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Abstract

Motivation: In contrast to messenger RNAs, the function of the wide range of existing long non-
coding RNAs (lncRNAs) largely depends on their structure, which determines interactions with partner
molecules. Thus, the determination or prediction of the secondary structure of lncRNAs is critical to
uncover their function. Classical approaches for predicting RNA secondary structure have been based
on dynamic programming and thermodynamic calculations. In the last 4 years, a growing number of
machine learning (ML)-based models, including deep learning (DL), have achieved breakthrough perfor-
mance in structure prediction of biomolecules such as proteins and have outperformed classical methods
in short transcripts folding. Nevertheless, the accurate prediction for lncRNA still remains far from being
effectively solved. Notably, the myriad of new proposals has not been systematically and experimentally.
Results: In this work we compare the performance of the classical methods as well as the most recently
proposed approaches for secondary structure prediction of RNA sequences using a unified and consistent
experimental setup. We use the publicly available structural profiles for 3,023 yeast RNA sequences,
and a novel benchmark of well-characterized lncRNA structures from different species. Moreover, we
propose a novel metric to assess the predictive performance of methods, exclusively based on the chemi-
cal probing data commonly used for profiling RNA structures, avoiding any potential bias incorporated
by computational predictions when using dot-bracket references. Our results provide a comprehensive
comparative assessment of existing methodologies, and a novel and public benchmark resource to aid in
the development and comparison of future approaches.
Availability: Full source code and benchmark datasets are available at: https://github.com/sinc-
lab/lncRNA-folding
Contact: lbugnon@sinc.unl.edu.ar
Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.

1 Introduction

For decades, the sole function assigned to RNAs was to act as an information messenger between DNA
and proteins. Originally, in the central dogma of biology, RNA was considered to play a secondary
part in expressing inherited information as proteins. However, our recent ability to sequence entire
genomes and transcriptomes served to uncover that the majority of the human genome is transcribed,
although nearly 98% of it comprises non-coding regions [37, 75]. Growing evidence has linked non-coding
RNAs (ncRNAs) to virtually every step of gene expression regulation, including epigenetics and spatial
organization of genetic information in the cell nucleus, transcripts processing and stability, messengers
translation, post-transcriptional protein modification and degradation [51]. Non-coding RNAs can be
classified according to their size into two large classes [32]. On the one hand active small RNAs, less
than 50 nt in length, include microRNAs (miRNAs), small interfering RNAs (siRNAs), heterochromatic
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siRNAs (hetsiRNAs), Piwi-associated RNAs (piRNAs), small nuclear and nucleolar RNAs (snRNAs and
snoRNAs, respectively), among others. On the other hand, long non-coding RNA (lncRNAs), larger
than 200 nt, may exert their functions as long transcripts without being processed into small RNAs [79].
In particular, several studies shed light on the role of lncRNAs in diverse cellular processes, such as
cell-cycle regulation in health and disease [21, 38], including cancer and diabetes [85, 94, 20, 57, 2],
among others. In plants, lncRNAs have been associated with development and the dynamic response
to the environment [5, 46]. At the molecular level, lncRNAs have been linked to virtually every step of
gene expression regulation, including chromosome inactivation, genomic imprinting, chromatin dynamics,
protein modifications and stability [56, 58]. Similar to proteins, RNA function is mainly related to its
structure [24]. In particular, it should be noted that ncRNAs perform their functions through interaction
with other molecules (DNA, RNA, proteins and lipids). In this sense, the lncRNA secondary structure is
decisive to determine its interactome and the related functional output [72].

The RNA molecule is an ordered sequence composed of four nucleotides (nts) or bases: adenine
(A), cytosine (C), guanine (G) and uracil (U), arranged in the 5 to 3 direction. The pairing of these
four bases within a RNA molecule gives rise to its secondary structure. Canonical base pairs include
the WatsonCrick base pairs (AU and GC) and wobble base pairs (GU), which provide higher energetic
stability to the molecule [39, 50]. These base pairs often result in the formation of a nested structure,
where several pairs are stacked and one or more unpaired bases form a loop. RNA secondary structure is
a 2-D representation of this self-folding. Figure 1 (top) illustrates an example of the basic motifs: (i) the
double stranded regions named stems, obtained by the stacking of two or more consecutive base-pairs; (ii)
the hairpin loop, a single-stranded region at the end of a stem; (iii) a bulge, a single stranded region which
interrupts a stem on one side; (iv) an internal loop stops a stem on either side; and (v) a single stranded
region where several stems meet called a multi-branched loop [1]. The RNA secondary structure is usually
represented in dot-bracket notation, with matching parentheses for paired bases and dots for unpaired
bases (Figure 1, bottom). Additional structures called pseudo-knots can be formed when unpaired bases
match with distant ones, commonly annotated with other symbols such as angle- and curly-brackets.

Even though there is currently a wide variety of publicly available ncRNA sequences, and their numbers
keep growing at an ever-increasing rate [73], most of their structures remain unknown. Therefore, the
efficient determination of their secondary structure is of high interest, which can be carried out by physico-
chemical methods. For example, from atomic coordinates obtained from X-ray crystallography or nuclear
magnetic resonance (NMR) [71, 23, 33]. However, such methods have low throughput and it is very
challenging to apply them on lncRNAs not only because of the high experimental costs and resolution
limits [59], but also due to their length, low abundance in in-vivo systems and the large diversity of
stable structures that they can adopt. To date, the majority of structural elements found in lncRNA
sequences has been determined as patterns of base pairings using a combination of chemical or enzymatic
probing [89] such as PARS [34], nextPARS [64], SHAPE-seq [43] or DMS-seq [17]. These probing data
can be used to aid genome-wide RNA secondary structure prediction [9]. Yet, the structures of only a tiny
fraction of RNAs have been experimentally determined, limiting the understanding of this key feature
upon functional outputs.

