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Abstract—In this paper, we propose a tuning mechanism for
the arrival cost (AC) of nonlinear moving horizon estimators
(NMHE) with quadratic stage cost (SC) that are robustly global
asymptotically stable (RGAS). We consider general detectable
nonlinear systems subject to bounded disturbances that are a
priori unknown. Based on the robust stability results for NMHE,
which state an optimal relation between the eigenvalues of the
AC and SC weighting matrices in the sense of minimising the
estimation error, we propose a mechanism which preserve the
optimal conditioning number of the AC in every sampling time,
maintaining low at the same time the computational burden. The
performance of the proposed mechanism is illustrated through
simulation studies.

Index Terms—Nonlinear moving horizon estimation, Adaptive
arrival cost, Quadratic stage cost, Nonlinear systems.

I. INTRODUCTION

State estimation plays a fundamental role in feedback
control, system monitoring, and system optimization because
noisy measurements is the only information available from the
system. Building on the success of moving horizon control,
moving horizon estimation (MHE) has attracted the attention
of researchers since the pioneering work of Jazwinski [1] (see
also [2]–[4]). The interest in such estimation methods stems
from the possibility of dealing with a limited amount of data,
unlike the full information estimator (FIE), which takes into
account all measurements available of the output of the system,
increasing the size of the problem in every sampling time until
it becomes computationally intractable. Besides, since MHE
is optimisation based, it allows to incorporate constraints in a
natural way.

MHE solves at each sampling time a finite horizon state
estimation problem. When new measurements become avail-
able the old one is discarded from the estimation window. The
information which are not included in the estimation window
is summarised into the objective function through an extra term
called AC. A good approximation of the AC allows to reduce
the size of the estimation window and to have a performance
comparable to that of the FIE. The most accepted way of
approximating the AC is using a weighted 2−norm of the
states at the beginning of the estimation window [3], [5], [6],
[7], [8], [9].

In recent years, both theoretical properties of several MHE
schemes, including efficient computational methods, have been
studied (see [9]–[14]).

In recent years several results on robust stability and conver-
gence properties have been obtained, advancing from idealistic
assumptions (observability and no disturbances) to realistic sit-
uations (detectability and bounded disturbances). For nonlinear
observable systems, [4] established the asymptotic stability
of the estimation error for the least-square cost function.
Furthermore, for convergent disturbances, the estimation error
is also convergent [15]–[17]. Alessandri et al. proposed an
estimation scheme, based on a least-square cost function
of estimation residuals, that guaranteed the boundedness of
estimation error for observable systems subject to bounded
additive disturbances [11], [18]. The review made by Rawlings
and Li [16] provides a general view of the problem relying
on incremental input-output-to-state stability for detectability
[19] and robust global asymptotic stability (RGAS) for robust
stability of the state estimator. This work reveal two major
challenges in the field: i) conditions and a proof of RGAS for a
MHE subject to bounded disturbances and ii) the development
of computational efficient MHE algorithms. Hu et al. [20]
identifies a broad class of cost functions that ensures RGAS
of FIEs. The implication of RGAS on MHE was further
investigated in [21] based on the results of [22]. Moreover,
[21] showed RGAS and convergence of estimation error in case
of bounded or vanishing disturbances, respectively. In these
works, the least-square cost function was modified by adding
a max-term to guarantee stability. For a particular choice of
weights of the cost function, these results were extended to
least-squares type [21]. Finally, the necessary assumptions on
the cost function were generalized in [23].

