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Abstract

Deformable image registration is a fundamental problem in the field of medical

image analysis. During the last years, we have witnessed the advent of deep

learning-based image registration methods which achieve state-of-the-art per-

formance, and drastically reduce the required computational time. However,

little work has been done regarding how can we encourage our models to pro-

duce not only accurate, but also anatomically plausible results, which is still an

open question in the field. In this work, we argue that incorporating anatomical

priors in the form of global constraints into the learning process of these mod-

els, will further improve their performance and boost the realism of the warped

images after registration. We learn global non-linear representations of image

anatomy using segmentation masks, and employ them to constraint the registra-

tion process. The proposed AC-RegNet architecture is evaluated in the context

of chest X-ray image registration using three different datasets, where the high

anatomical variability makes the task extremely challenging. Our experiments

show that the proposed anatomically constrained registration model produces

more realistic and accurate results than state-of-the-art methods, demonstrat-

ing the potential of this approach.

Keywords: medical image registration, convolutional neural networks, x-ray

image analysis

Preprint submitted to Neural Networks June 23, 2020

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. M

an
si

lla
, D

. H
. M

ilo
ne

 &
 E

. F
er

ra
nt

e;
 "

L
ea

rn
in

g 
de

fo
rm

ab
le

 r
eg

is
tr

at
io

n 
of

 m
ed

ic
al

 im
ag

es
 w

ith
 a

na
to

m
ic

al
 c

on
st

ra
in

ts
"

N
eu

ra
l N

et
w

or
ks

, V
ol

. 1
24

, p
p.

 2
69

-2
79

, 2
02

0.



1. Introduction

Deformable image registration is one of the pillar problems in the field of

medical image analysis. Disease diagnosis, therapy planning, surgical and radio-

therapy procedures are a few examples where image registration plays a crucial

role. In the medical context, the problem consists in aligning two or more im-

ages coming from different patients, modalities, moments or view points. Such

alignment is achieved by means of a deformation field, that warps the so called

source image, aligning it with the corresponding target image. Traditionally,

image registration has been formulated as an optimization problem, where the

objective function represents a similarity measure, which indicates how well the

source image matches the target.

Recently, the latest advances in machine learning allow us to conceive image

registration under an entirely different paradigm. In particular, deep convolu-

tional neural networks (CNN) have proved to outperform all existent strategies

in other fundamental tasks of computer vision, like image segmentation (Long

et al., 2015) and classification (Krizhevsky et al., 2012). During the last years,

we have witnessed the advent of deep learning-based image registration meth-

ods (Li and Fan, 2018; Yang et al., 2017; Rohé et al., 2017; Sokooti et al., 2017;

de Vos et al., 2017, 2019; Balakrishnan et al., 2018; Dalca et al., 2018; Esti-

enne et al., 2019), which achieve state-of-the-art performance, and drastically

reduce the required computational time. These works have made a fundamen-

tal contribution by setting novel architectures for CNN-based deformable image

registration (following supervised, unsupervised and semi-supervised training

approaches). However, little work has been done regarding how can we encour-

age our models to produce not only accurate, but also anatomically plausible

results, which is still an open question in the image registration community.

Image registration is employed in several medical tasks, e.g. when segment-

ing organs at risk in radiotherapy planning (Oh and Kim, 2017), co-registering

MRI brain images prior to neuro-morphometry analysis (Gaser, 2016) or fusing
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pre and post-operative images to perform minimally invasive surgeries (Ferrante

and Paragios, 2017)). In these applications, producing anatomically plausible

results is of paramount importance to guarantee the correctness of such med-

ical and analytical procedures. Most of the existing registration methods im-

pose smoothness constraints to the deformation fields or incorporate pixel-level

losses into the objective functions to encourage anatomical plausibility. How-

ever, smooth deformation fields do not guarantee realistic results: in some cases,

like moving organs for example, we require sharper deformations in the organ

boundaries in order to preserve the anatomy. Regarding current pixel-based

metrics (like Dice coefficient or Cross Entropy, for example), they do not con-

sider the complete global context and therefore do not necessarily correlate with

higher anatomical plausibility. The challenge we address is how CNN-based im-

age registration models can produce accurate and anatomically plausible results

after registration, that is, realistic results. Objectively quantifying the degree

of realism of a medical image and incorporating it into the learning process of

deep learning-based registration models is an extremely complex task. Here we

propose to learn such measure from anatomical segmentation masks.

