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Sensory cortices display a suite of ubiquitous dynamical features, such as ongoing noise vari-
ability, transient overshoots, and oscillations, that have so far escaped a common, principled
theoretical account. We developed a unifying model for these phenomena by training a re-
current excitatory–inhibitory neural circuit model of a visual cortical hypercolumn to perform
sampling-based probabilistic inference. The optimized network displayed several key biologi-
cal properties, including divisive normalization, as well as stimulus-modulated noise variability,
inhibition-dominated transients at stimulus onset, and strong gamma oscillations. These dy-
namical features had distinct functional roles in speeding up inferences and made predictions
that we confirmed in novel analyses of awake monkey recordings. Our results suggest that the
basic motifs of cortical dynamics emerge as a consequence of the efficient implementation of
the same computational function—fast sampling-based inference—and predict further proper-
ties of these motifs that can be tested in future experiments.

The dynamics of sensory cortices exhibit a set
of ubiquitous features across species and experi-
mental conditions. Responses vary over time and
across trials even when the same static stimulus
is presented1, and these intrinsic variations have
both systematic and seemingly random compo-
nents (so-called noise variability). The most
prominent systematic patterns of neural activ-
ity are strong, inhibition-dominated transients at
stimulus onset2 (or, equivalently, strong adap-
tation following stimulus onset), and stimulus-
dependent population oscillations in the gamma
band (20–80 Hz)3,4. The extent and pattern of
noise variability is also stimulus-dependent: vari-
ability is quenched at stimulus onset1, decreasing
gradually with stimulus contrast in the primary vi-
sual cortex (V1)5, and is further modulated by the
content of the stimulus, e.g. the orientation or di-
rection of drifting gratings for cells in V1 or in the
middle temporal visual area (MT)6.

While the mechanisms giving rise to these dy-
namical phenomena are increasingly well un-
derstood6,7, their functional significance remains
largely unknown and controversial. For example,
cortical gamma oscillations have been suggested
to be a substrate for binding different sources
of information about a feature (known as bind-
ing by synchrony8), to mediate information rout-
ing (communication by synchrony9), or to enable
a temporal code of spikes relative to the oscil-
lation phase10. Transient overshoots have been
proposed to carry novelty or prediction error sig-

nals11. Noise variability, when considered to be
useful at all, has been argued to bear signatures
of probabilistic computations5,12,13. However, it is
unclear whether these explanations can be rec-
onciled, as each of them only accounts for select
aspects of the data, and has been challenged by
alternative accounts3,14–16.

Here, we present a unifying model in which all of
these dynamical phenomena emerge as a con-
sequence of the efficient implementation of the
same computational function: probabilistic infer-
ence. Probabilistic inference provides a princi-
pled solution to forming percepts by fusing par-
tial and noisy information from multiple sources
(including multiple sensory cues, modalities, and
forms of memory)17. Formally, this fusion results
in a posterior distribution expressing the probabil-
ity that relevant features in the environment that
are not directly accessible to the brain (e.g. the
three-dimensional shapes of objects) may take
any particular configuration given information that
is directly available to our senses (e.g. photons
absorbed in the retina). Behavioral evidence in
several domains, including near-optimal perfor-
mance in multi-sensory integration, decision mak-
ing, motor control, and learning suggests that the
brain represents posterior distributions at least
approximately18. There have also been several
proposals for how the neural responses of sen-
sory cortical populations may implement these
probabilistic representations5,12,19. While these
models successfully explained important aspects
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Fig. 1 | The statistical generative model, and the corresponding neural circuit implementing sampling-based probabilis-
tic inference. a, Sketch of the Gaussian scale mixture (GSM) generative model. An image patch is constructed as a linear
combination of a fixed set of localized, oriented, Gabor filter-like features (projective fields, differing only in their orientations,
uniformly spread between −90◦ and 90◦), with stimulus-specific feature intensities (latent variables) drawn from a multivariate
Gaussian distribution. The resulting image patch is scaled by a global contrast variable and corrupted by noise (not shown).
(Stimulus shown is for illustration only: the GSM model employed here was not sufficiently complex to generate photorealistic
images. For a sample of generated image patches see Fig. 3c and Extended Data Fig. 1c.) b, 2-dimensional projection of the
posterior distribution over latent variables given a visual stimulus, computed by the Bayesian ideal observer under the generative
model. c, An excitatory–inhibitory (E–I) neural network receiving an image patch as an input, filtered by feedforward receptive
fields identical to the projective fields of the generative model in a. The activity of each E cell represents the value of one latent
variable in the generative model. As an illustration of the ring topology of the network, the outgoing connections of one E-I cell pair
are shown (connection strength is indicated by line width and “synapse” size, see details in text). d, Responses of the two E cells
corresponding to the latent variables shown in b. The response trajectory samples from the corresponding posterior distribution
over time given the same stimulus.

of stationary response distributions (e.g. tuning
curves, Fano factors, noise correlations), they
have so far fallen short of accounting for the rich
intrinsic dynamics of sensory cortical areas.