The results described for nonlinear detectable systems sub-
ject to bounded disturbances show a number of drawbacks.
In particular, the disturbances gains obtained in [21] are
conservative, and they depend on the estimation horizon. The
same happens with the estimate on the minimal estimation
horizon in the case of MHE. These estimates depend on
a priori bounds of worst case disturbances. One attempt to
solve these flaws is presented in [24], where the authors
introduce a novel formulation of the cost function that allows
ensuring robust global exponential stability of the estimation
error under a suitable exponential detectability. Using this idea,
they obtain improved estimates for the disturbance gains and
the minimal estimation horizon. In [25], the authors propose
time-discounted schemes for FIE and MHE relying on the
novel concept of time-discounted incrementally input-output-
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to-state-stable (i-ioss).
Another endeavour to obtain less conservative results is

presented in [deniz2021multiplemodels], where several equiv-
alence constants are introduced in order to avoid conservative
bounds in both the estimation window length and the estima-
tion error. Moreover, the equations probing robust stability for
the case of quadratic SC in combination with adaptive AC stem
for optimal design in the sense of minimising the estimation
error.

II. PRELIMINARIES AND SETUP

A. Notation

Let Z denotes the integer numbers, Z[a,b] denotes the set
of integers in the interval [a, b], with b > a and Z≥a denotes
the set of integers greater or equal to a. Boldface symbols
denote sequences of finite or infinite length. We denote x̂j|k
as the state at time j estimated at time k. By |x| we denote
the euclidean norm of a vector x ∈ Rnx . Let ‖x‖ :=
supk∈Z≥0

|xk| denote the supreme norm of the sequence x

and ‖x‖[a,b] := supk∈Z[a,b]
|xk|, whereas xT denotes transpose

of vector x. A function γ : R≥0 → R≥0 is of class K if γ
is continuous, strictly increasing and γ (0) = 0. If γ is also
unbounded, it is of class K∞. A function ζ : R≥0 → R≥0 is of
class L if ζ is continuous, decreasing and limt→∞ ζ (t) = 0. A
function β : R≥0×R≥0 → R≥0 is of class KL if β (·, k) is of
class K for each fixed k ∈ Z≥0, and β (r, ·) of class L for each
fixed r ∈ R≥0. When necessary, we will use the notation x(1)

i,k

and x
(2)
i,k to differentiate i–th component of the states vector

at time k of two discrete-time trajectories of the system, with
i ∈ Z[1,nx]. Moreover, x(1)

k (x
(1)
0 ,w(1)) will denote a trajectory

with initial condition x(1)
0 and perturbed by the sequence w(1).

A similar notation is used for the case of continuous time
systems, where t is used instead k to denote continuous time.

B. Problem statement

Let us consider a nonlinear discrete-time system with the
following behaviour ∀ k ∈ Z≥0

xk+1 = f (xk, uk) + wk,
yk = h (xk) + vk,

(1)

where xk ∈ X ⊂ Rnx is the system state, uk ∈ U ⊂ Rnu is
the control action, assumed to be known and entering affinely
to the system, wk ∈ W ⊂ Rnx is the unmeasured additive
process disturbance, yk ∈ Y ⊂ Rny is the output measure-
ments and vk ∈ V ⊂ Rnv is the measurement noise. The sets
X , U ,W , Y and V are known to be compact and convex, with
the null vector 0 of appropriate dimension in their interior. In
the following we will assume that f : Rnx × Rnu → Rnx
and the output function h : Rnx → Rny are both known
Lipschitz functions in all their respective domains. Our goal
is to compute an estimate x̂k|k of xk|k as accurate as possible.

C. Moving horizon estimation scheme

In order to compute an estimate x̂k|k of xk, we solve the
following moving horizon estimation problem at each samping
time

min
x̂k−N|k, ŵ

Ψ := Γk −Ne|k (χ) +

k−1∑
j=k−Ne

`w
(
ŵj|k

)
+

k∑
j=k−Ne

`v
(
v̂j|k

)

s.t.


