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ABSTRACT

The sleep stage scoring allows the analysis and characterization of several sleep disorders. Since
manual labeling is a tedious task subject to human errors, many proposals to perform this clas-
sification automatically have been made. Methods based on electroencephalogram (EEG) are the
gold-standard, achieving the best results. However, they have complex instrumentation, which is a
disadvantage for screening methods. For this reason, we propose an automatic sleep staging method
using heart rate (HR) and peripheral oxygen saturation (SpO2) signals obtained from pulse oximeter,
an ideal device for screening due to its low cost and simplicity. This method consists of two stacked
layers of bidirectional gated recurrent units and a softmax layer to classify the output according to
the American Academy of Sleep Medicine. To evaluate the performance, we use the Sleep Heart
Health Study dataset, using 2500 HR and SpO2 signals corresponding to different patients for train-
ing, 1250 for validation, and 1250 for testing the models. The obtained results in the testing subset
were 73.2% for accuracy and 0.63 for the Cohen’s Kappa coefficient. This performance shows that
our model is able to outperform alternative methods that use cardiac signals from both pulse oxime-
ter and electrocardiogram, but there is still an important gap to achieve the performances obtained
using EEG.

Keywords Automatic sleep staging · Pulse oximetry · Recurrent Neural Networks · Signal Processing

1 Introduction

The gold standard to assess sleep disorders is polysomnography (PSG), which consists of the recording of several
biological signals including electroencephalography (EEG), electrooculography (EOG), oxygen saturation, chin and
leg electromyography (EMG), electrocardiography (ECG), breathing effort, among others [1,2]. The PSG is expensive
and its availability is scarce. The visual data interpretation of the PSG signals is the most common approach to
diagnose, but the scoring is a time-consuming process and depends on the expert’s experience. Further, it has a lot of
variability among different professionals [3].

There are two available standards that represent a guideline for diagnosing sleep pathologies, the traditional
Rechtschaffen and Kales (R&K) [4] and, since 2007, the later standard published by the American Academy of Sleep
Medicine (AASM) [2]. According to the R&K standard, the PSG recordings are split into consecutive 30-seconds-
long segments and each segment is classified in wakefulness (W), two stages of light sleep (N1 and N2), two of deep
sleep (N3 and N4), and rapid eye movement sleep (REM), which are differentiated based on characteristic waveforms

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
R

. C
as

al
, L

. D
i P

er
si

a 
&

 G
. S

ch
lo

tth
au

er
; "

A
ut

om
at

ic
 s

le
ep

 s
ta

gi
ng

 f
ro

m
 p

ul
se

 o
xi

m
et

er
 u

si
ng

 R
N

N
"

20
21

 2
9t

h 
E

ur
op

ea
n 

Si
gn

al
 P

ro
ce

ss
in

g 
C

on
fe

re
nc

e 
(E

U
SI

PC
O

),
 p

p.
 9

65
-9

69
, 2

02
1.



A PREPRINT

that can be found in EEG, EOG and EMG [4, 5]. The AASM modifies the R&K rules with the aim of increasing the
inter-rater reliability of sleep staging, unifying N3 and N4 in a single stage, called simply N3 or slow-wave sleep.

To overcome the disadvantages of visual inspection, numerous approaches for automatic sleep staging have been
developed. Many studies have shown that the EEG signal is almost sufficient for obtaining a reliable scoring [6].
In addition to this, due to the complexity of the PSG studies, there is a generalized underdiagnosis of several sleep
pathologies [7,8]. Hence, the development of portable screening methods to assess sleep studies at home is becoming
particularly relevant in the research community.

Pulse oximeter is an ideal choice for screening due to its low cost, accessibility, and simplicity [9]. This device has
proven to be useful for the screening of obstructive sleep apnea/hypopnea syndrome [10], one of the most prevalent
sleep disorders [11]. In addition, this technology can easily be adapted to wearable devices and be used for per-
sonal health monitoring. There are many commercial devices that provide sleep measures, but not many studies have
validated these measures [12].

The main hypothesis of this work is that information about sleep stages can be inferred by means of the adequate
processing of cardiac-related signals. The heart rate (HR) signal is affected by the regulation of the autonomic nervous
(sympathetic and parasympathetic balance), decreasing during sleep to adapt to reduced metabolism. The average
HR falls steadily from wake to deep sleep stages, increasing slightly during REM [5]. Further, HR presents greater
variability during wakefulness and REM. We expect that the proposed algorithm will be able to exploit these changes
to perform the automatic sleep stage classification.