In the last decades, many methods have been developed for the computational prediction of RNA
secondary structure. Furthermore very recently, the development of RNA tertiary structure prediction
methods have been proposed as well [87, 7, 41]. The first proposals, dating 15 years ago [49], were based on
dynamic programming and thermodynamics calculations [65, 78], identifying a structure with minimum
free energy (MFE) according to the principle that RNA molecules exist in energetically stable states,
like proteins [4]. Until the irruption of machine learning (ML)-based methods in the field approximately
4 years ago, prediction accuracy has remained almost unaltered. Recent works have shown that newer
methods based on Deep Learning (DL) can outperform existing mainstream methods on small datasets,
in terms of accuracy and applicability [92].

DL techniques first emerged as an alternative approach to structure prediction problems in proteins
with AlphaFold [30] and in RNA secondary structure prediction as well [90, 67]. Compared to classical
approaches, DL methods make much weaker assumptions about the thermodynamic mechanic driving
RNA folding, which is based on labor-intensive experimental melting data [78]. Thus, they are more
suited to detect more complex foldings [22], such as non-canonical base pairing or previously unrecog-
nized base pairing constraints. There are many different DL proposals, which differ in their architectural
design, model input-output, training data and optimization algorithms used to adjust their parameters.
In general, methods treat the input RNA as a sequence of characters defined by the bases, which can be
processed by different well-known computational models for text processing, such as Long Short-Term
Memory (LSTM) [25] or Transformer encoders [82] that are well suited for capturing long-range interac-
tions between nucleotides. Other approaches integrate DL techniques with thermodynamic methods to

2

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
L

. A
. B

ug
no

n,
 A

. E
de

ra
, S

. P
ro

ch
et

to
, M

. G
er

ar
d,

 J
. R

aa
d,

 E
. F

en
oy

, M
. R

ub
io

lo
, U

. C
ho

ro
st

ec
ki

, G
. G

ab
al

do
n,

 F
. A

ri
el

, D
. H

. M
ilo

ne
 &

 G
. S

te
gm

ay
er

; "
Se

co
nd

ar
y 

st
ru

ct
ur

e 
pr

ed
ic

tio
n 

of
 lo

ng
 n

on
co

di
ng

 R
N

A
: r

ev
ie

w
 a

nd
 e

xp
er

im
en

ta
l c

om
pa

ri
so

n
of

 e
xi

st
in

g 
ap

pr
oa

ch
es

"
B

ri
ef

in
g 

in
 B

io
in

fo
rm

at
ic

s,
 2

02
2.



Figure 1: Example of typical motifs of RNA secondary structure in the transcript snR17a of S. cerevisiae:
(top) hairpin loop, internal loop, stem, bulge and multi-branched-loop; (down) corresponding dot-bracket
notation.

further improve predictions [61]. From a practical point of view, it is difficult to choose among the myriad
of new methods available, in particular because existing DL approaches still face several challenges. For
example, a huge number of model parameters need to be adjusted, resulting in high computational cost.
Another major point is training data because representative and high quality training data is critical
to achieve reliable models and high performance in terms of generalization capability, i.e. the ability to
make good structural predictions for RNA sequences that differ from those used for model training.

Several reviews have been published on the topic of RNA secondary structure prediction [92, 19,
66]. Yet, they still do not offer systematic evaluations of techniques for comparatively assessing their
performance on representative and large benchmark datasets. Notably, previous attempts at creating
RNA secondary structure databases for methods comparison [81, 3, 52] are no longer available, have not
been updated or lncRNA sequences are not included. Additionally, the secondary structures provided
are mostly limited to computational predictions [14]. In this review, instead, we have included only RNA
secondary structures experimentally determined by biochemical approaches. We provide a comprehensive
overview of the most recent ML- and DL-based methods for lncRNA secondary structure prediction, in
comparison to classical methods. Furthermore, particularly for lncRNAs, we have compiled a novel
benchmark dataset of manually curated and experimentally validated secondary structures of lncRNAs.
In this work we also introduce a novel metric for assessing the performance of predictions using the
probing scores obtained from enzymatic approaches as the reference of the true RNA structure. This
metric named Mean Average Similarity (MAS) makes comparison between methods less biased than
classical metrics based on reference dot-bracket structures obtained by specific folding methods. Our
work not only provides a comprehensive comparative assessment of existing methodologies for lncRNA
secondary structure prediction in the last 15 years, but also contributes to the bioinformatics community
for the development and comparison of future approaches.
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2 RNA secondary structure prediction methods

RNA structure prediction has been classically formulated as an optimization problem, where a score is
defined for every possible folding of the given RNA sequence, and the predicted folding is the one that
maximizes it. The most popular approach was based on thermodynamic models [65], such as Turner’s
nearest neighbor model [78]. The free energy of each nearest neighbor is calculated by summing up its
free energy parameters. The free energy of an entire RNA secondary structure will be the sum of the
free energy of each nearest-neighbor loop. An optimal secondary structure with MFE is calculated using
dynamic programming, such as the Zuker algorithm [95].

The scores of each local element were obtained from wet-lab experiments reflecting the thermodynam-
ics free energy theory [65]. However, the increasing availability of known RNA structures for training made
it possible to successfully drift towards hybrid approaches, which are based on dynamic programming but
make a fine-tuned parameter estimation based on ML [26]. Nowadays, methods for RNA structure pre-
diction are shifting towards full ML and DL-based approaches, due to the fact that there is now larger
data available for training (mostly of short sequences). A comprehensive summary of the methods that
have appeared in the last 15 years in literature is presented in Table 1 and described in detail in Sup-
plementary Material 1. The methods included in the experimental results of this study are only those
available, at the time of writing this manuscript, as open access tools (already trained prediction models)
in a repository or as public web servers. There are several other methods for RNA secondary structure
prediction that are valuable approaches but, unfortunately, could not be included in this review due to
the lack of source code or repository availability [9, 54, 83, 45, 90, 86, 53, 35, 44, 36]. These works could
be included in further evaluations once the source code or web server were made available.