To bring together dynamics (cortical-like activity
patterns) and function (representing posterior dis-
tributions) in a principled manner, we optimized a
biologically constrained recurrent neural network
for performing sampling-based probabilistic infer-
ence5,13,20,21. Specifically, the network’s objective
was to dynamically produce responses whose
distribution matched a Bayesian ideal observer’s
posterior distribution for each stimulus. The opti-
mized neural circuit exhibited a number of appeal-
ing computational and dynamical features. Com-
putationally, after training on a reduced stimulus
set, the network exhibited strong forms of gen-
eralization by producing near-optimal response
distributions to novel inputs which required qual-
itatively different responses. Furthermore, the
network discovered out-of-equilibrium dynamics,
a strategy currently employed by modern ma-
chine learning algorithms to produce samples

that become statistically independent on short
timescales22.

Biologically, the optimized circuit achieved divi-
sive normalization of its outputs and displayed
marked transients at stimulus onset, as well as
strong gamma oscillations. Both the magnitude
of transients and the frequency of gamma oscil-
lations scaled with stimulus contrast. Crucially,
these dynamical phenomena did not emerge in
control networks optimized for related objectives
that did not require sampling. Further analyses
of transients and oscillations in the optimized net-
work revealed distinct functional roles for them.
These analyses predicted novel properties of cor-
tical dynamics: onset transients should be tuned
to stimuli, which we confirmed by new analy-
ses of published V1 recordings in the awake
monkey23. In addition, our model also made
specific predictions about the stimulus tuning of
excitatory–inhibitory lags and the distribution of
gamma power across the different modes of net-
work dynamics. Both can be readily tested in fu-
ture experiments.
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In summary, we constructed the first biologically
constrained recurrent neural network performing
sampling-based probabilistic inference that ex-
plained a plethora of electrophysiological obser-
vations in sensory cortices. Our model thus pro-
vides a unifying theoretical account of the basic
motifs of sensory cortical dynamics.

Results

Optimizing a recurrent neural circuit for prob-
abilistic inference

To study neural circuit dynamics implementing
probabilistic inference, we used a novel combina-
tion of two well-established, though hitherto unre-
lated computational approaches: Bayesian ideal
observers and the training of recurrent neural net-
works (Methods). First, we used a Bayesian ideal
observer model to specify the computational goal
of perceptual inference in a simplified visual task.
Performing inference requires an internal model
that encapsulates one’s assumptions about how
the inputs to be processed have been generated
by the environment. For this, we adopted the
Gaussian scale mixture (GSM) model (Fig. 1a),
a generative model that has been shown to cap-
ture the statistics of natural image patches24.
Conversely, inference under the GSM model has
been shown to account for behavioral and neural
data (for stationary responses) in visual percep-
tion5,25,26. The GSM model assumes that an im-
age patch is generated as a linear combination of
oriented Gabor filter-like visual features (“projec-
tive fields”), each present with a different intensity
(the latent variables of the model). The image
patch is further scaled by a single global “con-
trast” variable. Here, we focused on modeling
a single hypercolumn, by choosing the projective
fields of the GSM latent variables to only differ in
their orientation so that they formed a ring topol-
ogy (Fig. 1a, Extended Data Fig. 1a-b). The ideal
observer was obtained by a Bayesian inversion of
this model. Thus, for every image patch taken as
sensory input, the ideal observer yielded a high-
dimensional posterior distribution quantifying the
probability that any particular joint combination of
feature intensities may have generated the input
(Fig. 1b).

Second, to model cortical circuit dynamics, we
used a canonical, rate-based stochastic recurrent
neural network model, the stochastic variant of
the stabilized supralinear network (SSN)6,27. The
network was constrained to exhibit some basic bi-
ological features previously shown to be funda-
mental for cortical dynamics: separate but inter-
connected excitatory (E) and inhibitory (I) popu-
lations of neurons (Fig. 1c), supralinear (expan-

sive) input/output functions27,28, and finite and
stimulus-independent process noise6,29 incorpo-
rating intrinsic and extrinsic forms of neural vari-
ability.

