of
“stamen development” (GO:0048443) and “petal development” (GO:0048441).

Altogether, these observations indicate that exp2GO was capable of inferring
key characteristics of the function of well-studied genes. The careful inspection
of these terms shows that many were highly related to true annotations, being
either more (children categories) or less (ancestor categories) informative. Fur-
thermore, ancestor categories could arguably be considered true positives, since
they describe the function at a more general level; thus there is clearly some
level of underestimation of the performance of the algorithm by using standard
measures. This is probably further impacted by any biologically meaningful
category predicted but not annotated or known yet.

Another interesting observation that came from the inspection of the results
for these genes is that many true annotations had in fact a very small number of
genes annotated to them in our dataset. For example, for PhyB “entrainment
of circadian clock” (G0O:0009649) was annotated to five genes, “transpiration”
(GO:0010148) was annotated to four genes, “circadian regulation of calcium
ion oscillation” (GO:0010617) was annotated to three genes and “response to
low influence red light stimulus” (GO:0010202) was annotated only to PhyB.
Similarly, “response to vitamin B1” (G0:0010266), the only category which
was not identified for PRI by exp2GO, was annotated to two genes only. In
fact, these terms with only one or very few annotated genes are very difficult to
be predicted for any method, in particular one relying on known annotations of
other genes of the same species.
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5 Conclusions

In this work we have proposed exp2GO, a novel method for inferring GO anno-
tations for genes with unknown function. Using the expression distance and the
semantic distances among known genes, the semantic distance between unknown
genes was reconstructed by using non-negative matrix factorization. With the
reconstructed semantic distance, a Bayesian algorithm was used to predict the
GO annotations.
The proposal was compared against state of-the-art methods on public datasets.

It can be stated that exp2GO has shown the best results in all experiments, not
missing true GO terms and not assigning, either, a large number of false pos-
itives to unannotated genes. Moreover, in the very challenging CAFA setup,
exp2GO has clearly outperformed other methods. Finally, we have validated
and tested the proposal with a case involving genome-wide data, where exp2GO
was capable of effectively predicting relevant biological functions.
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Supplementary Material

exp2GO: improving prediction of functions in the
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1 CONVERGENCE ANALYSIS

In this kind of updates, the cost function is not convex in all variables and the non-negativity restrictions make difficult to
prove the convergence. The usual way to show convergence is based in the method of auxiliary function, which consist of
proposing a convex function that works as an upper bound for the cost function, tight at the present value of the variable,
and minimize this one in each iteration instead of the original cost function. By using the auxiliary function, one can show
that the cost function is non-increasing with the given updates. To formalize this, the following definition is needed [1].

Definition 1. Given the current estimates of the parameters ©°, let O(©|©") be defined in R *" x R'*"™ — R This mapping is
called an Auxiliary Function for the cost function J(©) if and only if:

VO e RT",0(0]0) = J(O©) and V(0,0") € RT*™ x RT*" 0(0]|0") > J(O).
Lemma 1. If O(©|0") is an Auxiliary Function for J(©), then J(©) is non-increasing under the update
1 _ . ¢
) fargglér010(@|@ ).

The demonstration is straightforward, as J(O'"1) < O(©'1|0!) < O(©!0!) < J(6Y).

1.1 Convergence of updates for A
In this case H; and H; are kept fixed, so the cost in Eq. 5 of the manuscript, J(A, Hy, H3), is reduced to

J(A) = ||dg — AH: ||} + N||W @ (dgo — AHa)||%
=3 > ([dE]ij = [Alik[Hi ]k > + )\ZZ < daolij Z[A]ik[Hﬂkj) ;
i % %

where [W]3; = [W];; since [W];; € {0, 1} by definition. For this cost, an auxiliary function is proposed as

O(A]A") = ZZZ(SW (dE [A]ZkH“W) + ZZ Jis Y viji ([dco}ij - Wm[%)zv

Vijk
where §;;1, = % satisfies >, 0;jk = 1, viji, = % satisfies >, v;;x = 1, and they do not depend on A.
By replacement, it is straightforward to show that O(A|A) = J(A). Besides, the Jensen inequality can be used to show that
it is an upper bound for the cost