In this work, we argue that incorporating priors in the form of global anatom-

ical constraints (Oktay et al., 2018) into the learning process of deep learning-

based registration models, will further improve the accuracy of the results and

boost the realism of the warped images after registration. We address the ques-

tion about how we can incorporate anatomical priors into deep learning-based

image registration methods in order to obtain more realistic results. In that

sense, our contributions are four-fold: (i) we extend, for the first time, the

concept of anatomically constrained neural networks (Oktay et al., 2018) to

the image registration problem, (ii) we perform a deeper study of the com-

plementarity between global and local loss functions defined over segmentation

masks, (iii) we introduce the novel anatomically constrained registration net-

work (AC-RegNet) architecture and validate it in the challenging task of X-ray

chest image registration, comparing its performance with state-of-the-art exist-

ing methods and (iv) we showcase several application scenarios for AC-RegNet
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in the context of X-ray chest image analysis including multi-atlas segmentation,

automatic quality control and pathology classification, where anatomical plau-

sibility is highly relevant, especially when performing pathology classification

using anatomical segmentation masks. In this case, the masks are obtained

through registration-based label propagation. Thus, the anatomical plausibility

of the deformed segmentation masks is crucial for the classification task. We

evaluate the proposed method in the context of X-ray chest imaging using three

different datasets, including an interesting study about the behaviour of the

global anatomical constraints when compared with a local metric. We show

that the proposed method encourages the registration models to warp images in

the space of anatomically plausible solutions while, at the same time, increasing

the accuracy of the results.

2. Related works

Inspired by Horn and Schunck. (1980) and Lucas and Kanade (1981), the

research communities of computer vision and medical imaging have made major

efforts towards developing more accurate and efficient registration methods.

Since then, deformable image registration has been modelled in multiple ways

(see Sotiras et al. (2013) for a comprehensive description), most of them posing

image registration as an optimization problem, which in its general form can be

formulated as

T̂ = arg min
T

M(I ◦ T , J) +R(T ), (1)

where I is the source (moving) image, J is the target (fixed) image, T param-

eterizes a spatial transformation that maps each point of the image I to J , M

corresponds to the criterion of (dis)similarity that quantifies the quality of the

alignment between the warped source image I ◦ T and the target image J , and

R corresponds to the regularization term that imposes geometric constraints on

the solution. In deformable image registration, the spatial transformation T is

characterized by a deformation field, which represents the pixel displacements.

The optimal transformation T̂ aligning I with J is computed by solving this
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minimization problem. Classical non-learning based methods, like the one im-

plemented in the popular toolbox SimpleElastix (Marstal et al., 2016), which

will be used as baseline in this work, compute the optimal transformation by

iteratively exploring the space of potential transformation parameters. In this

case, a B-spline transformation is used to parameterize the deformation field,

whose parameters are adjusted by minimizing the differences between the im-

ages. The main advantage of these methods is that they do not require a training

process. Therefore, they can easily adapt to unseen images, being robust enough

to be used in different image modalities and organs. However, when dealing with

deformable registration, these algorithms are computationally expensive due to

the high dimensionality of the parameter space, making the image registration

process highly time consuming.

Existing CNN-based image registration methods are usually classified as

supervised or unsupervised, depending on whether or not they use ground truth

deformation fields to compute the loss function during training. Inspired by the

original FlowNet for vector flow estimation (Dosovitskiy et al., 2015), supervised

CNN-based image registration methods (Yang et al., 2017; Rohé et al., 2017;

Sokooti et al., 2017) posed image registration as a regression problem. Given

a pair of source and target images, they aim at regressing a deformation field

that matches the ground-truth. One of the advantages of these methods is its

independence with respect to image modalities: given a training dataset with

pairs of images and their corresponding ground-truth deformations, it learns to

map images to deformation fields without using any kind of similarity measure

to compare them. However, getting such good datasets is a difficult task and

makes these approaches impractical.

On the contrary, unsupervised CNN-based medical image registration (Li

and Fan, 2018; de Vos et al., 2017, 2019; Balakrishnan et al., 2018; Dalca et al.,

2018; Stergios et al., 2018; Balakrishnan et al., 2019) does not require ground-

truth deformation fields. Instead, these methods (and the original CNN-based

unsupervised optical flow estimation method (Ren et al., 2017)) solve the reg-

istration process by minimizing a loss function based on the (dis)similarity M

5

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. M

an
si

lla
, D

. H
. M

ilo
ne

 &
 E

. F
er

ra
nt

e;
 "

L
ea

rn
in

g 
de

fo
rm

ab
le

 r
eg

is
tr

at
io

n 
of

 m
ed

ic
al

 im
ag

es
 w

ith
 a

na
to

m
ic

al
 c

on
st

ra
in

ts
"

N
eu

ra
l N

et
w

or
ks

, V
ol

. 1
24

, p
p.

 2
69

-2
79

, 2
02

0.



between the deformed source image and the target. They use a differentiable

warping module similar that used in spatial transformers (Jaderberg et al.,

2015), to warp the source image during the forward-pass, and allow the gradi-

ents flow back during backpropagation. In such way, the model is trained to

produce deformation fields that minimize the similarity-based loss function. At

test time, a single forward pass will return the deformation field. In this work,

we will follow this strategy to construct a baseline architecture (referred RegNet

throughout this text) that will serve as baseline when evaluating the impact of

the proposed anatomically constrained registration method.

Various approaches were envisioned in the literature to improve the accu-

racy and realism of the registration methods by incorporating prior information

(about image modalities, anatomy and structure) into the registration process.

Two of the most common strategies are knowledge-based transformations, where

the information is encoded within the deformation model (Wouters et al., 2006;

Glocker et al., 2009; Del Palomar et al., 2008) and segmentation-aware strate-

gies, which directly incorporate segmentation priors to the registration process.