3 Data and performance measures

3.1 Data

Saccharomyces cerevisiae (sce). A large benchmark dataset was obtained from [34] where PARS was
performed to characterize the secondary structure of the messenger RNAs (mRNAs) and ncRNAs of the
budding yeast Saccharomyces cerevisiae. A total of 3,199 transcripts ranging from 71 to 8,145 bases in
length were profiled. Since this dataset is composed of mRNAs and ncRNAs, and the main goal of this
review is to evaluate methods on lncRNAs, it is important to distinguish the coding from the non-coding
sequences. Thus, we split it into 3 specific sub-datasets: i) sce3k, with a large number of all types of
sequences; ii) sce188, including only sequences with high capability of non-coding function; and iii) sce18,
with only non-coding sequences. The sce3k subset has 3,023 unique sequences with length larger than
200 nt. The subset sce188 was obtained from the previous one by identifying non-coding transcripts. To
this end, we used the coding potential calculator 2 (CPC2) [31], which is species-neutral and has high
accuracy for long non-coding transcripts. The sce18 subset was defined by taking only those sequences
from sce188 that were not previously classified as mRNA in [34]. Authors used the Vienna package [42] to
fold transcripts, calculate the partition function of the structure ensemble and base pairing probabilities,
with probing scores as constraints1.

1https://genie.weizmann.ac.il/pubs/PARS10/pars10 catalogs.html
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Table 2: Dataset of curated and validated lncRNAs.
Name Species Length Year Measurement technology

NORAD#1 [12] H. sapiens 1,903 2021 nextPARS
NORAD#2 [12] H. sapiens 1,862 2021 nextPARS
NORAD#3 [12] H. sapiens 1,614 2021 nextPARS
CYRANO[29] H. sapiens 4,419 2020 SHAPE
MEG3 [80] H. sapiens 1,595 2019 SHAPE
RepA [40] M. musculus 1,630 2017 SHAPE + chemical probing
PAN [74] Human gammaherpes virus 8 1,077 2017 SHAPE-MaP
XIST [69] M. musculus 17,779 2016 SHAPE-MaP
lincRNAp21sense [11] H. sapiens 311 2016 SHAPE
lincRNAp21antisense [11] H. sapiens 303 2016 SHAPE
HOTAIR [70] H. sapiens 2,154 2015 SHAPE + chemical probing
MALAT1 [8] H. sapiens 8,415 2014 SHAPE
ROX2 [27] D. melanogaster 573 2013 SHAPE+PARS

Curated set of lncRNAs. As indicated in [48], an informative benchmark requires a variety of
high-quality structures. We have compiled a novel dataset including curated structures of lncRNAs
that were determined by experimental analyses, for which the structures have been carefully studied
and validated through a variety of biochemical approaches by other authors. We have included those
available from literature and those mentioned in a very recent review on lncRNAs [59]. The curated
lncRNAs included in our study are shown in Table 2, where the name, species, length, year of discovery
and probing methodology are indicated in the columns, for each test lncRNA in the rows. These species
and datasets were included according to their full availability. Those lncRNA are publicly available and
their secondary structures have been carefully studied, based on biochemical approaches and then curated
manually. We have used in this study only those lncRNA from literature for which all the information
needed for the comprehensive experimental comparisons of this review is available. For each lncRNA,
its reference structure is represented in two different ways. In the first place, the classical dot-bracket
representation, in which the nested base-pairs 2D conformation was obtained with a classical method,
using the probing scores as constraints. The other reference representation consists of the probing score
per base, which indicates the pairing probability of each nucleotide in the sequence. It should be noted
that we used the original secondary structures as provided by their corresponding authors for each curated
lncRNA used in this study. More details on how the secondary structures were obtained with probing
constraints can be found in Supplementary Material 2.

Since each experimental technique provides a different distribution of score values, a normalization2

step was performed to place all the scores within the [0, 1] interval, where 0 is unpaired, 1 is paired, and
values around 0.5 are uncertain. First, SHAPE scores with values p < 0.0 or with no data were labeled
with -999 (and then ignored in all subsequent processing). Similarly, SHAPE scores with p > 1.0 were
clipped to 1.0. Then, given that SHAPE scores are inverted (i.e. values close to 0 indicate pairing), the
standardization was done with p̃ = 1− p. In the case of PARS and nextPARS, scores were normalized by
using p̃ = (p+ b)/(2b), where b is the maximum value for the score. For PARS b = 7 and for nextPARS
b = 1.

3.2 Performance measures

Classical measures. In this case, the focus of performance measures is on the accuracy of predicted
base pairs in comparison to a reference structure [48]. Pairs that are both in the prediction and in the
reference structure are true positives (TP), while pairs predicted but not in the true structure are false
positives (FP). Similarly, a pair in the reference structure that is not predicted is a false negative (FN),
and a pair that is neither predicted nor in the true structure is a true negative (TN). To fully characterize
the successes and failures of structure prediction, the F1 score is defined as

F1 =
2 TP

2 TP + FP + FN
. (1)

These classical measures were calculated with the scorer program in RNAstructure package3.