We trained this network to perform sampling-
based inference under the GSM. For this, we
assumed a one-to-one mapping between latent
variables and excitatory cells, such that the re-
sponse (membrane potential) of each E cell rep-
resented the intensity of a different feature in the
GSM model. Inhibitory neurons were treated as
auxiliary units not explicitly constrained by the
computational objective. The network was opti-
mized to produce distributions of excitatory neural
activities that matched the posteriors computed
by the GSM-based ideal observer up to second-
order statistics. For each stimulus in a small
training set, the network was required to use its
stochastic dynamics to visit different parts of state
space over time with a frequency proportional
to the posterior distribution corresponding to the
same stimulus (Fig. 1d). Critically, as process
noise in the network was stimulus-independent,
the network had to use its recurrent dynamics to
shape this variability appropriately for matching
the target posteriors for each input. The train-
ing objective also included terms encouraging
fast circuit dynamics. In summary, the network
had to generate fast fluctuations with the correct
stimulus-dependent patterns of across-trial mean
and covariance.

Optimizing our network was challenging because
modulating response variability (to match the
stimulus-dependent posterior covariances of the
ideal observer model) requires strong and non-
linear recurrent interactions, but networks of
strongly connected excitatory neurons – espe-
cially with supralinear input/output functions – are
prone to becoming unstable6,30. In such net-
works, it is non-trivial to find parameter regimes
in which stability is preserved and thus optimiza-
tion can proceed6. We therefore resorted to a
reduced “ring” (hypercolumn) parametrization in
which recurrent connection strength between any
two cells (and the covariability of their process
noise) only depended on the angular distance be-
tween their preferred stimuli and their respective
cell types (E or I; Extended Data Fig. 1d). The
feedforward receptive fields of the cells were fixed
and identical to the projective fields of the cor-
responding latent variables of the ring-structured
GSM (Extended Data Fig. 1a).

Inference and generalization in the optimized
network

In line with neural recordings, activity in the op-
timized network was highly variable across time
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Fig. 2 | Inference and responses in the optimized network. a, Sample population activity of excitatory (E) cell membrane
potentials uE (color) at zero (top) and high (bottom) contrast. The high contrast stimulus has a dominant orientation at 0◦ (arrow).
Neurons are ordered by preferred orientation. b, Left: stimuli in the training set (shade of frame color indicates contrast level, split
green and red indicates that the same stimuli were used as input to the ideal observer and the neural network). Right: covariance
ellipses (2 standard deviations) of the ideal observer’s posterior distributions (green) and of the network’s corresponding response
distributions (red). Red trajectories show sample 500 ms-sequences of activities in the network. Projections for two representative
latent variables / E cells are shown, with projective fields / receptive fields at preferred orientations 42◦ and 16◦ (insets at the end
of axes). c, Mean (top) and standard deviation (bottom) of latent variables under the ideal observer’s posterior distribution (left,
green) and of E cell membrane potentials uE under the network’s stationary distribution (right, red), ordered by their preferred
orientation, for each stimulus in the training set. d, Correlation matrices of the ideal observer’s posterior distributions (left, green)
and the network’s stationary response distributions (right, red). Line colors in c and frame colors in d correspond to different
contrast levels, same colors as stimulus frames in b. Response moments in c and d were estimated from n = 20, 000 independent
samples (taken 200 ms apart). Correlations in d are Pearson’s correlations.

and trials, for both low-contrast (Fig. 2a, top)
and high-contrast stimuli (Fig. 2a, bottom). Crit-
ically, the distributions of neural responses at
the five training stimuli (the same image patch
at five different contrast levels; Fig. 2b left)
closely matched the corresponding GSM poste-
riors (Fig. 2b–d, compare red to green). Specif-
ically, the mean activity of neurons increased
while the variability of their responses decreased
with contrast as well as with the match between
stimulus orientation and their preferred orienta-
tion. This was consistent with the behavior of
the moments of the GSM posterior (Fig. 2c, and
circles in Fig. 3a). Thus, the network had been
trained successfully to perform sampling-based
inference on these stimuli.