This paper is a preliminary study to classify sleep stages using signals provided by the pulse oximeter, namely HR
estimated from photoplethysmography and peripheral oxygen saturation (SpO2). These developments are derived
from the modification of a previous work in which the sleep stages were classified as awake and sleep [13]. The
classification is performed by applying recurrent neural networks (RNNs) to the raw signals. The RNNs are able
to store information about the entire sequence in the state vectors to learn the temporal dependencies of the internal
structure of the sleep [14]. We suppose that the network will be able to discriminate the sleep stages based on the
changes in the HR dynamic caused by the different regulation of the autonomic nervous system during sleep [5].

2 Materials and methods

The automatic sleep staging is performed using a specific type of RNN called gated recurrent networks (GRU) [15],
which is a simplified variant of the well-known long short-term memories (LSTM) [16]. The proposed approach
consists of a simple preprocessing of the raw data with the aim of removing invalid data and standardize the inputs to
the network. Then, two stacked layers of bidirectional GRUs receive the input preprocessed data to learn the transition
rules of the sleep stages exploiting both past and future information [17]. Finally, a 5-softmax layer is used to classify
each segment into five classes according to the AASM rules. An overview of these network architecture is shown in
Fig. 1.

In this section we will explain briefly the used dataset, the different parts of the designed architecture, and the per-
formed post-processing.

2.1 Dataset

In this work, we used 5000 recordings of HR and SpO2 corresponding to the Sleep Heart Health Study (SHHS)
dataset [18]. The SHHS dataset contains PSG studies acquired automatically at the patient’s home. Full details can be
found in [19].

The HR signal has a sampling rate of 1 Hz and precision of 3 beats per minute. Further, the oximeter provides a
quality-related signal with information about the status of the sensor connection, the value of which is 0 for a good
connection and 1 for a defective connection.

Additionally, we used the sleep staging included in the SHHS as the target of the system. These sleep stages are
labeled in consecutive 30-seconds-long segments and they were processed to be in accordance with the AASM rules.

2.1.1 Input data preprocessing

We split the dataset into three subsets: 2500 subjects were used for training the network, while two subsets of 1250
subjects were used for validating and testing the trained models.

To remove invalid data due to defective sensor contact, we use the quality-related signal to mask the signals. Once
identified the invalid data, we interpolate linearly between the previous and posterior valid data.
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Preprocessing

Remove
invalid data

xi = xi−µ̄train

σtrain

256/256 bi - GRU

256/256 bi - GRU

5 - softmax layer

Neural Network

Input data:

HR

SpO2

N1

Wake

Output classification:

2 x L

1 x L

1x L
30

Majority vote

N3

N2

REM

Figure 1: An scheme of the best architecture consisting of two stacked layers of bidirectional GRU, a softmax layer to
classify the outputs of the GRUs, and finally a majority vote performed to obtain the final classification.

In order to reduce the inter-subject variability, we standardize the input data using the global mean and standard
deviation of the training dataset. Then, these values were used to standardize the training, validation, and testing
datasets.

2.1.2 Recurrent neural networks

RNNs are a family of neural networks that have proven to be very useful for processing sequential data. They can
store in an "internal state" the information of the history of the signals. In this way, the outputs of the network do not
depend only on the current input, but they also depend on the previous inputs and outputs. This is accomplished using
recurrent connections that feedback the outputs into the inputs [14]. In classical RNNs, this theoretical persistence of
the information is not easy to achieve in practice because the backpropagated gradients used to train the network tend
to vanish rapidly [16].

To overcome this limitation, called vanishing gradient, the LSTMs networks were designed. In these networks, the
information flow is controlled by structures called gates that allow learning the long-term dependencies introducing a
persistent internal state present in each LSTM unit.

Many variations of the LSTM have been proposed since their emergence, but the GRUs [15] are a simplified version
of the LSTM that have become very popular. For time step t and GRU-cell i, the follow equations are used:

u
(t)
i = σ

(
Wu,i

[
h
(t−1)
i ,x(t)

]
+ bu,i

)
,

r
(t)
i = σ

(
Wr,i

[
h
(t−1)
i ,x(t)

]
+ br,i

)
,

h̃
(t)
i = tanh

(
W

[
r
(t)
i h

(t−1)
i ,x(t)

]
+ bs,i

)
,

h
(t)
i =

(
1− u

(t)
i

)
◦ h(t−1)

i + u
(t)
i ◦ h̃(t)

i

(1)
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where u is the “update” gate, r is the “reset” gate, and h
(t)
i is the state vector of the i-th GRU cell. W(·),i and b(·),i

are the weights and bias, x represents the input to the network, and σ represents a sigmoid function [20]. Finally, the
operator ◦ represents an element-wise product.

