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Abstract. Compounds similarity analysis is widely used in many ar-
eas related to cheminformatics. Its calculation is straightforward when
compounds structures are known. However, there are no methods to
get similarity when this information is not available. Here we propose
a novel approach to solve this problem. It generates compound repre-
sentations from metabolic networks, and are use a neural network to
predict similarity. The results show that generated embeddings preserve
the neighborhood of the original metabolic graph, i.e. compounds par-
ticipating into the same reactions are close together in the embedding
space. Results for compounds with known structures show that the pro-
posal allows to estimate the similarity with an error of less than 10%.
In addition, a qualitative analysis of similarity shows that the prediction
for compounds with unknown structure provides promising results using
the generated embeddings.

Keywords: Neural Networks · Molecular Similarity · Embeddings.

1 Introduction

Similarity evaluation is widely used in a wide range of applications and fields
of research. Recommender systems [15, 6], social networks [17], clustering algo-
rithms [21], and so on take advantage of this. To evaluate similarities, numerical
vectors summarize all the available information of the objects to be compared.

Molecular similarity [20, 12] has been extensively used in cheminformatics
and related areas such as medicinal chemistry and drug discovery. Its applica-
tions include property prediction [5], virtual screening [12], similarity search-
ing [20], and the design of metabolic pathways through the use of compounds
molecular structure to guide the search [11, 14]. In practice, molecular descrip-
tors called fingerprints are used to calculate the similarity between compounds.
These fingerprints are created from the structures present in the compounds [7].
However, if molecular structure is not available, similarity calculation cannot be
performed.

Embedding techniques are a family of methods able to represent objects and
their components as numerical vectors. There are two well-known approaches
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2 E. Borzone et al.

for graph embeddings. One method is based on neural networks to generate em-
beddings. An example of this approach is the case of Structural Deep Network
Embedding [19]. The other approach uses random walks to travel the graph
and describe its components from this information. It builds a representation
of each node by sampling its neighborhood through random walks, and com-
bining information of the retrieved paths. This is the case of DeepWalk [13],
and in particular Node2Vec [8], which is a modification of the previous one.
It has hyperparameters to control the importance between a microscopic view
around each node, and a more general view of the whole graph. Based on these
ideas, if a metabolic pathway is modeled as a compound graph, its elements can
be described as vertex embeddings according to the information of their neigh-
borhoods. This, allow to represent compounds without needing their molecular
structures, since compounds embeddings could be constructed directly from the
graph structure.

Neural networks have demonstrated an incredible ability to predict physical
and chemical properties [16] in several research fields. In a previous work [4], we
successfully tested the ability of a Multi-Layer Perceptron (MLP) to predict the
similarity between compounds with known structure. We now propose to extend
this work by predicting similarity also for compounds with unknown structures,
for witch traditional approaches cannot be applied. In fact, we have no knowledge
of other methods that could be able to calculate similarity between compounds
without having the molecular structures of both compounds.

This work is organized as follow. In Section 2, we describe the algorithm
used to build embeddings, the neural model, and how the dataset was created.
In Section 3 we present the experiments and their results. Finally, we present
conclusions in section 4.

2 Materials and methods

This section presents the theoretical concepts and materials used in this work.
First, we describe the embedding algorithm. Then, we show the neural model
used and its components finally, we describe the process to build the dataset.

2.1 Embeddings construction

In order to build the embeddings, the Node2Vec algorithm was used. This is a
graph-based algorithm that generates embedding by condensing the neighbor-
hood information of each node. It is a supervised method that combines two
classical and opposite sampling strategies: Breadth-First Sampling (BFS), that
restrict the neighborhood of each node to those which are immediate neigh-
bors of the source one; and Depth-First Sampling (DFS) that takes the neigh-
borhood from sequentially samples of nodes, increasing the distances from the
source node. Node2Vec uses randomized walks to incorporate information from
a smooth interpolation between BFS and DFS. The balance between both meth-
ods is controlled by these hyperparameters, and must be adjusted according to
each specific application.
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Compound similarity prediction 3

To generate embeddings, this method performs a number of random walks
(numwalk) starting from each node of the graph. In each step, the information
of the neighborhood is combined, and nodes that are taken into account for this
process depend of the size of the window (window) considered. Given a source
node, the algorithm chooses the next one based on hyperparameters p and q,
witch control the probabilities to select a new node or to return to a previously
selected node. Finally, the information collected from all steps (lenwalk) is used
to generate an embedding of a specified size (size), by using an approach based
on Word2Vec [8]. The algorithm has six important tunable hyperparameters that
need to be optimized, in order to adequately characterize the compounds and
calculate similarity between them.