We also tested the capacity of the network to rep-
resent the appropriate posterior distributions for
novel stimuli. First, we confirmed that the mean

and variability of network responses smoothly in-
terpolated between the corresponding target mo-
ments for intermediate contrast levels, closely fol-
lowing the behavior of the GSM posterior (Fig. 3a,
solid curves between circles). Next, we pre-
sented the network with 500 entirely novel image
patches randomly generated from the GSM (Ex-
tended Data Fig. 1c). Overall, both the means
(Fig. 3b, top) and covariances of network re-
sponses (Fig. 3b, bottom) matched those of the
target posteriors. This match was similarly good
for test stimuli (Fig. 3b, orange) as for training
stimuli (Fig. 3b, lavender). Critically, while the in-
puts of the training set included a single dominant
orientation, many test stimuli had a more com-
plex structure, with more than one dominant ori-
entation (Fig. 3c, first column). Consequently, the
corresponding GSM posteriors that the network
was required to match became qualitatively dif-
ferent. Specifically, both the mean activity profiles
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Fig. 3 | Generalization in the optimized network. a, Mean and standard deviation of latent variables (green) and stationary
network responses (red) averaged over the population, as a function of contrast. Circles, and gray dots on x-axis indicate training
contrast levels. The network correctly generalizes to untrained contrast levels (segments between circles). b, Stationary mean
(top) and covariance (bottom) during network activity (y-axis) versus under the posterior (x-axis). Each dot corresponds to the
response of an individual cell (top) or cell-pair (bottom) to one of the trained stimuli (lavender) or one of the novel, untrained
stimuli in the test set (orange). c, Examples of generalization in the network. Each row corresponds to a different stimulus, and
shows the corresponding statistical moments of latent variables under the GSM posterior (green) and stationary responses in
the network (red). As a reference, the top row shows one of the training stimuli. The bottom five rows show generalization to
novel test stimuli. Left: example stimuli. Middle: GSM (green) and network means (red), and the first three principal components
of the GSM covariance, scaled by the square root of the variance they explain of the GSM posterior (green) and of the network
covariance (red). Right: Correlation matrices of the ideal observer’s posterior distributions (left, green frames) and the network’s
response distributions (right, red frames). Response moments in all panels were estimated from n = 20, 000 independent samples
(taken 200 ms apart). Population mean moments in a were further averaged across n=50 E cells. Correlations in c are Pearson’s
correlations.

across the population (Fig. 3c, 2nd column) and
the principal components (PCs) of the noise co-
variances (Fig. 3c, remaining columns) became
multimodal and highly dependent on the stimulus
(Fig. 3c, green; compare across rows). The net-
work was able to match the required GSM poste-
riors with high accuracy even in these challeng-
ing cases (Fig. 3c, red). Thus, the optimized net-
work performed approximate Bayesian inference
over a wide array of stimuli by always sampling
(approximately) from the appropriate, stimulus-

dependent high-dimensional posterior distribu-
tion of the ideal observer.

The optimized network performs fast sam-
pling

Under sampling-based inference, the time it takes
to accurately represent a posterior distribution by
collecting successive samples is directly propor-
tional to the timescale over which these samples
are correlated31. In our optimized network, noise
variability generated new, independent samples
every few tens of milliseconds across all contrast
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Fig. 4 | Temporal correlations in the optimized network. a, Membrane potential auto-correlations (population average) in the
network for increasing levels of stimulus contrast (from dark to pale red; same colors as in Fig. 2b–d). The auto-correlation of
a purely feedforward network (with the same process noise) is shown for comparison (dashed black line), together with those of
the process noise (dotted black line), and a collection of networks implementing Langevin sampling at each contrast level (from
dark to light gray). b, Lagged cross-correlation (left) in the Langevin sampler (top) and in the optimized E–I network (bottom),
decomposed into temporally symmetric (middle) and anti-symmetric components (right). Each line corresponds to a different cell
pair (3 representative pairs shown), color encodes identity of participating cells (E or I, note that there is no separation of E and I
cells in the Langevin networks). c, Lag between total E and I inputs to each E cell, as a function of stimulus orientation (relative
to preferred orientation) at different contrast levels (colors).

levels. This was evident in the fast fall-off of re-
sponse autocorrelations (Fig. 4a, colored curves),
similar to that observed in sensory cortices13,32.
In fact, our network was even faster than a dis-
connected network with the same membrane and
input time constants (Fig. 4a, dashed curve), and
close to the theoretical limit of a network of in-
finitely fast neurons in which sampling speed is
solely limited by the input time constant (Fig. 4a,
dotted curve).

To understand how the optimized network
achieved fast sampling, we compared its dynam-
ics to an algorithm known as Langevin sampling,
a form of directed random walk (Methods). Sam-
pling by Langevin dynamics was a relevant com-
parison for our network for two reasons. First,
Langevin sampling is a popular, general-purpose
algorithm in machine learning useful for bench-
marking the performance of our network. Sec-
ond, previous work suggested that sampling in
stochastic recurrent neural networks (without re-
specting Dale’s principle) may be implemented by
Langevin-like dynamics33–35.