χ = x̂k−Ne|k − x̄k−Ne ,

x̂j+1|k = f
(
x̂j|k, uj

)
+ ŵj|k,

yj = h
(
x̂j|k

)
+ v̂j|k,

x̂j|k ∈ X , ŵj|k ∈ W, v̂j|k ∈ V,

(2)

where x̂j|k is the estimate of the state at time j and ŵj|k is
the estimate of the process noise at time j, estimated both at
time k based on measurements y[k−Ne,k] available at time k.
The length of the estimation window is denoted as Ne. The
prior estimate x̂k−Ne|k and the process noise ŵ[k−Ne|k] are the
optimization variables. The stage costs `w

(
ŵj|k

)
and `v

(
v̂j|k

)
penalises the estimated process disturbance ŵj|k and the
estimation residuals v̂j|k = yj − h

(
x̂j|k

)
. Since in this work

we deal with quadratic stage cost, `w
(
ŵj|k

)
= ŵTj|kQŵj|k

and `v
(
v̂j|k

)
= v̂Tj|k R v̂j|k. The arrival cost Γk−Ne|k (χ)

penalises the deviation of prior estimate x̂k−Ne|k respect to
the prior known x̄k−Ne with the weighting matrix P−1, i.e.,
Γk−Ne|k (χ) = χT P−1 χ. In this work, the matrix P is given
with the following behaviour [9]

Pk−Ne|k =

{
1
αk
Wk if 1

αk
Tr (Wk) ≤ c,

Wk otherwise,
(3)

with

αk = 1− 1

Mk
,

Mk =
[
1 + x̂Tk−Ne|k−1 Pk−Ne−1|k−1x̂k−Ne|k−1

] σ

|v̂k−Ne|k|2
,

v̂k−Ne|k = yk−Ne − ŷk−Ne|k,
Wk = Pk−Ne−1|k−1−

Pk−Ne−1|k−1x̂k−Ne|k−1x̂
T
k−Ne|k−1

1 + x̂Tk−Ne|k−1Pk−Ne−1|k−1x̂k−Ne|k−1Pk−Ne−1|k−1

,

where σ, c, λ ∈ R>0 are tuning parameters, c > λ, P0 =
λIn×n and σ � max

{
σ2
w, σ

2
v

}
, where σ2

w and σ2
v denote

the process and measurement noise variances. The prior
knowledge of the window x̄k−N is updated using a smoothed
estimate [26]

x̄k−Ne = x̂k−Ne|k−1. (4)
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III. THEORETICAL PROPERTIES

The theoretical properties of an estimator with the behaviour
exposed here, i.e., adaptive arrival cost given by (3) and
quadratic stage costs were developed first in [27] and then gen-
eralised in [deniz2021multiplemodels] for the case of model
uncertainties. The most remarkable result from those works, is
that for a large enough window length, the estimator is robustly
stable, whenever, the system being detectable, i.e., i-ioss. For
the sake of completeness, the following definitions is given

Definition 1 system (1) is incrementally input-output-to-
state stable (i-IOSS) if there exist functions β ∈ KL and
γw, γv ∈ K such that for each pair of initial conditions
x

(1)
0 , x

(2)
0 ∈ Rnx and each two disturbance sequences w(1)

and w(2) the following holds ∀ k ∈ Z≥0

|x(1)
k − x

(2)
k | ≤ β

(
|x(1)

0 − x
(2)
0 |, k

)
+

γw
(
‖w(1) −w(2)‖[0,k−1]

)
+

γv
(
‖h
(
x(1)

)
− h

(
x(2)

)
‖[0,k−1]

)
.
(5)

Then, if one implement a moving horizon estimator, it
will be robustly stable whenever the length of the estimation
window Ne being chose to satisfy Ne ≥ Ne, where Ne is
shortest window for which the MHE is RGAS, an can be
computed as follow

min Ne
s.t.
{

ē ζx0
N ιe
kβx(Ne) ≤

ēx0
ΠNe

,
(6)

where, x̄x0
is the maximum error on the initial condition of

the system, ΠNe > 1 is the decreasing rate of the transient
due to start the estimation process from x̄0 6= x0, ζ and ι
are constants which depend on the system and kβx (Ne) is a
function evaluated at Ne, and we will give further details later.