The main disadvantage of knowleadge-based transformations is that they are

highly domain specific, especially in methods like Del Palomar et al. (2008),

which employ biomechanical models of specific organs to predict real deforma-

tions. In this work, we focus on the second alternative. Several non-deep learn-

ing based approaches (Shakeri et al., 2016; Ferrante et al., 2017, 2018a) were

proposed to take advantage of such segmentations in the context of discrete

graph-based image registration (Paragios et al., 2016). In Shakeri et al. (2016),

probabilistic priors are incorporated to the registration process through a new

term in the energy function of the proposed discrete formulation. In Ferrante

et al. (2017, 2018a) segmentation masks are used to perform weak supervision

when learning to aggregate standard similarity measures for image registration.

However, these methods are orders of magnitude much slower than deep learning

based image registration models. The first multi-modal CNN-based image regis-

tration method proposed in Hu et al. (2018), incorporates segmentation masks

into the loss function of a weakly supervised approach to guide the learning
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process. They use a pixel-level similarity measure defined on the segmentation

masks, that makes it possible to register images independently of their modality.

A similar pixel-level measure based on the Dice coefficient was incorporated in

the VoxelMorph (Balakrishnan et al., 2019) and U-ResNet (Estienne et al., 2019)

frameworks, and used in tandem with a standard intensity based loss. Still, local

pixel-level loss functions do not consider the global context and might produce

similar values for anatomically plausible and non-plausible segmentations. In

this work, we build on top of these ideas by regularizing the learning process

using a global and non-linear representation of the underlying anatomy. We

show that this global term is complementary to existent pixel-level loss func-

tions. Moreover, in the context of X-ray chest image registration, we improve

the performance of existent registration methods by a significant margin while

producing more realistic images after deformation.

3. Learning deformable image registration with anatomical constraints

In this section, we provide a brief description of the existing basic CNN

architecture used to perform unsupervised image registration, which constitutes

the building blocks for the proposed model. We then discuss how can we learn

compact and non-linear representations of the image anatomy using denoising

autoencoders (DAE) (Vincent et al., 2010), and how these representations can be

introduced in the loss function to act as an anatomical regularizers, encouraging

the learnt model to produce anatomically plausible images after deformation (see

Figure 1 for an overview of the proposed novel architecture).

3.1. Basic architecture

The basic CNN architecture for image registration is composed of two main

modules. The first one (referred as VectorCNN in Figure 1) follows an encoder-

decoder structure similar to that of U-Net (Ronneberger et al., 2015). Given

a pair of source image I and target image J as input, VectorCNN predicts

a deformation field T = VectorCNN(I, J ; Θ) where T : Rn → Rn (n beign
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d
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r

VectorCNN

E
n

c
o

d
e

r

Warper

Source Image

Target Image

Deformation Field
Warped Source Image

Warped Source MaskSource Mask

Target Mask

AC-RegNet extension

Basic Architecture

Differentiable

Warper

Differentiable

Figure 1: Architecture of the proposed AC-RegNet image registration model. We combine a

basic CNN architecture for image registration (upper box) with local (Lce) and a global (Lae)

loss functions based on anatomical segmentations SI , SJ (lower box). We train the network

VectorCNN to produce deformation fields T which minimize the differences between source

(I) and target (J) images while, at the same time, ensuring anatomical correspondence after

registration.

the image dimensionality) and Θ corresponds to the network parameters learnt

during training. Images I and J are concatenated and fed to the network as

a single multi-channel image. VectorCNN processes the two images through a

series of convolutional and pooling layers, and outputs a 2-channel filter map

representing the 2D deformation field (3-channels in case we are dealing with

3D images). The second component is a differentiable warping module similar

to that used in spatial transformer networks (Jaderberg et al., 2015), that uses

T to deform the source image I, producing a warped image I ◦ T .
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At the beginning of the training process, VectorCNN will produce random

deformation fields T . During training, the parameters Θ are adjusted so that

the warped source image I ◦ T minimizes the (dis)similarity criterion M with

the target image J , in the same spirit that classic registration methods. In

this work, we use the negative normalized cross correlation (NCC) to quantify

image alignment. NCC has been previously used in the context of CNN-based

registration (Balakrishnan et al., 2018) and is a common choice when dealing

with monomodal registration. We also consider a simple regularization term

R(T ) imposing smoothness to the deformation field by computing the total

variation of the field (Li and Fan, 2018; Ferrante et al., 2018b). The basic loss

function is therefore defined as

L(I, J, T ) =M(I ◦ T , J) + λrR(T ), (2)

where λr is a weighting factor for the total variation-based regularization term.