2.2 Neural model

To perform similarity prediction, a multilayer perceptron [9] (MLP) was trained.
As shown in Figure 1, input x corresponds to a couple of concatenated embed-
dings, one for each compound to be compared, and their similarity as a target
output y, is the similarity between considered compounds. In this model, the
activation function used in the hidden layers is the ReLU, defined as:

ReLU(x) = max(0, x), (1)

where x is the linear output of each layer, and max is a function that takes
two arguments and return the biggest one. The output layer uses the sigmoid
function, defined as:

Sigmoid(x) =
1

1 + e−x
, (2)

where x is the linear output of the layer. This function is used to scale the output
of the model to values between 0 and 1. Dropout [18] was used as a regularizer
with a unique probability pd for all hidden layers.

We also explored a variable number of hidden layers. According to this de-
scription, the neural model has six tunable hyperparameters to be explored: the
size of layers 1, 2 and 3; the dropout probability; the learning rate; and the batch
size.

2.3 Dataset construction

For this study, two datasets were prepared. Figure 2 shows how the dataset build-
ing process was carried out. The entire glycolysis metabolic pathway1 was used.
This pathway is composed of 52 reactions, involving a total of 60 compounds
n, of which only 47 have known structure. Data were extracted from KEGG2

(v95.2). For each compound, the molecular structure was downloaded in SMILES

1 https://www.genome.jp/pathway/map00010
2 https://www.genome.jp/kegg/
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4 E. Borzone et al.

Fig. 1: Model architecture. embci and embcj corresponds to the concatenation
of embeddings for compound i and j, respectively.

format, when available from PubChem3 database. Through the RDKit4 library
was used to calculate MACC keys [7] fingerprints for all the compounds with
know structure. Then, Tanimoto coefficient [1] was used to calculate similarity
between compounds, according to:

T (ci, cj) =

∑
k(c

k
i ∧ ckj )∑

k(c
k
i ∨ ckj )

(3)

where ∧ and ∨ are the binary operators and and or, respectively, and ci and cj
are binary representations of the structures of compounds i and j. The Tanimoto
coefficient takes values in the range [0, 1] and calculates the proportion of shared
features between the two structures.

In total, 1081 patterns were defined resulting from the pairwise combina-
torics of the 47 compounds with known structure. As shown in Figure 3, each
x input to the neural model results from the concatenation of embeddings for
both compounds between which similarity is to be calculated.

3 Results

Creation of embeddings is not a trivial task; both, the algorithm for constructing
embeddings from the graph and the neural model have several hyperparameters
that must be tuned. Since the embedding algorithm involves six hyperparame-
ters, and the neural network six more, the number of possible combinations to
3 https://pubchem.ncbi.nlm.nih.gov/
4 https://www.rdkit.org
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Compound similarity prediction 5

Embedding
Model

Vertex EmbeddingsPathway Graph

C1
C2
C3
C4
C5
C6
C7

Cn

...

KEGG ids

Fingerprint

Compound fp

C1
C2
C3
C4
C5
C6
C7

   Cn-u

...

C1
C2
C3
C4
C5
C6
C7

    Cn-u

...

Tanimoto
 index

Y

...

y1
y2
y3
y4
y5
y6
y7

  yN 

Glycolysis Pathway

Fig. 2: Dataset pipeline. Where n is the total number of compounds in the Gly-
colysis pathway, u is the number of unknown structure compounds, and N is
the pairwise combinatorics of the compounds with known structure (n−u)!

2!(n−u−2)! =
1081.

explore is too large. To avoid this, we split the search in two stages. The first
one was carried out to perform an exploration on the hyperparameters for the
embedding algorithm. In order to determine if the embeddings were correctly
capturing the information needed to characterize compounds, a neural network
model with a manually defined set of hyperparameters was trained. The second
step was the neural network hyperparameters exploration. It was also done in
two steps. Initially, a grid search was performed using the best five embeddings
previously found to calculate evaluate the performance. Then, the embeddings
and the best hyperparameters found were keep fixed and the hidden layers num-
ber was explored.

Clearly, this two-step procedure allows an important reduction in the number
of experiments to perform, specially if it is compared with the number required
for a full grid search considering all the hyperparameters involved. Thus, al-
though suboptimal configuration could be obtained, the number of experiments
is reduced from hundreds of thousands to thousands.
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6 E. Borzone et al.

X

...

Y

Ci Cj

x1
x2
x3
x4
x5
x6
x7

 xN 

y1
y2
y3
y4
y5
y6
y7

  yN 

Fig. 3: Final structure of the dataset for the neural network.