The estimation error bound for our moving horizon estima-
tion is given by the following equation

|xk − x̂k|k| ≤ β̄x (|x0 − x̄0|, k) + πw (‖w‖) + πv (‖v‖) ,
(7)

where β̄ ∈ KL, πw, πv ∈ K with the following behaviour

β̄x (|x0 − x̄0|, k) ≤
(

ΠNe+µ
ΠNe (1+µ)

)i |x0−x̄0|ζ
jι kβx(j),

πw (‖w‖) ≤ ΠNe (1+µ)
ΠNe−1 ‖w‖

ζkw(j),

πv (‖v‖) ≤ ΠNe (1+µ)
ΠNe−1 ‖v‖

ζkv(j),

(8)

with k = i(Ne + 1) + j, where i = bk/(Ne + 1)c, j =
mod (k,Ne + 1), ΠNe ∈ R>1 is the decreasing rate of the
error on the initial condition, which is proportional to the
length of the horizon window Ne and µ ∈ R>0 is a parameter
which determines the volume of the invariant space for the
estimation error. The functions kβx(j), kw(j) and kv(j) are
given by the following expressions

kβx(j) :=
eβcβ
jq−ι

(
1 +

peβ λ̄
pβ/2

P

λ
pβ
P

)
+

eγ3cγ3pγ3 λ̄
γ3/2

P

jγ3/2−ιλ
γ3
Q

+

eγ4cγ4pγ4 λ̄
γ4/2

P

jγ4/2−ιλ
γ4
R

,

kw(j) :=
eβcβ peβ λ̄

pβ/2

Q

jq−pβ/2λ
pβ
P

+ eγ3cγ3 +
eγ3cγ3pγ3 λ̄

γ3/2

Q

λ
γ3
Q

+

eγ4cγ4pγ4 λ̄
γ4/2

Q

λ
γ4
R

,

kv(j) :=
eβcβ peβ λ̄

pβ/2

R

jq−pβ/2λ
pβ
P

+ eγ4cγ4 +
eγ3cγ3pγ3 λ̄

γ3/2

R

λ
γ3
Q

+

eγ4cγ4pγ4 λ̄
γ4/2

R

λ
γ4
R

,

(9)
with kβx(0) = δkβx(1), kw(0) = δkw(1) and kv(0) = δkv(1),
for some δ > 1. The quantities involved in (9) depends on
constants of the i-ioss function (which depend at the same time
of the dynamic of the system) and the eigenvalues of the arrival
and stage cost matrices. Based on (9), one could compute the
optimal values of the maximum and minimum eigenvalues of
each matrix, i.e., λ̄P , λP , λ̄Q, λQ, λ̄R and λR. However,
since matrix P is updated at every sampling time, λ̄P , λP
are updated, as well. Moreover, from (3) one can see that for
the case of vanishing disturbances, i.e., limk→∞ vk = 0 and
limk→∞ wk = 0, limk→∞ |Pk − Pk−1| = 0, i.e., matrix P
stop being updated. However, this is not the case for the case
of non vanishing disturbances (a more realistic one) and the
eigenvalues λ̄P and λP will change for all times, specially
when constant c in (3) is not properly chose. In order to
overcome this problem and at the same time improving the
estimation process based on previous results regarding robust
stability, we introduce a modification to (3) which consist of
scaling matrix P in order to preserve the conditioning number,
allowing at the same time a change in the values of λ̄P and
λP .

IV. PROPOSED SCHEME

A. Computing optimal eigenvalues

The set of equations in (9) can be slightly simplified to
formulate the following optimisation problem and compute the
optimal eigenvalues

min
λP ,λ̄P ,λQ,λ̄Q,λR,λ̄R

J

s.t.