3.2. Segmentation-aware local loss functions

In order to augment the anatomical context provided to the network, we

consider a simple initial strategy to include anatomical segmentations into the

loss function by combining the aforementioned intensity-based lossM(I ◦T , J),

with a segmentation aware loss Lce(SI ◦ T , SJ). This new loss quantifies the

alignment between a target anatomical segmentation mask SJ and a warped

version of a source segmentation mask SI . The size of each segmentation mask

is the same as that of the corresponding image, and the mask is formed by the

elements (or pixels) sk ∈ C, where C is the set of classes. Lce(SI ◦ T , SJ) is

implemented as the classical categorical cross-entropy defined at the pixel level

on the one-hot encoded versions of SI and SJ . The segmentation-aware local

loss function is thus defined as

L(I, J, SI , SJ , T ) =M(I ◦ T , J) + λrR(T ) + λceLce(SI ◦ T , SJ), (3)

where λce is a weighting factor for the additional term Lce. Note that segmen-

tation masks SI , SJ are only required during training time to compute the loss
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function. At test time, a single pair of images will be fed into the network to

produce a deformation field and no segmentation masks are required.

3.3. Auto-encoding global anatomical priors

The local loss function Lce(SI ◦ T , SJ) defined in the previous section looks

at pixel level predictions; therefore, it does not guarantee a good matching at

the global scale between the deformed source and target anatomical masks.

The segmentation masks used in this work represent anatomical structures like

lungs and heart. This is different from, for example, segmentation masks cor-

responding to pathological structures or lesions (like brain tumors or skin le-

sions), which are highly irregular both in terms of shape and topology. Even if

anatomical structures present high variability among different patients, human

organs maintain a high degree of regularity that we exploit to constraint the

registration process. We are interested in designing a loss function to analyze

anatomical masks at a global scale, taking into account the anatomical plausibil-

ity of the deformed source mask when comparing it with the target mask. Since

Lce(SI ◦ T , SJ) operates at the pixel level, the back-propagated gradients are

parametrized only by pixel-wise individual probability terms and thus provide

little global context (Oktay et al., 2018).

We learn a lower-dimensional representation of the anatomical segmenta-

tions using denoising autoencoders (DAE) (Vincent et al., 2010). Autoencoders

are neural networks designed to learn a mapping from the input space X to a

novel, lower-dimensional representation h, that retains significant information

about the input. These neural networks usually follow an encoder-decoder ar-

chitecture, where the encoding h = enc(X) is extracted from an intermediate

fully connected layer. This encoding contains significant information to decode

the original input through a decoding phase X ' dec(enc(X)).

The model is trained to minimize the reconstruction error of the input masks,

what results in maximizing a lower bound on the mutual information between

the input X and learnt representation h (Vincent et al., 2010). In other words,

the network is forced to store significant information (useful to reconstruct the
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original anatomical masks) into the learnt representation. A DAE considers

noisy versions of the segmentation masks as input, and is trained to reconstruct

clean versions of the corrupted input. This denoising effect, together with the

bottleneck imposed by the encoder-decoder architecture, leads the model to-

wards learning a manifold that captures the main variations in the data and

maps similar segmentation masks into regions which are close in the manifold.

We train the DAE so that it minimizes the categorical cross-entropy defined

over the one-hot encodings of our multi-organ anatomical masks. The noisy

input segmentation masks for the DAE were constructed taking the clean seg-

mentation masks and swapping the border pixels of the anatomical structures

with the label of its left neighbor with a probability of 0.1. Therefore, the

learnt representation concentrates significant information about global anatom-

ical properties of the organs, such as shape and topology, which can be used to

introduce global anatomical priors in the learned registration model. In Section

5.1 we perform an experiment to better reflect the advantages of such represen-

tation when used as loss function, and discuss why it is beneficial to combine it

with standard pixel-level losses.

3.4. AC-RegNet: Learning deformable image registration with anatomical con-

straints

The novel anatomically constrained registration network (AC-RegNet) ar-

chitecture is depicted in Figure 1. We combine the basic CNN architecture for

image registration described in Section 3.1 with the local segmentation-aware

loss function Lce (Section 3.2) and a new loss term based on the learnt anatom-

ical representations (Section 3.3). This term will encourage global agreement

between deformed source and target segmentation masks, ultimately resulting in

more realistic and anatomically plausible images after warping. The new term

Lae is defined as the squared Euclidean distance between the codes h generated

from the deformed source SI ◦ T and the corresponding target segmentation

mask SJ as:

Lae(SI ◦ T , SJ) = ‖enc(SI ◦ T )− enc(SJ)‖22 . (4)
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Note that both, the Euclidean norm and enc(X) are differentiable operations

and therefore Lae is a differentiable loss. The final loss function for our AC-

RegNet model considering both, local and global constraints, is given by:

L(I, J, SI , SJ , T ) = M(I ◦ T , J) + λrR(T ) + λceLce(SI ◦ T , SJ) + (5)

λaeLae(SI ◦ T , SJ).

The influence of the new term Lae in the loss function is controlled with a

weighting factor λae. The main difference between Lae and the pixel-level Lce

is that the first one acts at a global scale, better reflecting agreement in terms

of anatomical shape variations. A deeper study about the complementarity of

both losses is provided in Section 5.1.