The update gate controls by means of the sigmoid function how much information from the last state vector h(t−1)
i

and how much information from the new candidate of state vector h̃(t)
i are used for the new state vector h(t)

i . The reset
gate controls which parts of the current state are used to compute the next state [20].

As can be seen from (1), the state vector stores only information from past and present inputs, i.e. it has a causal
behavior. When the processing is off-line, we prefer to be able to extract information not only from the past but
also from the future, which allows a better understanding of the context and can eliminate ambiguities. Schuster and
Paliwal [17] created a bidirectional RNN combining two RNNs, one that moves forward through time and the other
that moves backward.

In our work, we have used GRU-based architectures instead of LSTM since they make less use of memory. Moreover,
since the processing in our case is done off-line, bidirectional GRUs were considered.

2.2 Softmax layer

With the aim of classifying the outputs of the GRU, a 5-softmax layer is applied by:

y = relu(Wx+ b) (2)

where W and b are the weights and bias, respectively, and x is the input to this layer, that is the output of the second
bidirectional GRU. We use a rectified linear unit activation relu(x) = max(0, x). This output vector y is mapped to
a class probability with a softmax function. The used loss function is cross-entropy and the optimization algorithm is
Adam [21].

The approach presented in this paper performs a sleep stage classification sample to sample, that is, with a resolution
of 1 second. According to AASM, which recommends labeling the sleep stages every 30 seconds, we conducted a
majority vote for non-overlapping segments of 30 seconds. The reported results correspond to this vote.

3 Results and discussion

We evaluated many variants of network architectures, changing the number of GRUs stacked and the number of hidden
layer sizes in the bidirectional-GRUs. From these experiments, the architecture with the best performance was two
stacked bidirectional-GRUs with 256 hidden units.

As we previously stated, we have used the Adam optimizer. The parameters of which are the learning rate α and the
exponential decay rates for the first moment and second moment, β1 and β2 respectively. These parameters were set
to 10−4, 0.9, and 0.99 respectively.

We trained the model using the training dataset during 120 epochs. After each epoch, the model was evaluated using
the validation dataset. To avoid over-fitting, we used early stopping, selecting the model with the best accuracy in the
validation dataset.

3.1 Sleep staging performance

The performance of the designed network was evaluated in the test dataset, composed of 1250 signals corresponding
to unseen patients.

Sleep stages can be classified with different degrees of discrimination. Thus, methods designed for screening have a
tendency to group several sleep stages in order to perform a simpler classification. With the aim of favor the methods
comparison, we present several tables with the obtained results considering different sleep stage groupings and the
main algorithms of the state-of-the-art which performed the same grouping. It should be noted that, as different
signals and datasets were used, direct comparisons between results cannot be performed.

Table 1 presents the performance classifying sleep stages according to the AASM, namely awake, N1, N2, N3, and
REM. As far as we know, there are no screening algorithms that classify sleep stages according to the AASM. For this
reason, it was necessary to compare against methods that use EEG. Supratak et al. [22] used an architecture based on
convolutional neural networks (CNN, to automatically learn features from EEG signals) and RNN (to learn the sleep
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Table 1: Comparison with the literature (AASM rules)
Method Input N Acc AccW AccN1 AccN2 AccN3 AccREM κ

256-biGRU HR+SpO2 5000 73.2 85.6 0 75.7 60.8 75.4 0.63

CNN+RNN [22] EEG 62 86.2 87.3 59.8 90.3 81.5 89.3 0.80
CNN+RNN [22] EEG 20 82.0 84.7 46.6 85.9 84.8 82.4 0.76

CNN + RNN [23] EEG 61 84.3 89.2 52.2 86.8 85.1 85.0 0.79

Table 2: Comparison with the literature (W, Light, Deep, and REM)
Method Inputs N Acc AccW AccLight AccDeep AccREM κ

256-biGRU HR+SpO2 5000 75.7 85.6 73.7 60.1 75.4 0.65

Feat.+LDA [24] PPG + acc 60 68.7 69.3 69.2 62.5 71.6 0.52

Table 3: Comparison with the literature (W, NREM, and REM). P1 and H1 are the patient and healthy subset of the
first dataset. Analogously for P2 and H2.