2This is detailed in the source code, results section
3http://rna.urmc.rochester.edu/Releases/
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Mean absolute similarity (MAS) score. We propose a new score that can reflect the similarity
between the nextPARS/PARS/SHAPE probing data and the predicted dot-bracket structures. Given an
RNA sequence, this score takes into account the binary paired-unpaired state of each nucleotide n in
the predicted structure b(n) ∈ {0, 1}, and the corresponding normalized probing score p(n) ∈ [0, 1]. The
paired, unpaired and average similarities are defined as

s+(b, p) = 1− 1

|M+|
∑

n∈M+

|b(n)− p(n)|, (2)

s−(b, p) = 1− 1

|M−|
∑

n∈M−

|b(n)− p(n)|, (3)

s(b, p) = 1− 1

|M |
∑
n∈M

|b(n)− p(n)|, (4)

where the sets of paired and unpaired nucleotides are

M+ = {n : p(n) ≥ 1/2 + ε/2}, (5)

M− = {n : p(n) < 1/2− ε/2}, (6)

and M = M+ ∪M−. In this definition, ε is the uncertainty level around the undetermined/no-measure
score (1/2). That is, all the nucleotides with scores in the range [1/2− ε/2, 1/2 + ε/2] are ignored in the
similarity measure.

As the normalized probing scores are distributed in the [0,1] range, the maximum/minimum value
of the average similarities will generally not be 1/0. This is because predicted structures are binary,
preventing perfect matchings with the real-valued probing scores. Therefore, a re-scaling step must be
done to take into account the best and the worst binary structures,

bb(n) =

{
1 if p(n) ≥ 1/2 + ε/2

0 otherwise
(7)

bw(n) = 1− bb(n). (8)

Using the average similarities for these extreme cases, the normalized MAS score is defined as

MAS(b, p) =
s(b, p)− s(bw, p)
s(bb, p)− s(bw, p)

(9)

This score was tested in several cases, which are provided as an interactive notebook in the source code
repository (results section). It should be noted that the MAS evaluates the similarity between predictions
and experimentally obtained probing scores, which aims to characterize each nt with a continuous certainty
level of paired/unpaired. Unlike this, the F1 score compares the hard predictions to a dot-bracket structure
obtained with a specific prediction software. Since probing scores are only experimentally obtained,
the MAS is less biased than F1 towards a specific computational approach. Moreover, MAS takes full
advantage of the information available in the continuous levels of the probing scores, instead of using a
hard pairing representation.

In order to perform a statistical analysis of results, a Friedman test and post-hoc Nemenyi test for the
Critical Difference (CD) diagram were used [16]. The Friedman test is a non-parametric alternative to
the ANOVA used to determine whether there is a statistically significant difference between the means of
three or more methods tested with the same datasets. The Friedman test uses the null hypothesis that
the average performance for each method is the same; and the alternative hypothesis that at least one
method average is different from the rest. If the p-value obtained is less than 0.05, the null hypothesis
can be rejected. In this case, the Nemenyi post-hoc test can be performed to determine statistically
which methods show different means. The Nemenyi post-hoc test returns the p-values for each pairwise
comparison of means, and the CD diagram shows the pairs having an average rank that is significantly
different.

4 Results

4.1 Large experimental comparison on RNA secondary structure pre-
diction

Figure 2 reports the results for the prediction methods evaluated on the largest dataset (sce3k). The figure
shows violin plots with the median on the y-axis (blue diamond) of F1 (top) and MAS score (bottom)
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Figure 2: Comparison of performance for the RNA secondary structure prediction methods on the sce3k
dataset. F1 (top), MAS score (bottom).

for all the comparative methods in the x-axis. Methods with F1 lower than 0.10 were not included in
the analysis (E2Efold mostly predicted pseudoknots and 2dRNA-fold took a very large time to run for
each sequence and could predict only a very small number of sequences). The figure also shows the
corresponding coverage (gray bar in the background) for each method, i.e. the percentage of sequences
from the full dataset that was effectively predicted by each method. It can be seen that most methods
provided predictions for all 3,023 sequences. It should be mentioned here that we did not use the probing
scores as constraints for the RNAfold predictions because this is the reference (and therefore always
obtains F1 = 1.0). The best methods achieved a median F1 score of around 0.50: ProbKnot, RNAshapes,
RNAfold, ShapeKnots and RNAstructure. This result for such classical methods is expected considering
that the reference dot-bracket for this dataset was actually obtained with RNAfold. Furthermore, the
other methods with high performance share the same approach (thermodynamic modeling and dynamic
programming), improving RNAfold or using it directly as part of the method. The ML based methods
achieved a very close performance to the thermodynamic methods, with F1 score around 0.40. The least
performing method according to this metric achieved a F1 score of around 0.20.

With respect to the MAS score, when looking at the similarity between experimental probing data and
the predictions, most methods achieved more stable predictive performances (low variance) with median
values around 0.60. According to this measure, which is not biased towards any particular computational
method used to derive the reference dot-bracket, all methods (classical and ML based) have a median
performance higher than 0.50. Also, it can be seen that the MAS scores distribution for each method
is less dispersed than the corresponding F1 scores distribution, showing a more consistent measurement
across the different sequences in the dataset. According to MAS, ShapeKnots, RNAstructure, RNAfold,
RNAshape, LinearFold, LinearPartition and the ML-based MXfold2 have scores around 0.60 (and full
coverage). SPOT-RNA, SPOT-RNA2 and UFold have a MAS of ≈ 0.50.

In order to provide a statistical analysis of results, we used Friedman test and CD with post-hoc
Nemenyi test (α = .05). The Friedman test showed that the differences in the F1 and MAS scores
distributions are statistically significant (p < 1E-15). The CD diagram is shown in Figure 3. Here,
the corresponding CD diagram for F1 indicates that ProbKnot, RNAshapes and RNAfold are the best
methods for this dataset. Then there is a second group of statistically similar methods, one of which is
based on ML (MXfold2). Very interestingly, the rest of the methods are well separated (different) among
them. Regarding MAS, the best method is LinearPartition, well-separated and followed by classical
methods and MXfold2, which are not statistically different among them.