3.4.1. Training the AC-RegNet model

The training is organized in two stages. First, we train the autoencoder to

learn a global and lower-dimensional representation of the anatomical structures

using the segmentation masks. Second, we train the AC-RegNet model, by

learning the parameters Θ of the VectorCNN that will produce the deformation

field T , considering the loss function defined in (5). In this second stage, the

parameters of the encoder model used to produce the codes h = enc(S) are fixed.

We highlight the fact that segmentation masks are used during training (of both,

the autoencoder and AC-RegNet models) but, at test time, we only require the

pair of images to be registered. This is possible since the CNN which produces

the deformation field given the pair of images (referred as ”Basic Architecture”

in Figure 1) does not use the segmentation masks. Instead, segmentation masks

representing anatomical structures of interest in the corresponding images are

used during training to enforce anatomical correspondences between the target

and deformed source through the loss function defined in (5). Once the AC-

RegNet model is trained, the registration process of a given pair of images is

performed by calculating the deformation field with VectorCNN and deforming

the source image with the Warper module (see upper block in Figure 1), without

the need of segmentations. The anatomical constraints are therefore introduced
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in the model during training.

4. Data and Experimental Setup

4.1. Image dataset

The proposed registration model is evaluated in the context of inter-subject

2D chest X-ray image registration. Performing such task for different patients is

challenging, since the anatomical variability between two different subjects can

be really high. In our experiments, we use three image databases: the Japanese

Society of Radiological Technology (JSRT) database (Shiraishi et al., 2000), the

Montgomery County X-ray database and the Shenzhen Hospital X-ray database

(Candemir et al., 2013; Jaeger et al., 2013). These last two databases were

created by the U.S. National Library of Medicine in collaboration with the

Department of Health and Human Services, Montgomery County, Maryland,

USA and the Shenzhen No.3 People’s Hospital, Guangdong Medical College,

Shenzhen, China, respectively.

JSRT is a public database containing 247 PA chest X-ray images with and

without lung nodules (154 nodule and 93 non-nodule images) of 2048x2048

pixels and a spacing of 0.175 mm/pixel. The Montgomery set contains 138

PA X-ray images with and without manifestations of tuberculosis (80 normal

and 58 pathological images) of 4020x4892 or 4892x4020 pixels and a spacing of

0.0875 mm/pixel. The Shenzhen set contains 662 X-ray images with and with-

out manifestations of tuberculosis (326 normal and 336 pathological images)

in different sizes. Spacing is not provided, so we report results in pixel space

when computing distance based measures like Hausdorff distance, which mea-

sures the maximum distance between segmentation contours1. JSRT provides

manual lung and heart segmentations for each image. Manual lung segmen-

tations are available for Montgomery and Shenzhen sets. These segmentation

1We used the Hausdorff distance implementation available in MedPy package.

13

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. M

an
si

lla
, D

. H
. M

ilo
ne

 &
 E

. F
er

ra
nt

e;
 "

L
ea

rn
in

g 
de

fo
rm

ab
le

 r
eg

is
tr

at
io

n 
of

 m
ed

ic
al

 im
ag

es
 w

ith
 a

na
to

m
ic

al
 c

on
st

ra
in

ts
"

N
eu

ra
l N

et
w

or
ks

, V
ol

. 1
24

, p
p.

 2
69

-2
79

, 2
02

0.



masks will be used to learn the lower-dimensional representations and introduce

anatomical context to the registration problem.

The images and segmentations of the Montgomery and Shenzhen sets were

preprocessed in order to obtain square images in the same spatial resolution.

In each dataset, an image was taken as a reference image and resized by fill-

ing its shortest side with background color to make it square. Then, all the

images of each dataset were registered against this image, taken as a refer-

ence image, through a similarity transform using SimpleElastix (Marstal et al.,

2016)2, finally obtaining images of 4892x4892 pixels in the Montgomery set and

3000x3000 pixels in the Shenzhen set.

4.2. Experimental setting

We randomly divided the images of each dataset in 60% training, 20% vali-

dation and 20% test. In the training stage, we sample random pairs of images

from the training fold and built mini-batches of size 32. For testing, we sample

2×N random pairs of images from the test fold, where N represents the number

of images in that fold of the dataset.

In order to evaluate the performance of image registration algorithms we

employ three metrics commonly used in the literature, which quantify the agree-

ment between the warped source segmentation after registration and the target

masks: (i) Dice Similarity Coefficient (DSC), which measures the overlapping

between the segmentations (Dice, 1945), (ii) Hausdorff Distance (HD), max-

imum distance between segmentation contours, and (iii) Average Symmetric

Surface Distance (ASSD), computed as the average distance between the seg-

mentation contours. DSC varies between 0 and 1, with 1 indicating a total

correspondence between segmentations. HD and ASSD measure the distance

between contours in milimeters, and lower values indicate better performance.

2The configuration files used to run Elastix can be found online at https://github.com/

lucasmansilla/ACRN_Chest_X-ray_IA/tree/master/acregnet/config/JSRT/elastix
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4.3. Implementation details

The proposed models were implemented in TensorFlow and trained with

Adam optimizer considering learning rate of 10−3 and default TensorFlow values

for the remaining optimization meta-parameters3. Models were trained until

convergence and the weighting factors for the loss functions were chosen trough

grid search using the validation fold, resulting in λr = 5 × 10−5, λce = 1 and

λae = 10−1. A detailed description of the CNN architectures is provided in

Appendix A.