A|At>zz<dE Z%k ”“Hl )+AZZ (dGO ZW ”“_HQ] )2

’L

2
=> > ([dE],;j = [Alik[H1]x ) + AZZ ( [dGoli Z[A]ik[Hﬂkj) = J(A),
i g k

k

and then O(A|A") is an auxiliary function for J(A).
At this point, as O(A|A") is a convex function, to apply Lemma 1 we need to get the derivative, equate it to zero and
solve for the update, resulting in the update in Eq. 6 of the manuscript.
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1.2 Convergence of updates for H;
When updating for Hq, with A and H» fixed, the cost function is reduced to

2
J(Hy) = |ldg — AHy||7 =) ([dE]z'j - Z[A]ik[Hl]kj> -
i g k
It must be noted that this problem is a standard one and it was already proven that it is non-increasing under the
multiplicative update used in this work [1]. Nevertheless, it will be proven here for completeness, using a slightly different
auxiliary function, similar to the one used in [2]

O(H, |Hj) ZZZAW(@ WH%)

Aijk
where A\, = % satisfies >, Aijk = 1 and does not depends on H;. It is straightforward to show that
O(Hy|H1) = J(H;). On the other side, using the Jensen inequality we have

O(H,|H?) >ZZ<dE Z)\” ““Hl ) ZZ(dE Z[A]ik[Hl]kj> = J(H,).

k

In this way, O(H;|H{) is an auxiliary function for J(Hj).

As O(H,|H}) is convex and quadratic in Hj, only the first order condition is needed to find its maximum. Taking
partial derivative with respect to [H1]p, 4, equating it to zero and solving for [H; ], 4 the update in Eq. 7 of the manuscript
is obtained.

1.3 Convergence of updates for H,

In a similar way to the previous case, now A and H; are fixed and the cost function is reduced to

2
J(Hy) = ||W © (dp — AH)|[3 = ZZ ( [dcoli Z[A]ik[fh]kj) :
k
It should be noted that as W acts as a row and column selectlon matrix, it makes zero all elements of some rows and
columns. This optimization would be equivalent to first reduce all matrices to the selected row and columns, and the
problem would be then reduced to a standard unweighted problem equivalent to the one presented in the update of H;.
Additionally, in [3] the problem for more general W matrices was analyzed. It was proven that .J(H3) is non-increasing
under the update equation of our work. Nevertheless, a demonstration following the same ideas as in the previous section
is presented here for completeness. The proposed auxiliary function for this problem is

O(Ha|H;) ZZ Jig > ik <[dGO]ij - Wm[%)
K

)\mk
where )\, = % satisfies >, Aijr = 1 and does not depends on Hs. By direct replacement it is shown that
I3 K 21£7
O(Hz|H;z) = J(Hs). To complete the verification that it is an auxiliary function, Jensen inequality is used again

O(H,|Hj) >ZZ <dGO Z)\wk 1kH2 ) ZZ <dGO] Z[A]zk[Hz]kj> = J(Hs)

k

and in this way, O(H, |H 1) is an Auxiliary Function for J(Hx).
As previously, the auxiliary function is a convex quadratic, thus only the first order condition is needed to minimize it,
resulting in the update of Eq. 8 in the manuscript.

1.4 Convergence of updates for 1,

For the second stage of the algorithm, the basis matrix A is kept constant and the update is only performed for matrix H,.
For this case also the weight matrix is changed to I¥. This problem is exactly the same as the update for H5, and for this
problem it was already shown that the cost is non-increasing after the given update.
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. Alternatives to matrix decomposition with NMF using the YEAST dataset and GO annotations for Biological Process. A) Semantic distances

among all genes. B) Semantic distance matrix with missing rows and columns for (simulated) non-annotated genes. C) Semantic distance matrix
reconstructed by symmetric tri-factorization, with J = ||dg — US1UT||% + A\||W ® (dgo — US2UT)||%. For this case the reconstruction error was
ldgo — cic;oHQF = 82.2994. D) Semantic distance matrix reconstructed by the proposed method, with J(A, H1, H2) = ||dg — AH1||% + A||W ©
(deo — AHz3)||%. For exp2GO the reconstruction error in this example was ||dco — JGOH% = 50.3659.
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