4.2 Experimental comparison focused on lncRNAs

Figure 4 shows the comparison of prediction methods on the sce188 dataset, composed of 188 transcripts
with lengths between 200 and 1,301 bases. The figure reports violin plots of the F1 (top) and MAS
scores (bottom) for all the comparative methods (x-axis). Methods with F1 lower than 0.10 were not
included. The figure also shows the corresponding coverage (gray bar) for each method. In this case,
almost all methods could predict 100% of the sequences, except for UFold whose predictions are restricted
to a maximum of 600 nt per sequence. The best methods according to F1 are, again, those sharing the
same classical approach as the method used in the reference structures. This result, as stated before,
is expected because the reference structure was obtained with RNAfold. However, there is a larger
difference in performance among methods. Many classical works have performance lower than F1 = 0.40.
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Figure 3: Critical difference diagram for the RNA prediction methods on the sce3k dataset for F1 (top) and
MAS score (bottom).
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Figure 4: Comparison of performance for the RNA secondary structure prediction methods on the sce188
dataset. F1 (top), MAS score (bottom).

Furthermore, a larger variance in each method is observed. The ML methods SPOT-RNA and MXFold2
have F1 = 0.40, not that far from the best ones (F1 ≈ 0.50). The rest of the methods have F1 between
0.17 and 0.40.

The MAS score shows that most methods are very close in performance, between 0.50 and 0.60.
Unlike the results obtained from the sce3k dataset, the slightly wider dispersion observed here in the plots
indicates that there is more heterogeneity in the predictions of sce188, which only includes transcripts
predicted as lncRNAs. It can be noticed that when the MAS score is used here for measuring performance,
since it is not biased towards the RNAfold-based reference, it turns out that the best classical and ML
based methods are all equally good for predictions. The best classical method is RNAfold and the best
ML based method is MXFold2, both with the same score around 0.60. The Friedman test indicates that
differences in the F1 and MAS score are statistically significant (p < 1E-15). However, given the smaller
number of sequences, the statistical power of the CD method is lower than that of the sce3k dataset (see
Supplementary Material 3, Figure S1).

Given the close results achieved by the methods in this dataset, the similarity of each prediction was
analyzed in more detail. To this end, for each sequence the structures predicted by a pair of methods
were compared in terms of which nucleotides were predicted as paired or unpaired. The average rate
over the predictions obtained for each pair of methods is shown with a pair-wise heatmap in Figure 5.
These comparisons show that the most similar methods are RNAstructure and ShapeKnots, which is
very reasonable since the last one is based on the same thermodynamic model. This high similarity
is in agreement with the previous results of F1 and MAS score, as well as with the critical differences
where both methods are similarly ranked. The second most similar methods are LinearFold and RNAfold,
which is expected since the first method was proposed precisely to improve the computational performance
(from cubic to linear time) of RNAfold without modifying the results. Interestingly, it can be seen that
the structures predicted by CONTRAFold, CentroidFold, IPknot, SPOT-RNA and SPOT-RNA2 very
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Figure 5: Paired/unpaired prediction rate between methods on the dataset sce188. Each value of the heatmap
shows how similar the predictions of two methods are on average.

frequently display high similarity between them, and are different in comparison to the other methods.
Figure 6 shows the comparative results for the sce18 dataset. Surprisingly here, all methods achieved

a noticeably better performance. In sce18, most methods have very high median F1 (around 0.80), with
RNAfold and LinearFold showing a median F1 = 0.86, very closely followed by LinearPartition and
ProbKnot (F1 = 0.83), RNAstructure and ShapeKnot (F1 = 0.82), MXfold2 (F1 = 0.80) and SPOT-
RNA2 (F1 = 0.77). Importantly, these last two methods are ML-based, suggesting that they are able to
achieve good predictive performance for lncRNAs. However, there is a large dispersion in the F1 plots,
hinting at a high heterogeneity in the predictions for the sce18 sequences. The other methods achieved
lower scores, which are between F1 = 0.50 (UFold) and F1 = 0.74 (SPOT-RNA). Regarding the MAS
score, all methods achieved median scores between 0.60 and 0.70, with more compact predictions and less
dispersion than F1. Again like in the previous experiment, the best classical method is RNAfold and the
best ML based method is MXFold2, both with approximately the same score, around 0.70. This indicates
that all methods, no matter the approach, can reach dot-bracket structures with high correlation to the
probing data. For this dataset, these results indicate that ML-based methods achieved performances very
close to the classical approaches, and which are also considerably high for lncRNAs. This is an impressive
result for ML-based models in comparison to very well-known and established methods for RNA structure
prediction, making them very competitive for this task (Supplementary Material 3, Figure S2).

In order to determine differences in the computational cost of the methods, the running time of each
method has been calculated based on the sequences in the sce18 dataset (Supplementary Material 3,
Figure S3). For this calculation, all methods were run in the same hardware conditions. These results
show how the sequence length clearly impacts on the computing time of each method. Almost all methods
increase time for longer transcripts with the same law, showing different exponential behavior, with more
cost for pKiss and ShapeKnots.

Finally, in order to understand why all methods had such high performance on the sce18 dataset,
we have measured the maximum length of the hairpins present in the reference structures. The average
number of hairpins per sequence was 22.32 for sce3k, 7.48 for sce188 and 5.72 for sce18, while the average
of the maximum hairpin length per sequence (normalized by the sequence length) was 0.08 for sce3k,
0.16 for sce188 and 0.23 for sce18. Interestingly, sce18 sequences have the fewest but longest hairpins
compared to those found in the sce188 and sce3k. We hypothesize that the sce18 secondary structures
are more stable and well-formed, and thus are easier to predict by any method. A possible explanation
may be that lncRNAs are more stable since their function is more dependent on the structure, compared
to mRNAs. This is in line with previous findings showing that mRNAs are poorly structured [34].