3.1 Embeddings selection

Since the embedding algorithm used here is designed to works with any kind
of graph, appropriate hyperparameters must be determined for producing em-
beddings that can be used to correctly predict the Tanimoto index. To deter-
mine them, a search was performed. We used the Optuna framework with Tree-
structured Parzen Estimator sampler5 (TPE) [2, 3]. A total of 2,500 combina-
tions of hyperparameters were analyzed: hyperparameters q and p between 0.1
and 1 with a step of 0.1; embedding size = {47, 64, 128, 256}; window sizes =
{2, 5, 10, 15}; numwalk between 100 and 500, with a step of 100, and lenwalk
between 5 and 20, with a step of 5 were explored. To determine the quality of
each embedding, an MLP with architecture [2*size,145,20,1] was trained using
cross-validation with 5 folds, and a validation portion of 10%. The Mean Square
Error (MSE) was used as loss function. Table 1 shows the best five combinations
of hyperparameters resulting from the search. The square root of MSE (RMSE)
was included in the table since it has the same magnitude order as the Tanimoto
index.

q p lenwalk numwalk size window RMSE
1 0.8 10 300 47 10 0.1124
1 0.6 10 300 64 15 0.1125

0.8 0.4 10 300 64 2 0.1126
0.9 0.5 20 300 47 5 0.1131
0.9 0.2 15 300 128 5 0.1131

Table 1: Hyperparameter values corresponding to the five embeddings with lower
cross-validation error.

5
https://optuna.readthedocs.io/en/stable/reference/generated/optuna.samplers.TPESampler.html
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Compound similarity prediction 7

Fig. 4: Embedding algorithm hyperparameter importance analysis

The effect of the embedding algorithm’s hyperparameters over similarity pre-
diction was analyzed using FAnova [10]. Results of are presented in Figure 4. As
it can seen, the hyperparameter q is the most important in terms of influence on
the model error, followed by the hyperparameter p.

3.2 Optimization of the neural architecture

In this section we seek to optimize the architecture of the neural network. Two
MLP architectures were considered: one involving 3 hidden layers and another
including 4 hidden layers. The experiments were carried out using 6000 training
epochs, and 1000 epochs for early stopping. Cross-validation with 5 folds and
a validation percentage of 10% was used. The model was implemented using
Pytorch 1.9. Training was performed using Adam optimizer, and MSE as cost
function.

Since there are multiple hyperparameters that can affect the performance
of the model, two grid search were carried out. The first was done with the
hyperparameters listed in Table 2. Furthermore, the five best embeddings from
the previous experiment were taken as an additional search hyperparameter.
Combinatorics performed between the hyperparameters of the Table 3 and each
set of embedding. The second grid search was a fine tunning of the layers sizes
with the best embedding, learning rate, and batch size found in the previous
experiment.

Hyperparamer Range
Learning rate 1 · 10−5, 3 · 10−4 and 1 · 10−3

Batch size 10, 50 and 100
P dropout 0.2,0.3 and 0.5

Layer 2 size 120, 145 and 180
Layer 3 size 20, 30 and 50
Layer 4 size 0, 10, 20, 80

Table 2: Hyperparameters explored during architecture optimization.
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8 E. Borzone et al.

As a result of the grid search, learning rate of 3 · 10−4, batch size of 100, and
dropout probability of 0.3 were identified as the best hyperparameters. We also
selected and fixed the best embeddings, which provided the best predictions,
being found in 4 of the top 5 models.

Once hyperparameters were chosen, a second grid search was carried out only
considering layers sizes. Table 3 shows the search space explored.

Hyperparamer Range Step
Layer 2 size 100 - 200 5
Layer 3 size 50 - 200 5
Layer 4 size 50 - 200 5

Table 3: Range of values used in the grid search for hyperparameter exploration.

Layer2 Layer3 Layer4 RMSE
195 110 110 0.0928
185 195 190 0.0932
200 200 150 0.0944
200 185 75 0.0950
185 105 190 0.0955

Table 4: Error obtained in the cross-validation for the selection of neural archi-
tecture hyperparameters.

Table 4 shows the five best results of the grid search. The best model was
obtained with the following hyperparameters set: learning rate of 5 · 10−4, batch
size of 100, dropout probability of 0.3, and [128, 195, 110, 110, 1] neurons in
each layer respectively. The cross-validation RMSE was 0.0928 and, the Pearson
coefficient R2 was 0.92 for the test set. These results indicate a good performance
of our model, given that the average absolute error was 9.2%, and the distribution
of real and predicted similarity values among compounds was similar. Figure 5
shows the real Tanimoto indices (targets) compared to those predicted by in
the neural network one of the best folds. Additionally, trend lines were added
for each partition set. We can observe that most of the points are located on
the 45° line for all sets, indicating that our model performs good predictions.
Futhermore, it can be seen that real and predicted Tanimoto values are similar.