0 < λP ≤ λ̄P ,
0 < λQ ≤ λ̄Q,
0 < λR ≤ λ̄R,

(10)

where the objective function is defined as

J := kβx(0) + kw(0) + kv(0). (11)

Once the eigenvalues were determined, the matrices P−1,
Q and R can be designed with the computed conditioning
number.
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B. Scaling the arrival cost

The matrices of the stage cost are initialised with the values
computed former, whereas the matrix of the arrival cost can
be initialised with the values computed or as in [9]. In every
sampling time, the arrival cost is updated according (3), then
the matrix P is scaled to preserve the conditioning number
computed with (10). In order to scale P , a slightly modified
version of the optimization problem published in [28], page
37, is solved at each sampling-time

find M, N

s.t.

 λ2
P M ≤ P−T N P−1 ≤ C2

P λ
2
P M,

M > 0,
N > 0,

(12)

where M , N ∈ Rnx×nx and CP = λ̄P /λP is the conditioning
number. Note that (12) does not find an optimal solution,
just a feasible one, since the condition number is given,
in comparison with [28] where the conditioning number is
minimised. After solving (12), the matrix P is scaled as
Nchol P M

−1
chol, where Nchol and Mchol are the Cholesky

factorisation of matrices N and M , respectively. Another
approach consist of solving the following alternative problem

find ai

s.t.
{

λnxj + anx−1λ
nx−1
j + . . .+ a0 = 0,

(13)

with λ = 1/λ̄P and λ̄ = λCP , whereas the eigenvalues
between λ and λ̄ should be properly chosen or scaled from
those ones after compute (3). Then, matrix P is reconstructed
from constants ai.

V. SIMULATIONS AND RESULTS

A. Example 1

In order to evaluate and compare the performance of the
proposed MHE, let us consider as a first example the following
linear discrete-time system

xk+1 =

[
0.8x1,k + 0.2x2,k + 0.5w1,k

−0.3x1,k + 0.5x2,k + w2,k

]
,

yk = x2,k + vk

(14)

The system is affected by process noise with uniform
distribution w1,k ∈ [−0.005, 0.005] and w2,k ∈ [−0.05, 0.05]
and measurement noise with normal distribution vk ∼
N
(
0, 0.012

)
. The state, process and residual estimated are

constrained to the following set

X := {x : |x1| ≤ 10, |x2| ≤ 10} ,
W := {w : |w1| ≤ 0.03, |w2| ≤ 0.3} ,
V := {v : |v| ≤ 0.03} ,

The system is i-ioss with the following function

|x(1)
k − x

(2)
k | ≤

2× 22.862.037

k1.0186 + 0.25 ‖w‖+ 0.25 ‖v‖.
(15)

whenever x ∈ X and robustly stable for Ne ≥ 9 with the
following equation bounding the estimation error

|xk − x̂k|k| ≤ 0.976i×4.1√
j

+ 1.07 ‖w‖2.037 + 0.59 ‖v‖2.037

(16)
Three MHE with Ne = 9 will be implemented to compare

their performance. Besides, two set o matrices will be imple-
mented for each estimator. The first estimator is a standard
NMHE (NMHEadap) with quadratic stage cost and adaptive
arrival cost updated according (3). The first set of matrices
correspond to those of optimal values computed from (10).
Set 1

P01
=

[
106 0
0 106

]
, Q1 =

[
900194 0

0 617831

]
, R1 = 549935,

Set 2

P01 =

[
106 0
0 106

]
, Q1 =

[
100 0
0 10

]
, R1 = 100,

The second (NMHEfix opt) is a NMHE with fixed P , Q
and R matrices with optimal eigenvalues computed offline
according (10). For this estimator, only 1 set is implemented

P02 =

[
7.77× 10−7 0

0 1.37× 10−6

]
,

Q2 =

[
900194 0

0 617831

]
, R2 = 549935,

The third estimator (MHEscaled) is a NMHE similar
to the first, but the matrix P is updated according (3)
and then to (13). Both sets of matrices are the same of
those of NMHEadap. The performance of the estimators
NMHEfix opt and NMHEscaled will be evaluated according
the metric 100× (1− errestimator/erradap).