4.3 Prediction analyses on a curated list of well-characterized lncRNAs

To further evaluate the methods, we have tested the RNA structure prediction with a set of lncRNAs
whose structures have been experimentally validated (details in Table 2). Figure 7-(left) reports violin
plots with MAS score, for each method in the x-axis. These results show that most methods provide
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Figure 6: Comparison of RNA prediction methods on the sce18 dataset. F1 (top), MAS score (bottom).
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Figure 7: Comparison of MAS score performance for the RNA secondary structure prediction methods on
the curated lncRNAs dataset. Results grouped by prediction method (left); each dot represents a lncRNA.
Results grouped by sequence (right); each dot represents a prediction method.

predictions with high similarity to probing scores, with median values larger than 0.60, and for the least
performing methods the median similarities are around 0.50 for CONTRAFold, CentroidFold, SPOT-
RNA, SPOT-RNA2 and UFold.

In order to analyze the differences in the prediction of the curated lncRNAs, Figure 7-(right) shows
violin plots with the MAS score of the methods for each lncRNA in the x-axis. In this figure, the lncRNAs
are ordered according to their lengths, from short to large. The median similarities are around 0.60 for
all lncRNAs, no matter the length of the lncRNA to predict. Indeed, for the largest sequence (XIST) the
median MAS score is 0.61 and all methods are very close to this median. This indicates that actually
all methods and all approaches are capable of predicting the XIST, and also PAN, pairing patterns
considerably well as measured by probing methods. It is also interesting to notice that MAS scores
are very similar for the three NORAD fragments at the three different temperatures, which is expected
given that the fragments resemble each other and have a similar structural function [12]. In comparison,
the F1 violin plots for this dataset (see Supplementary Material 3, Figure S4) show a large dispersion
among methods predictions, for example the performance ranges from 0.10 to 0.80 for the same method
depending on the lncRNA to predict. This variance makes it hard to distinguish among methods.

4.4 Detailed analysis of a curated lncRNA: NORAD

For an in-detail comparison across methods, we chose NORAD as a leading case since it is dysregulated
in various types of cancer and the function is largely mediated by its structure. Figure 8 shows the
results for the prediction of the secondary structure of NORAD#1 at 37 ◦C or all the methods reviewed
here. NORAD#1 is a fragment of 1,903 bases in length within NORAD, whose reference structure has
been profiled in high detail [12] using nextPARS pipeline [13]. The reference structure was built with
RNAstructure and the experimentally determined nextPARS scores as constraints. For this sequence,
2dRNA-Fold could not be run because of not enough RAM, and E2EFold and UFold because of restrictions
on sequence length. The figure shows in bars the resulting predictive performances based on F1 and MAS
score. In addition, it also shows the normalized paired MAS, indicated with ‘+’, and the normalized
unpaired MAS, indicated with ‘−’.

The analysis of the F1 indicates that the best methods are LinearPartition and pKiss, but with low
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Figure 8: Comparison of F1 and MAS scores for the RNA secondary structure prediction methods on NO-
RAD#1 at 37◦C.

F1, closely followed by ProbKnot and RNAstructure. It has to be noticed that the reference structure was
built with RNAstructure + nextPARS scores as constraints. According to the MAS score, most methods
were capable of correctly predicting the 70% of the pairing in the sequence. Here rna-state-inf is the best
method, closely followed by ShapeKnots, RNAstructure, LinearPartition, RNAfold, pKiss and MXFold2,
which are all equally good performing. The least performing methods reached a 0.45 of MAS score. The
paired and unpaired MAS scores are good indicators of the capability of methods of correctly predicting
both types of pairing in the sequence. For example, all winning methods here are good predictors of
paired nucleotides, while methods with the lowest performance predict simpler structures and mostly
identify unpaired nucleotides.

For a more comprehensive comparison among methods, we performed a deeper analysis of the RNA
structures predicted by the top-3 best methods and the one with the lowest performance (Figure 9). For
this analysis, the package draw rna4 was used, which plots the structures and colors them in a range from
blue to yellow (5′ → 3′, respectively). For visual comparisons, the same color indicates the same part
of the sequence. It is very interesting to see that, according to F1 (top) the 2nd best method is pKiss,
but it can be clearly seen that the resulting structure is quite different from the reference one. Moreover,
the method with the lowest F1 (top, right) seems to be more similar to the reference one than the 2nd
best method. Instead, the MAS score (bottom) provides a better ranking: all 3-top methods are visually
very similar to the reference one; and the prediction of the method with the lowest performance (bottom,
right) is very different to the reference.

For the top-best method in Figure 10 we used the software Circlecompare5 that compares two RNA
structures (reference and prediction) for the same sequence by showing the nucleotides in a circle. It
uses the following color scheme: green for pairs present in both predicted and reference structure, red for
pairs present in predicted structure only, and black for pairs present in reference structure only. It can
be seen that there are more bases in green for LinearPartition, which is reflected by its high F1 score. It
also can be seen that rna-state-inf proposes different base pairs, but most of the paired nucleotides in the
reference are paired in the prediction, which explains its high MAS score. Also, both methods predict a
high number of pair bases that are not part of the reference structure. Moreover, most of the long-range
pairings are different from those from the reference, while local structure is more preserved.

The sequence of NORAD contains 12 recognizable and sequence-similar NORAD repeat units (NRUs)
that originated by tandem duplication at the rise of mammals and still share sequence homology [77]. The
NRUs are ≈300 nt in length. Most NRUs contain one or two binding sites for the two homologs of Pumilio
(Pum) in mammals. NORAD-regulated Pum targets are enriched in genes involved in cell division, mitosis
and chromosome number instability [76]. The individual NRUs can be studied independently, facilitating
isolation of specific interaction partners. Figure 11 shows the comparison of MAS score performance for
the RNA secondary structure prediction methods of NRU1, NRU2, NRU3 and NRU4 within NORAD#1
at 37◦C. It can be seen that NRU1, NRU2 and NRU4 are hard to predict for all methods, reaching at
best a similarity around 0.50. Besides, NRU 3 is predicted by most methods with scores near 0.80. The
best one here were LinearFold, RNAfold, RNAshapes and pKiss.