Method Inputs N Acc AccW AccNREM AccREM κ
256-biGRU HR+SpO2 5000 85.2 85.6 87.5 75.4 0.74

Feat.+RF [25] ECG (P1) 5 78.1 74.3 82.8 40.9 0.57
ECG (H1) 5 87.1 83.5 91.1 52.1 0.74
ECG (P2) 16 77.0 – – – 0.57
ECG (H2) 2 76.8 – – – 0.43

Feat.+RF [26] ECG 45 72.6 56.4 81.3 59.8 0.46

stage transition rules), the performance of which was evaluated in two different datasets. We report both results in
order to show the variability of the results for the same algorithm. Mousavi et al. [23] developed a method based on
CNN and RNN using a single-EEG channel. Unlike Supratak, they used an encoder-decoder architecture and attention
mechanisms. To the best of our knowledge, that work obtains the best performance in automatic sleep staging using
a single-EEG channel. While we cannot yet compete with these results, we must say that EEG signals have complex
instrumentation. These results give us an idea of the upper bound that we could reach, and allow us to compare against
the gold-standard.

Table 2 summarized the state-of-the-art methods grouping N1 and N2. We compared our obtained results with Beattie
et al. [24], which used photoplethysmography (PPG) and accelerometer signals. In that work, the authors considered 4
classes. The used database was composed of 60 participants that were self-reported normal sleepers. We can not make
a direct comparison because they have additional information. They used the PPG signal (not only the HR calculated
from it), in addition to the accelerometer signals. In spite of this, it can be seen that our algorithm obtains a better
performance than that work, even when we are discriminating between N1 and N2. The best accuracy obtained in [24]
was 68.7%.

Finally, table 3 shows the performance classifying sleep stages as W, REM, and non-REM (grouping N1, N2, and
N3). Here we can compare with Yücelbaş et al. [25] and Xiao et al. [26], both using ECG. Yücelbaş used two
different datasets, which contain 10 and 18 signals corresponding to different patients, respectively. The results were
reported for healthy subjects and patients (people suffering from sleep disease). In the second dataset, the reported
data do not allow to compare all performance measures. The authors performed 10-fold cross-validation, but segments
corresponding to the same patient were used for training and testing. Ideally, signals from patients that are used for
training should not be used for testing. The work by Xiao et al. [26] extracted 41 features from ECG and used random
forests to classify. The authors only analyzed data labeled with “stationary”, that is they classified 5-minute windows
corresponding to a single class. The accuracy obtained was 75.6%. The authors performed two different schemes,
subject-specific classifier (training and testing set with the same record) and subject independent classifier (training
and testing with independent records). To be fair, we only compared our result with the best result in the independent
scheme obtained by Xiao et al [26].

Based on the obtained results, we can see that acceptable performance is achieved. The most noticeable is the inability
of the algorithm to classify N1, a very minor stage in relation to the rest (approximately 3% of the total-register-time).

Fig. 2 shows three hypnograms obtained using the designed network: the first hypnogram represents an average error,
and the second and the third hypnograms obtained a performance higher and lower than the average, respectively.
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0

Example 1: Acc= 70.7%.

Sleep Expert
Our prediction

Example 2: Acc= 85.5%.

Example 3: Acc= 56.7%.

0

Time (hs)

REM

N3

N2

N1

W

REM

N3

N2

N1

W

REM

N3

N2

N1

W
0 1 2 3 4 5 6 7

0 1 2 3 4

0 1 2 3 4 5 6

Figure 2: Obtained hypnograms according to AASM rules.

4 Conclusion

In this paper, we proposed an RNN-based model for classifying sleep stages using raw HR and SpO2 obtained from a
pulse oximeter. Our model uses bidirectional-GRUs to learn the transition rules among the sleep stages. It was shown
that the HR and SpO2 dynamic is useful to perform sleep staging. As far as we know, with exception of EEG, this
research shows better results than the others research in the field that used signals that were harder to register in the
same field. Further, this approach can be easily adapted to screening devices of sleep pathologies, wearable devices
for personal health monitoring, among others. The size of the dataset used is bigger than in other related works. As
future work, we will improve this network and try other architectures with the aim to obtain results comparable with
the EEG.
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