TABLE I

NMHEfix opt NMHEscaled

set1 −88.30% 7.06%

set2 −88.30% 22.21%

Table I summarises the averaged performance about 100 tri-
als. The performance of NMHEfix opt, in which all matrices
are initialised with the values computed from (10) and does
not update the arrival cost, is deteriorated in comparison with
the reference estimator NMHEadap, whereas the estimator
NMHEscaled which scales the arrival cost matrix after up-
dating it according (3) improves its performance with both set
of matrices.

B. Example 2

As a second example, let us consider the discrete-time
nonlinear system

xk+1 =

[
0.8x1,k + 0.2x3

2,k + 0.5w1,k
−0.3 x1,k

1+x2,k
+ 0.5 cos(x2

2,k) + w2,k

]
,

yk = x2,k + vk

(17)
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Fig. 1: Estimation error bound (black) and errors committed by
MHEadap (red), MHEfix opt (green) and MHEscaled (blue)
for a) matrices from set 1. b) Matrices from set 2.

The constraints of the estimators are the same is Example 1,
as well as the noises. The systems is i-ioss with the following
function

|x(1)
k − x

(2)
k | ≤

2× 16.282.448

k1.224 + 0.25 ‖w‖+ 0.25 ‖v‖.
(18)

and robustly stable for Ne ≥ 9, and the function which bounds
the estimation error is the following

|xk − x̂k|k| ≤ 0.976i×5.46√
j

+ 1.08 ‖w‖2.448 + 0.554 ‖v‖2.448

(19)

The set of matrices for the estimator NMHEadap are the
followings
Set 1

P01 =

[
106 0
0 106

]
, Q1 =

[
1.46× 106 0

0 1.09× 106

]
,

R1 = 492541,

Set 2

P01
=

[
106 0
0 106

]
, Q1 =

[
100 0
0 10

]
, R1 = 100,

Set 1 and 2 are the same for the NMHEfix opt

P02
=

[
1.1× 10−6 0

0 6.66× 10−6

]
,

Q2 =

[
1.46× 106 0

0 1.09× 106

]
, R2 = 492541,

and the sets for the estimator NMHEscaled are the same as
those for NMHEadap.

TABLE II

NMHEfix opt NMHEscaled

set1 −76.00% 12.71%

set2 −76.00% 25.45%

VI. CONCLUSION

In this paper, we have shown how can improve the es-
timation of a moving horizon estimator by controlling the
conditioning number of the arrival cost weighting matrix.
The key idea supporting the results comes from previous
results on the robust stability of an MHE. The equations
which guarantee robust stability for an MHE with adaptive
arrival cost and quadratic stage cost shows a clear relationship
between the eigenvalues of the weighting matrices of the
MHE. Maximum and minimum eigenvalues were treated as
optimisation variables in order to minimise the error bound.
We have tested two approaches. The first consist of computing
the optimal eigenvalues and design the weighting matrix from
those values, remaining them unchanged during the estimation.
In the second approach, the conditioning number of the arrival
cost weighting matrix computed from the optimal eigenvalues
was controlled in every sampling time in order to maintain
its value, allowing a change in the eigenvalues itself, while
the stage cost matrices were given other values rather than
those computed as optimal. The latter method resulted in
higher performance in the estimations of states of linear
and nonlinear systems. However, both methods are shown to
behave according to the equations which govern the robust
stability. As expected, both simulation studies put on evidence
the relevance of updating the arrival cost of an estimator with
a moving horizon scheme.
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Fig. 2: Estimation error bound (black) and errors committed by
MHEadap (red), MHEfix opt (green) and MHEscaled (blue)
for a) matrices from set 1. b) Matrices from set 2.
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