5. Results and Discussion

5.1. Understanding the anatomical constraints

We perform a first experiment to compare the behaviour of the proposed

global loss function (Lae) with the standard pixel-level loss (Lce), when com-

paring anatomically plausible and non-plausible segmentation masks. We take

20 random segmentation masks from our dataset, and generate 4 modified ver-

sions of each one by changing a constant number of pixels (120 pixels in our

example) from the original segmentation (see images (a), (b), (c) and (d) in

Figure 2). While the segmentation mask (a) corresponds to an anatomically

plausible version of the original mask (we just erode the mask by changing to

background 120 pixels in the lungs and heart border), the other versions cor-

respond to anatomically non-plausible masks (we remove blocks of 120 pixels

representing complete parts of the lungs or heart). Remind that, in all these

cases, a fixed number of pixels was changed. We then compute both losses Lae,

Lce and compare the reference segmentation with its modified versions. As ex-

pected, the local Lce remained constant for the 4 cases, regardless of the place

where the pixels are modified, since the number of non-agreeing pixels was 120

3Our code is available at https://github.com/lucasmansilla/ACRN_Chest_X-ray_IA. Re-

quirements and instructions are listed at https://github.com/lucasmansilla/ACRN_Chest_

X-ray_IA/tree/master/CLI_application/acregnet
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Anatomically 
Plausible Modification

Anatomically 
Non Plausible Modifications

Reference
Segmentation

Figure 2: Comparison between the local loss Lce defined at the pixel level, and the global loss

Lae based on the learnt representation, when comparing 20 random reference segmentations

from JSRT dataset with its modified versions. The modified masks were obtained by manually

setting 120 foreground pixels to background forming anatomically plausible (a) and non-

plausible (b,c,d) versions. The figure shows that Lae encodes complementary information

with respect to Lce. Note that while the local Lce remains constant, the global Lae is much

lower for the anatomically plausible cases. This indicates that the proposed Lae loss can

discriminate different degrees of anatomical plausibility in cases where the standard pixel

level functions indicate equivalent accuracy.

for all of them. However, when observing the behaviour of the global loss Lae,

it returned a much lower value for the anatomically plausible case than for the

non-plausible cases. Figure 2 shows the loss value for the 20 modified random

masks following the same tendency: while the local Lce remained constant in

all cases, the global Lae returned higher values for the non-plausible masks.

This confirms our intuition about how Lae encodes complementary informa-

tion with respect to Lce. In the next section, we will see how this sensitivity

to anatomical differences at the global scale can be exploited to improve the
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Metric

Dataset Method DSC HD ASSD

AC-RegNet 0.943 (0.020) 17.973 (7.356) 3.340 (1.210)

AE-RegNet 0.934 (0.021) 19.464 (8.277) 3.846 (1.320)

JSRT CE-RegNet 0.925 (0.025) 21.973 (8.966) 4.466 (1.553)

RegNet 0.809 (0.085) 42.177 (19.751) 11.229 (5.035)

SimpleElastix 0.846 (0.087) 35.713 (18.180) 9.028 (5.050)

AC-RegNet 0.953 (0.017) 14.963 (7.910) 2.645 (0.957)

AE-RegNet 0.947 (0.019) 16.880 (8.621) 2.981 (1.167)

Montgomery CE-RegNet 0.929 (0.027) 33.425 (22.813) 4.349 (1.945)

RegNet 0.869 (0.052) 45.152 (35.702) 8.078 (5.002)

SimpleElastix 0.879 (0.073) 42.504 (27.480) 7.136 (5.130)

AC-RegNet 0.931 (0.027) 277.386 (182.207) 31.738 (15.891)

AE-RegNet 0.924 (0.032) 285.549 (179.823) 34.452 (18.259)

Shenzhen CE-RegNet 0.908 (0.039) 325.958 (201.213) 42.845 (23.560)

RegNet 0.830 (0.073) 410.012 (225.783) 73.758 (35.849)

SimpleElastix 0.883 (0.058) 353.562 (217.423) 51.978 (30.299)

Table 1: Mean and standard deviation of Dice Similarity Coefficient (DSC), Hausdorff Dis-

tance (HD) and Average Symmetric Surface Distance (ASSD) along all classes (left/right lung

and heart) from JSRT, Montgomery and Shenzhen datasets. HD and ASSD for JSRT and

Montgomery are expressed in milimeters, while Shenzen is expressed in pixels. Differences

among the distributions for all pairs of method are statistically significant according to a

paired Wilcoxon test considering Bonferroni correction. Note that AC-RegNet achieves the

best results, presenting the highest DSC and lowest HD and ASSD.

accuracy of our registration algorithm.