We found that for each input, Langevin dynam-
ics was consistently an order of magnitude slower
than our network (Fig. 4a, gray curves). The
slowness of Langevin dynamics is known to arise
from one of its critical features: time-reversible
dynamics—i.e. that any time series of responses
is as probable as its time-reversed counterpart36.
This was indeed reflected in temporally symmet-
ric cross-correlograms (Fig. 4b, top). In con-
trast, our optimized network displayed a marked
departure from time-reversibility, as evidenced
by strong asymmetric components in its cross-
correlograms (Fig. 4b, bottom). This dynamical
irreversibility implied sequentiality in the activa-
tion of particular pairs of neurons. In particular,
we found that I cells typically lagged behind E

cells. Moreover, for any cell, its total inhibitory
input tended to also lag behind its overall excita-
tory input (Fig. 4c), consistent with known electro-
physiology37. Interestingly, this lag was smaller
for cells that were most strongly driven by the
stimulus, and this modulation became stronger
with increasing contrast. These form testable pre-
dictions of our model.

Cortical-like dynamics in the optimized circuit

Having established that our network represented
posterior distributions via sampling, we compared
its responses with known physiological proper-
ties of V1. First, firing rates in the model had a
physiologically realistic dynamic range and were
tuned to stimulus orientation, similarly to neurons
in macaque V1 (Fig. 5a, left-middle; Ref. 6, anal-
ysis of data recorded by Ref. 23). We also com-
puted spike count statistics in the network from
firing rates, assuming a doubly stochastic spike
generation process (Methods). The quenching
of membrane potential variability with increasing
contrast (Fig. 2d, bottom) gave rise to quenching
of spike count variability (quantified by the Fano
factor), strongest at the cell’s preferred orienta-
tion (Fig. 5b, middle). These effects qualitatively
matched V1 data, but were somewhat weaker
(Fig. 5b, left). Moreover, stationary responses in
the network exhibited clear signatures of divisive
normalization (Extended Data Fig. 2a-b)38. All
these results were expected for a network whose
stationary membrane potential response distribu-
tions represent GSM posteriors5.

Although our optimization procedure only con-
strained the network’s stationary response dis-
tributions, without prescribing any specific dy-
namics, we found that the optimized network ex-
hibited realistic, cortical-like dynamics. Specifi-
cally, strong gamma oscillations emerged, with
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Fig. 5 | Cortical-like dynamics in the optimized network. Left: experimental data; middle: optimized network; right: control
network trained to modulate its mean responses but not its variability. a-b, Mean firing rate (a) and Fano factor (b) of neurons
as a function of stimulus orientation (relative to preferred orientation) during spontaneous (dark red) and evoked activity (light
orange). Experimental results show mean ± s.e.m. (n=99 cells). c, Peak gamma frequency in the local field potential (LFP)
power spectrum as a function of contrast. Inset for the optimized network and main panel for the control network show LFP
power spectra at different contrast levels (colors as in Figs. 2 and 4). Note that no dependence of gamma frequency is shown
for the control network as there were no discernible gamma peaks in its power spectra. Experimental results show mean ± s.d.
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a peak frequency increasing with contrast, con-
sistent with V1 recordings in the awake mon-
key3,4 (Fig. 5c, left-middle). Moreover, selective
clamping of either the E or I population abolished
gamma oscillations (or stability altogether) (Ex-
tended Data Fig. 2c-d), suggesting gamma os-
cillations arose from dynamical interactions be-
tween E and I cells (“PING” mechanism16). The

network also showed strong transient responses
such that average population rates had marked
contrast-dependent overshoots at stimulus onset,
consistent with recordings in V13 (Fig. 5d, left-
middle). Finally, using a conductance-based ap-
proximation of our current-based model (Meth-
ods), we found that inhibition transiently domi-
nated over excitation during stimulus presenta-
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tion, as in V1 of the awake mouse2 (Fig. 5e, left-
middle).

Control networks do not show cortical-like dy-
namics

We next sought to establish whether these dy-
namical properties arose simply due to the bio-
logical and architectural constraints imposed on
our network – or specifically due to optimizing for
sampling-based inference. For this, we used a
series of ‘control’ networks in which single cell
parameters (time constants and firing rate non-
linearities), overall network architecture, and re-
ceptive fields were all identical to those used in
the original network. Thus, these networks only
differed in the objective for which they were opti-
mized.