Several conserved elements, including a small and a larger hairpin are peculiarly found in some NRUs
and not others[76]. Thus, a possible explanation between performance of the methods for the different

4https://github.com/DasLab/draw rna
5https://rna.urmc.rochester.edu/Text/CircleCompare.html
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Figure 9: In-depth analysis of structure predictions for NORAD#1 at 37◦C. Plots visualize the reference
(left), the predictions of the top-3 methods (middle) and last prediction in the ranking (right) according to
F1 (top) and MAS (bottom). Same color indicates the same part of the sequence from 5′ (blue) to 3′ (yellow).

Figure 10: Circular plot for the best method in predicting NORAD #1 at 37◦C according to F1 (left) and
MAS score (right). Pairs present in both predicted and reference structure (green). Pairs present in predicted
structure only (red). Pairs present in reference structure only (black).

NRUs could be that, although most NRUs fold independently, there are occasional long range interac-
tions. In the case of NRU1, it was shown that there are inter-NRU interactions between NRU1-10 [93].
Furthermore, it seems that NRU2 and NRU4 fold mostly independently, but they also have small inter-
action with regions outside them [12]. Instead the NRU3 folds completely independently, thus it could be
locally more structured than the rest of the NRUs and that is why it is better predicted by most methods.

5 Conclusions

In this study we provided a comprehensive review and experimental comparison of classical methods as
well as the most recently proposed. We used data sets validated by chemical probing methods, including a
novel benchmark with a compilation of well-characterized lncRNAs from different species. Thus, our study
also provides a novel public benchmark to aid in the development and comparison of future approaches.

Most available secondary structures published were obtained with computational prediction methods
based on dynamic programming and thermodynamics models, which sets upis an unfair basis of com-
parison for methods based in any different approach. Therefore, we proposed a novel score to assess the
performance of methods exclusively based on the chemical-probing data used for profiling RNA struc-
tures. The MAS evaluates the similarity between pairing predictions and probing scores, differently from
the F1 score that compares the predictions to a dot-bracket structure obtained with a specific software.
Since probing scores are experimentally obtained, the MAS is less biased than F1 towards a specific
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Figure 11: Comparison of MAS score performance for the RNA secondary structure prediction methods of
NRU1, NRU2, NRU3 and NRU4 within NORAD #1 at 37◦C.

computational approach and thus it is more faithful to the underlying data.
In summary, after the comparative results obtained in this study, it can be stated that the strength

of classical methods is that they can guarantee a 50%-70% prediction performance in any type of RNA,
even long non-coding transcripts. However, their weakness is that in the last 20 years, such modeling
approaches have improved their computational performance but then, their results have stagnated. On
the other hand, ML based efforts have been focused on reaching the performance of classical methods,
not being able yet to clearly outperform them for long RNAs. Therefore, future research directions
should attempt to increase this ceiling performance, probably by developing hybrid approaches between
thermodynamic and ML/DL based models, since ML has the capability of boosting existing performance
by modeling folding situations that have not been yet properly addressed with classical approaches.

Key Points

• We provide a comprehensive comparative assessment of existing methodologies for lncRNA sec-
ondary structure prediction in the last 15 years.

• Each method has been explained and compared experimentally on the same data set of curated
lncRNAs.

• A new unbiased measure of performance is provided based only on the chemical-probing data.

• This study will help the bioinformatics community in the development and comparison of future
approaches for lncRNA secondary structure prediction.
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and hijacks: noncoding transcription in plants. Trends in Plant Science, 20(6):362–371, June 2015.

[6] Stanislav Bellaousov and David H. Mathews. ProbKnot: Fast prediction of RNA secondary structure
including pseudoknots. RNA, 16(10):1870–1880, August 2010.

[7] Steve L. Bonilla, Sarah K. Denny, John H. Shin, Aurora Alvarez-Buylla, William J. Greenleaf, and
Daniel Herschlag. High-throughput dissection of the thermodynamic and conformational properties
of a ubiquitous class of rna tertiary contact motifs. Proceedings of the National Academy of Sciences,
118(33):e2109085118, 2021.

[8] Jessica A Brown, David Bulkley, Jimin Wang, Max L Valenstein, Therese A Yario, Thomas A
Steitz, and Joan A Steitz. Structural insights into the stabilization of MALAT1 noncoding RNA by
a bipartite triple helix. Nature Structural & Molecular Biology, 21(7):633–640, June 2014.

[9] Nicola Calonaci, Alisha Jones, Francesca Cuturello, Michael Sattler, and Giovanni Bussi. Machine
learning a model for RNA structure prediction. NAR Genomics and Bioinformatics, 2(4):1–10, 11
2020.

[10] Xinshi Chen, Yu Li, Ramzan Umarov, Xin Gao, and Le Song. Rna secondary structure prediction
by learning unrolled algorithms, 2020.

[11] Isabel Chillón and Anna M. Pyle. Inverted repeatAluelements in the human lincRNA-p21 adopt a
conserved secondary structure that regulates RNA function. Nucleic Acids Research, page gkw599,
July 2016.

[12] Uciel Chorostecki, Ester Saus, and Toni Gabaldón. Structural characterization of NORAD reveals
a stabilizing role of spacers and two new repeat units. Computational and Structural Biotechnology
Journal, 19:3245–3254, 2021.

[13] Uciel Chorostecki, Jesse R. Willis, Ester Saus, and Toni Gabaldon. Profiling of RNA structure at
single-nucleotide resolution using nextPARS. In Methods in Molecular Biology, pages 51–62. Springer
US, 2021.