5.2. Model comparison

The proposed AC-RegNet model was compared with two initial baselines:

SimpleElastix (Marstal et al., 2016) and the baseline RegNet described in Sec-

tion 3.1, which do not consider segmentation-aware loss functions during train-

ing. SimpleElastix is a classic medical image registration toolbox, considered
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Figure 3: Visualization of the results after registering a pair of images. The blue and red

circles highlight two of the areas of the lung anatomy that is better preserved by the AC-

RegNet, when compared with the basic RegNet and the other segmentation-aware models.

Note, for example, that unlike AC-RegNet, other methods such as SimpleElastix (row 3) and

RegNet (row 4), produce images where lungs are cut or stretched down.
18

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. M

an
si

lla
, D

. H
. M

ilo
ne

 &
 E

. F
er

ra
nt

e;
 "

L
ea

rn
in

g 
de

fo
rm

ab
le

 r
eg

is
tr

at
io

n 
of

 m
ed

ic
al

 im
ag

es
 w

ith
 a

na
to

m
ic

al
 c

on
st

ra
in

ts
"

N
eu

ra
l N

et
w

or
ks

, V
ol

. 1
24

, p
p.

 2
69

-2
79

, 2
02

0.



state-of-the-art and listed as one of the most popular software packages imple-

menting iterative image registration during the last 20 years (see Viergever et al.

(2016)). It has been recently used as baseline method not only for chest X-ray

image registration (Ferrante et al., 2018b) but also in a variety of applications

(see for example de Vos et al. (2019) or a complete list of publications in the

Elastix website4).

We also include two segmentation-aware models, one considering only the

local Lce loss (referred as CE-RegNet for Cross Entropy) and another one con-

sidering only the global anatomical loss Lae (referred as AE-RegNet for Auto-

Encoder). The proposed model AC-RegNet considers a combination of both

losses, as described in (5). The quantitative results reported in Table 1 show

that our results are comparable to the state-of-the-art (Larrazabal et al., 2019;

Candemir and Antani, 2019). Statistical significance of the results between each

pair of methods was verified by performing a Wilcoxon signed-rank test con-

sidering Bonferroni correction for each evaluation metric. In particular, when

comparing the two most accurate methods (AC-Regnet and AE-RegNet) we ob-

tained p < 0.005 in JSRT, p < 0.05 in Montgomery and p < 0.005 in Shenzhen

dataset. Table 1 shows that all segmentation-aware strategies (AC-RegNet,

AE-RegNet and CE-RegNet) outperform baseline models (SimpleElastix and

RegNet) by a significant margin, giving the highest DSC and lowest HD and

ASSD values in each dataset. This already indicates that providing an anatom-

ical context to the network helps to improve performance. Moreover, using the

combined local and global metrics (AC-RegNet) yields better performance than

the individual cases. Figure 3 illustrates the regularization effect produced by

the AC-RegNet when compared with the other models. Note that registering

images with AC-RegNet ensures a better anatomical correspondence between

the organs, preventing unrealistic shapes in the lung areas as it happens with

methods such as SimpleElastix and RegNet (where lungs are cut or stretched

4List of publications using Elastix and their corresponding parameter files: http://

elastix.bigr.nl/wiki/index.php/Parameter_file_database.
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down). These results confirm our previous study about the complementarity of

both loss functions (see Section 5.1), and the importance of considering global

shape information on top of pixel-level descriptors to obtain more anatomically

plausible results.

5.3. Applications to X-ray image analysis

In this section we aim at highlighting the potential of AC-RegNet in a va-

riety of medical image analysis tasks. We show three different applications of

the proposed method in X-ray images: (i) multi-atlas image segmentation, (ii)

reverse classification accuracy (RCA) estimation (Valindria et al., 2017) and

(iii) representation learning for pathology classification. We use the well known

NIH Chest-XRay14 dataset (Wang et al., 2017) that includes 112,120 chest X-

ray images labeled with 14 common thorax diseases according to an automatic

natural language processing (NLP) analysis of the radiology reports.

Multi-atlas image segmentation: Anatomical segmentations are useful when

performing disease classification and population analysis. The Chest-XRay14 is

one of the largest medical datasets publicly available. However, it does not in-

clude anatomical segmentations. We used the AC-RegNet model to implement

a multi-atlas segmentation model (Iglesias and Sabuncu, 2015) and produce

anatomical masks of lung and heart for all the images, which we are mak-

ing publicly available5. We follow a simple multi-atlas segmentation strategy

(Mansilla and Ferrante, 2018): given a target image, we take the 5 most similar

images from the JSRT dataset (those which maximize the normalized cross cor-

relation with that image) and apply AC-RegNet to register all of them to the

target image space. We then transfer the JSRT segmentation labels by apply-

ing the resulting deformation field and fuse them using a simple majority voting

5The resulting anatomical segmentation masks together with their corresponding RCA

coefficient that estimates the quality of the segmentation can be downloaded from: https:

//github.com/lucasmansilla/NIH_chest_xray14_segmentations
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mechanism.