First, we confirmed that the dynamics charac-
teristic of the originally optimized network did
not emerge in randomly parametrized networks
without optimization, but robustly emerged after
optimization starting from different random ini-
tial conditions (Extended Data Figs. 3 and 4).
Next, we optimized a control network that differed
from the original network in only one critical as-
pect: it was only required to match the means
of the posterior distributions, but neither vari-
ances nor covariances. Despite clear stimulus-
dependent modulations in mean responses (as
required by training; Fig. 5a, right), this network
exhibited only minimal modulations of both mem-
brane potential variability (Extended Data Fig. 5a-
g) and Fano factors (Fig. 5b, right; Extended Data
Fig. 6). Thus, the modulations of response vari-
ability seen in the original network, which are
a hallmark of sampling-based inference5, were
not simply a by-product of non-linear E–I dynam-
ics. Moreover, neither gamma oscillations nor
marked inhibition-dominated transients emerged
in the control network (Fig. 5c-e, right). In fact,
matching both means and variances, but not co-
variances (necessary for full inference), still abol-
ished these dynamical features (Extended Data
Fig. 5h-n, and 6). Finally, oscillations were also
absent in another control network specifically op-
timized to modulate its mean firing rates as be-
fore, while keeping its Fano factors constant (Ex-
tended Data Figs. 6 and 7), as would be required
by other, non sampling-based probabilistic repre-
sentations12.

These results suggest that the dynamical fea-
tures observed in the original network emerged
as a consequence of the specific computation
for which it was optimized. Conversely, training
the network on the original cost function but with-
out enforcing Dale’s principle resulted in substan-
tially poorer performance and a lack of oscilla-

tions and transients (Extended Data Figs. 4, 6
and 8). Thus, achieving competent sampling per-
formance and exhibiting realistic dynamics again
appeared to be coupled.

Oscillations improve mixing time

To study the potential functional benefits of oscil-
lations, one would ideally like to “knock-out” os-
cillations from the network while leaving all other
features of the dynamics intact. The complex and
high dimensional dynamics of our network made
this unfeasible. Therefore, we first studied the re-
sponse of a single neuron to obtain an analyti-
cal understanding of the general role of oscilla-
tions in sampling (Fig. 6a-b). We next generalized
this analysis to oscillations in network-wide activ-
ity patterns rather than single neurons, thus pro-
viding insights into the high-dimensional dynam-
ics of the full network (Fig. 6c-d).

Assuming that the response of a neuron is statis-
tically stationary and approximately normally dis-
tributed, it is fully characterized by its mean, vari-
ance, and autocorrelogram. As long as this neu-
ron is part of a sampling-optimized network, the
mean and variance of its response will have to
match those prescribed by the target distribution
sampled by the network (Fig. 2b-d). Although the
autocorrelogram is not constrained by the target
moments, it still contributes critically to the per-
formance of the network. Specifically, it can be
shown mathematically that the total area under
the autocorrelogram directly scales “mixing time”:
the time it takes for the dynamics to represent
the target distribution to a given precision (Sup-
plementary Math Note). Therefore, to understand
the specific role of oscillations, we compared ide-
alized (stationary and normally distributed) neu-
ronal responses, constructed to have the same
mean and variance as responses in our network
but different autocorrelation functions (Methods).

We compared response autocorrelograms with
different degrees of “oscillatoriness” (Fig. 6a,
blue, orange, red), but the same envelope as
that of the full network (Fig. 6a, inset, black dot-
ted; see also Fig. 4). These oscillations sub-
stantially reduced the area under the autocorrel-
ogram (Fig. 6a, inset) and thus accelerated the
convergence of the empirical distribution of re-
sponses to the target distribution (Fig. 6b; Sup-
plementary Math Note). Importantly, oscillations
will only decrease the area under the autocorrel-
ogram if at least one oscillation cycle fits under
the envelope, i.e. if the oscillation period is suffi-
ciently shorter than the width of the envelope (ap-
proximately 35 ms). This implied oscillation fre-
quencies higher than 30 Hz, just as observed in
the optimized network (Fig. 5c, middle).
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Fig. 6 | Oscillations improve mixing time. a-b, Analysis of oscillations in the response of a single neuron. a, Power spectra
of three different neural responses (colored lines) with identical mean and variance but different degrees of oscillatoriness. In-
set: autocorrelation functions. Black dotted line represents the autocorrelation of the process noise. b, Divergence between the
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a). c-d, Analysis of oscillations in the full network. c, Power spectra of the network’s neural activity along the directions of the
principal components (PCs) of its stationary response distribution, ordered by PC rank (colors). Inset: autocorrelation of neural
activity along the directions of the 1st and 10th PCs (colors as in main plot). d, Oscillatoriness of the autocorrelogram along each
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We next studied the organization of gamma os-
cillations in the multidimensional responses of
the full network. We were able to show that
maximal sampling speed is achieved specifically
when smaller response variance is associated
with higher oscillation frequency (Supplementary
Math Note). In turn, as we showed above,
variability is quenched with increasing contrast
both in our network and in the cortex (Fig. 2b-c,
Fig. 3a, Fig. 5b). This explains why the frequency
of gamma oscillations increased with contrast in
our network after optimization. These results sug-
gest that contrast-modulated gamma oscillations
observed in the cortex3,4 may reflect a speed-
optimized sampling strategy (Fig. 5c).