3.3 Similarity prediction in compounds of unknown structure

The embedding method we used does not require the molecular structure of
compounds, since it uses the metabolic graph structure to generate compound
embeddings. That allow the embedding construction for all compounds, even
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Real Tanimoto Similarity

Pr
ed
ic
te
d 
Ta
ni
m
ot
o 
Si
m
ila
rit
y

Fig. 5: Real vs predicted Tanimoto similarity are plotted above. R2 indicates
to the square correlation coefficient of Pearson for the test set and for all the
dataset, respectively. The training values are shown in blue, the test values in
orange and the validation values in green.

those for which molecular structure is unknown. To evaluate the quality of the
results, a principal component analysis (PCA) for the best embeddings was per-
formed. Figure 6 shows the projection of the embeddings in the first 2 principal
component directions. In particular, the compounds belonging to the reaction
R03270: C05125 + C15972 ←→ C16255 + C00068 are marked with green, and
those belonging to the reaction R07618: C15973 + C00003←→ C15972 + C00004
+ C00080 with red. It can be seen how the compounds participating in each re-
action are actually close to each other. This is most evident in reaction R03270.

Figure 7 shows the PCA in the area around the reaction R07618. Despite
molecular structure of compounds C15972 and C15973 is clearly known, note
this includes generic substituent "-R" in both cases. In consequence, similarity
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10 E. Borzone et al.

Principal Component 1

Pr
in
ci
pa
l C
om
po
ne
nt
 2

Fig. 6: Graph of the first two principal components for embeddings. It can be
seen that the compounds involved in each reaction appear close to each other
on the graph.

Principal Component 1

Pr
in
ci
pa
l C
om
po
ne
nt
 2

Fig. 7: Enlargement of a region of the figure around reaction R07618. A yellow
line joins certain selected compounds to be compared. On the left are shown the
target values and on the right the values predicted by the neural model.

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
E

. B
or

zo
ne

, L
. D

i P
er

si
a 

&
 M

. G
er

ar
d;

 "
N

eu
ra

l m
od

el
-b

as
ed

 s
im

ila
ri

ty
 p

re
di

ct
io

n 
fo

r 
co

m
po

un
ds

 w
ith

 u
nk

no
w

n 
st

ru
ct

ur
es

"
A

pp
lie

d 
In

fo
rm

at
ic

s 
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e,
 I

C
A

I 
20

22
, 2

02
2.



Compound similarity prediction 11

Principal Component 1
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Fig. 8: Enlargement of a region of the figure around reaction R03270. A yellow
line joins certain selected compounds to be compared. On the left are shown the
target values and on the right the values predicted by the neural model.

can be only subjectively estimated since this information cannot be processed to
build fingerprints. This situation does not affect our approach, since it uses em-
beddings learned from the graph topology of the metabolic network to represent
compounds. As a result, predicted similarity (0.804) is in accordance wit visual
analysis, since both compounds share a high proportion of their molecular struc-
tures. Furthermore, predicted similarity for compounds C00004 and C00003 is
0.934, that is in accordance with the real value (0.933).

Figure 8 shows an excerpt of the PCA projection, in the area around reac-
tion R03270. This reaction involves the compounds C15972 and C16255 with no
known structure. This reaction decomposes the substrates C05125 and C15972
into the products C16255 and C00068. As expected, the similarity between
C05125 and C00068 shows high similarity (real: 0.958, predicted: 0.966) since
they share a large part of their structures. On the other hand, predicted sim-
ilarity for the C15972 and C16255 is 0.334, indicating that they do not share
an important proportion of their structures. However, we can appreciate from
structures in chemical equation that it is not correct. Examples like this indicate
that more information needs to be incorporated into the model in order to get
more accurate predictions for unknown structures.
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4 Conclusions

This work addresses the problem of predicting similarity between compounds
when molecular structure is not available. For this purpose, a metabolic path-
way was modeled as a graph, where each node is a compound and the edges
connect compounds that are substrates and products of the same chemical re-
action. Using a general algorithm to generate node embeddings, descriptors for
compounds were generated according to their neighborhoods and used to train
a neural model to predict similarity. For the construction of the embeddings,
a total of 2500 combinations of hyperparameters of the embedding algorithm
were explored. From this search, the best 5 were selected to explore together
with these the hyperparameters of the MLP through a grid search. Finally, the
best set of embeddings and the hyperparameters that gave the best results were
selected to explore the network architecture through another grid search. The
results clearly shows that it is possible to predict similarity between compounds
using neural networks and the proposed embedding strategy. Moreover, this ap-
proach allows to obtain an average error close to 10%. The proposal is expected
to be improved by incorporating more information, in order to generate more
robust descriptors to predict the similarity between compounds.
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