We believe that these segmentations are a valuable by-product contribution

of our work, which may be used by the medical imaging community to perform

further analysis based on the Chest-XRay14 dataset. We conducted automatic

quality control to estimate the accuracy of the segmentation using RCA as de-

scribed in the following paragraph.
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Figure 4: Histogram of estimated Dice coefficients for the resulting Chest-XRay14 segmenta-

tions. After visual inspection, we manually set a threshold of 0.92 to perform quality control

and decide whether a segmentation meets (in green) or not (in red) the minimum quality

standards. We include some visual examples, which represent segmentation masks of various

qualities obtained with the propose method, together with their corresponding RCA-based

predicted Dice.

Reverse classification accuracy (RCA) estimation: RCA is a framework

for predicting the performance of a segmentation method on unseen data, first

introduced in Valindria et al. (2017). RCA takes the predicted segmentation

from a new image to “train” a reverse classifier (reverse in the sense that it is
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trained using a prediction), which is evaluated on a set of reference images with

available ground truth. Such reverse classifier may take different forms, ranging

from a random forest classifier to a single-atlas segmentation method based on

image registration. The hypothesis is that if the prediction is correct, then the

RCA classifier trained with that predicted segmentation will perform well in the

reference images (those with ground truth). For a more detailed description of

RCA see Valindria et al. (2017).

Here we use AC-RegNet to implement RCA based on image registration,

estimating the Dice coefficient of the Chest-XRay14 anatomical masks consid-

ering JSRT as reference images with ground-truth annotations. In such way, we

provide an estimated quality index associated with every segmentation mask,

that can be used to define if a given segmentation is to be trusted or not. After

visual inspection, we set that threshold in 0.92. Figure 4 shows the histogram

of RCA Dice coefficients together with some visual examples of segmentation

masks below and above the minimum quality threshold.

Cardiomegaly classification: Cardiomegaly refers to an enlarged heart seen

on any imaging test and can be diagnosed based on the cardiothoracic ratio (CR)

(Dimopoulos et al., 2013). Since CR can be computed using the boundaries

derived from heart and lung masks (Li et al., 2019), the anatomical segmen-

tations should provide enough information to distinguish between healthy and

pathological cases. We evaluated the discriminative power of the segmentations

which meet the minimum quality requirements (RCA Dice > 0.92) in the task

of cardiomegaly vs healthy control classification. After quality control, we kept

87,870 from the original 112,120 images, out of which 2019 were labeled with

cardiomegaly. We also sampled 2019 healthy patients with RCA Dice > 0.92 to

create a balanced dataset of 4,038 images including control and pathological.

We perform 20-fold cross validation on the aforementioned dataset training a

support vector machine (SVM) (Cortes and Vapnik, 1995) with two alternative

inputs based on the segmentation masks. As a first alternative, we applied prin-

cipal component analysis (PCA) to reduce the dimensionality of a vectorized
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version of the segmentation masks6, keeping the 32 principal components and

using them as features to train the SVM. Second, we employ the 32-dimensional

representation learnt by the same autoencoder used to impose anatomical con-

straints to the AC-RegNet model. We trained the SVM using these two alterna-

tive representations and obtained accuracies of 0.77 and 0.79 respectively. This

suggests that the learnt representation encodes useful information that can be

exploited in other medical imaging scenarios.

6. Conclusions

In this paper, we introduced a new method to regularize CNN-based de-

formable image registration by considering global anatomical priors in the form

of segmentation masks. Our method learns a non-linear and compact represen-

tation of the anatomy associated with medical images, and uses it to constraint

the training process of standard CNN-based image registration architectures.

Our method outperforms baseline approaches using 3 different datasets of X-

ray images . What is more, we have used the to showcase different applica-

tion scenarios where the proposed method can be used beyond standard image

registration tasks, to perform multi-atlas segmentation, reverse classification

accuracy estimation and pathology classification.

We provide a comprehensive evaluation of the AC-RegNet model in a chal-

lenging problem like chest X-ray image registration, including quantitative and

qualitative results in three different datasets (namely JSRT, Montgomery and

Shenzhen). We also showcase three different application scenarios in the context

of X-ray image analysis using the NIH Chest X-Ray dataset (composed of more

than 100,000 images), where the proposed AC-RegNet was used to perform

image segmentation, quality control and pathology detection. In conclusion,

we found that the proposed global loss function encodes significant informa-

tion about the anatomical plausibility of a deformed segmentation mask, which

6We employ the Scikit-learn ( https://scikit-learn.org/ ) implementation of PCA and

SVM in our experiments.
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complements existent local losses defined at the pixel level. When used in tan-

dem with intensity-based metrics and local losses defined on the segmentation

masks, the global loss introduces additional constraints during training that en-

courage the registration model to produce more anatomically plausible images

after deformation.

The proposed model was applied in the context of 2D image registration,

but extending it to 3D images is straightforward. In the future, we plan to vali-

date our model in the context of brain 3D image registration, where anatomical

structures can be clearly identified and used to constraint the training process.

Moreover, as suggested in Hu et al. (2018), CNN-based image registration meth-

ods considering segmentation masks can help to alleviate the challenging task

of multi-modal registration. We plan to explore how AC-RegNet can be used to

develop fast, reliable and realistic image registration methods for multi-modal

scenarios.
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