Our mathematical analyses also predicted that
oscillations in an efficiently sampling net-
work should be predominantly expressed where
they matter most: in the (stimulus-dependent)
network-wide activity patterns capturing most of

the overall response variability. Namely, for each
stimulus, we expected the strongest oscillations
along the top PCs of the corresponding sta-
tionary covariance (Supplementary Math Note).
This was indeed apparent in the power spec-
tra of our network associated with the top 10
PCs (Fig. 6c), and the corresponding autocorrel-
ograms that even showed negative-going lobes
(Fig. 6c, inset). Specifically, there was a pos-
itive relationship between oscillatoriness along
successive PCs and the fraction of variance ex-
plained. This meant that the network oscillated
more in the directions along which its responses
had the largest variance (Fig. 6d). (Note that our
measure of oscillatoriness was based on autocor-
relograms, and therefore had no a priori depen-
dence on response variance; Methods.) In sum,
the network used non-trivial temporal dynam-
ics, in the form of contrast-dependent, pattern-
selective gamma oscillations, to ensure that even
short segments of its activity were sufficiently rep-
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Fig. 7 | Transients support continual inference. a-b, Analysis of transients in the response of a single neuron. a, Temporal
evolution of the mean (left) membrane potential (uE ), and its running average (right), in three different neural responses (thick
lines) with identical autocorrelations (matched to neural autocorrelations in the full network, Extended Data Fig. 9a; cf. Fig. 6) but
different time-dependent means (shown here) and variances (Extended Data Fig. 9a). Thin green line shows the time-varying
target mean. b, Divergence between the target distribution at a given point in time and the distribution represented by the neural
activity sampled in the preceding 100 ms, for each of the three responses (colors as in a). The mean-dependent term of the diver-
gence is shown here, which depends on the difference between the target mean and the running average of samples (shown in
a, right; see Extended Data Fig. 9b for the full divergence). a-b Black bars show stimulus period. Mean and divergence computed
as an average over multiple trials (n = 10.000). c, Top: overshoot magnitude versus steady state difference in membrane potentials
(see a for legend). Each dot corresponds to the response of one cell to one particular stimulus. Bottom: overshoot magnitude as
a function of stimulus orientation (relative to preferred orientation). d, Top: same as c, top, for firing rates. Bottom: average rate
overshoot across stimuli whose orientation is aligned with the cells preferred orientation (0±30°), or near-orthogonal to it (90±30°).
e, Analysis of experimental recordings from awake macaque V1 23. Top: overshoot magnitude versus steady state difference, as
in d, top. Black line shows linear regression (±95% confidence bands); ***: two-sided Wald test p = 3×5−114 (n = 1280 cell-stimulus
pairs, R2 ' 0.33; see also Extended Data Fig. 9d-e). Bottom: each gray dot represents one cell’s average rate overshoot across
stimuli whose orientation is aligned with the cells preferred orientation (0 ± 30°), or near-orthogonal to it (90 ± 30°), the mean of
each group (± s.e.m.) is presented in black, as in d; ***: two-sided paired t-test p = 6× 10−9 ( n = 80 cells, DF = 79). (For a better
comparison with d, the y-range is truncated at 50 Hz, clipping 2 data points. Statistical analyses used all data.)

resentative of the posterior distribution it repre-
sented for each stimulus.

Transients support continual inference

The foregoing results showed that oscillations in-
crease mixing speed in the stationary regime, i.e.

once network responses have become represen-
tative of the target distribution. Complementing
this, we found that transients in our network mit-
igate the other main temporal constraint of sam-
pling: the “burn-in” time it takes for responses to
become representative in the first place31. We
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observed that, in line with experimental data, dur-
ing stimulus onset, neural responses tended to
overshoot the corresponding stationary response
levels (Fig. 5d, Fig. 7a). One might naively ex-
pect such transients to be detrimental for repre-
senting a distribution, as they clearly deviate from
the target (represented by the steady-state re-
sponses). However, in a realistic setting with a
changing environment, distributions need to be
represented continually, without waiting for the
system to achieve steady state.