[14] Padideh Danaee, Mason Rouches, Michelle Wiley, Dezhong Deng, Liang Huang, and David Hendrix.
bpRNA: large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids
Research, 46(11):5381–5394, May 2018.

[15] K. E. Deigan, T. W. Li, D. H. Mathews, and K. M. Weeks. Accurate SHAPE-directed RNA structure
determination. Proceedings of the National Academy of Sciences, 106(1):97–102, December 2008.

[16] Janez Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7(1):1–30, 2006.

[17] Yiliang Ding, Yin Tang, Chun Kit Kwok, Yu Zhang, Philip C Bevilacqua, and Sarah M Assmann.
In vivo genome-wide profiling of rna secondary structure reveals novel regulatory features. Nature,
505(7485):696–700, 2014.

[18] C.B. Do, D.A. Woods, and S. Batzoglou. CONTRAfold: RNA secondary structure prediction without
physics-based models. Bioinformatics, 22(14):e90–e98, 2006.

[19] Jörg Fallmann, Sebastian Will, Jan Engelhardt, Björn Grüning, Rolf Backofen, and Peter F. Stadler.
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[23] Boris Fürtig, Christian Richter, Jens Wöhnert, and Harald Schwalbe. NMR spectroscopy of RNA.
ChemBioChem, 4(10):936–962, September 2003.

[24] Johannes Graf and Markus Kretz. From structure to function: Route to understanding lncrna
mechanism. BioEssays, 42(12):2000027, 2020.

[25] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–
1780, November 1997.

[26] Liang Huang, He Zhang, Dezhong Deng, Kai Zhao, Kaibo Liu, David A Hendrix, and David H
Mathews. LinearFold: linear-time approximate RNA folding by 5´-to-3´ dynamic programming and
beam search. Bioinformatics, 35(14):i295–i304, July 2019.

[27] Ibrahim Avsar Ilik, Jeffrey J. Quinn, Plamen Georgiev, Filipe Tavares-Cadete, Daniel Maticzka,
Sarah Toscano, Yue Wan, Robert C. Spitale, Nicholas Luscombe, Rolf Backofen, Howard Y. Chang,
and Asifa Akhtar. Tandem stem-loops in roX RNAs act together to mediate x chromosome dosage
compensation in drosophila. Molecular Cell, 51(2):156–173, July 2013.

[28] S. Janssen and R. Giegerich. The RNA shapes studio. Bioinformatics, 31(3):423–425, October 2014.

[29] Alisha N. Jones, Giuseppina Pisignano, Thomas Pavelitz, Jessica White, Martin Kinisu, Nicholas
Forino, Dreycey Albin, and Gabriele Varani. An evolutionarily conserved RNA structure in the
functional core of the lincRNA cyrano. RNA, 26(9):1234–1246, May 2020.

[30] John Jumper, Richard Evans, Alexander Pritzel, and et al. Highly accurate protein structure pre-
diction with AlphaFold. Nature, 596(7873):583–589, July 2021.

[31] Yu-Jian Kang, De-Chang Yang, Lei Kong, Mei Hou, Yu-Qi Meng, Liping Wei, and Ge Gao. Cpc2:
a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic acids
research, 45(W1):W12–W16, 2017.

[32] Philipp Kapranov, Jill Cheng, Sujit Dike, David A Nix, Radharani Duttagupta, Aarron T Willing-
ham, Peter F Stadler, Jana Hertel, Jorg Hackermuller, Ivo L Hofacker, et al. Rna maps reveal new
rna classes and a possible function for pervasive transcription. Science, 316(5830):1484–1488, 2007.

[33] Amanda Y. Keel, Robert P. Rambo, Robert T. Batey, and Jeffrey S. Kieft. A general strategy to
solve the phase problem in RNA crystallography. Structure, 15(7):761–772, July 2007.

[34] Michael Kertesz, Yue Wan, Elad Mazor, John L. Rinn, Robert C. Nutter, Howard Y. Chang, and
Eran Segal. Genome-wide measurement of RNA secondary structure in yeast. Nature, 467(7311):103–
107, September 2010.

[35] Denise R Koessler, Debra J Knisley, Jeff Knisley, and Teresa Haynes. A predictive model for sec-
ondary RNA structure using graph theory and a neural network. BMC Bioinformatics, 11(S6):1–10,
October 2010.

[36] Soniya Lalwani and Rajesh Kumar. An efficient three-level parallel ABC algorithm for secondary
structure prediction of complex RNA sequences. Applied Soft Computing, 99:106848, February 2021.

[37] Hyunmin Lee, Zhaolei Zhang, and Henry M. Krause. Long noncoding RNAs and repetitive elements:
Junk or intimate evolutionary partners? Trends in Genetics, 35(12):892–902, December 2019.

[38] Jeannie T. Lee and Marisa S. Bartolomei. X-inactivation, imprinting, and long noncoding RNAs in
health and disease. Cell, 152(6):1308–1323, March 2013.

[39] Jung C. Lee and Robin R. Gutell. Diversity of base-pair conformations and their occurrence in rRNA
structure and RNA structural motifs. Journal of Molecular Biology, 344(5):1225–1249, December
2004.

[40] Fei Liu, Srinivas Somarowthu, and Anna Marie Pyle. Visualizing the secondary and tertiary archi-
tectural domains of lncRNA RepA. Nature Chemical Biology, 13(3):282–289, January 2017.

[41] Zhendong Liu, Yurong Yang, Dongyan Li, Xinrong Lv, Xi Chen, and Qionghai Dai. Prediction of
the rna tertiary structure based on a random sampling strategy and parallel mechanism. Frontiers
in genetics, 12:813604, 2021.

[42] Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph
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