In order to understand the role of transients in
continual inference, we considered how a moving
decoder of neural responses over a finite trailing
time window approximated the target. As with os-
cillations, we performed this analysis in two steps.
First, to isolate the potential functional benefits
of transients we once again considered the re-
sponse of just a single idealized neuron that is
part of a sampling-optimized network (Methods).
For this idealized neuron, we fixed the autocorrel-
ogram (thus controlling for oscillations) as well as
the before- and after-stimulus onset steady-state
means and variances to those of an actual, repre-
sentative neuron in our network (Extended Data
Fig. 9a). We then compared three ways in which
this neuron could transition between these two
steady states (Fig. 7a): 1. as an upper bound on
performance, instantaneously switching between
the two steady-states (Fig. 7a, gray dashed); 2.
exponentially approaching the new steady state
with the characteristic time constant of the cells
in the network, thus lacking overshoots (Fig. 7a,
black dashed); and 3. undergoing overshoots as
seen in our optimized network (Fig. 7a, red).

We found that overshoots performed close to the
upper bound, provided by instantaneous switch-
ing. In particular, they generated samples that
allowed a substantially more accurate estimate of
the target mean than that afforded by approach-
ing the new steady-state exponentially without
overshoots (Fig. 7a–b). (These results extended
qualitatively to the case when the match in the
full distributions was considered, Extended Data
Fig. 9b.) This was because without overshoots
at stimulus onset, responses were still sampling
from the distribution corresponding to the base-
line input. Thus, including them in the estima-
tion of the new stimulus-related mean inevitably
biased the estimate downwards. The overshoot
largely compensated for this bias. Indeed, we
were able to show analytically that optimal com-
pensation requires transient overshoots at stimu-
lus onset (Supplementary Math Note). This is be-
cause continual averaging of responses formally
corresponds to a temporal convolution, and so
the optimal response is the deconvolution of the

target with the averaging kernel. Under basic
smoothness constraints, the deconvolution of a
step function with such an averaging kernel yields
transients like those we observed in the network
(Extended Data Fig. 9c).

The hypothesis of increased sampling accuracy
by transient compensation made a distinct predic-
tion (Supplementary Math Note): transient over-
shoots should scale with the change in steady
state responses. Indeed, our network exhibited
this effect in both membrane potentials and fir-
ing rates (Fig. 7c-d, top). Importantly, transient
overshoots thus inherited the orientation tuning of
stationary responses (Fig. 7c-d, bottom). While
stimulus-onset transients have been widely ob-
served3,4, their stimulus-tuning has not been an-
alyzed. Therefore, we analyzed a previously pub-
lished dataset of V1 responses in the awake mon-
key23. In line with the predictions of the model,
overshoot sizes were orientation tuned (Fig. 7e,
bottom) and, more generally, they scaled with
the change in stationary responses (Fig. 7e, top;
these results were robust to excluding the outliers
with high firing rates, e.g. above 60 Hz, Extended
Data Fig. 9d-e).

Discussion
We have shown that a canonical neural network
model6,27 produces cortical-like dynamics when
optimized for sampling-based inference, but not
when optimized for non-probabilistic objectives,
or non sampling-based probabilistic objectives.
Further controls demonstrated that these dynam-
ics were not mere side products of the particu-
lar biological constraints or optimization approach
we adopted. Instead, they played well-defined
functional roles in performing inference.

The Gaussian scale mixture model and the
stochastic stabilized supralinear network

We used a canonical model of neural network
dynamics (the stochastic SSN) to embody a set
of biologically relevant constraints for cortical cir-
cuits. It was not trivial a priori that this model
would be able to modulate its responses as nec-
essary for successful sampling-based inference
under a canonical generative model of visual im-
age patches (the GSM). A hint that this might
indeed be possible came from previous stud-
ies showing that both in the SSN6,27 and the
GSM5,39, a range of parameters exists for which
the average response or posterior mean mono-
tonically increases while the variance decreases
with increasing stimulus strength. Empirically, we
found a good quantitative match that went be-
yond this coarse, qualitative trend, with the SSN
also capturing much of the detailed structure of
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the GSM posteriors. However, this match was
not perfect: for example, the GSM posteriors sys-
tematically showed negative correlations of larger
magnitude than what the network was able to ex-
press (Fig. 2d and Fig. 3b-c). It might be pos-
sible to achieve a more accurate match by al-
lowing negative input correlations, and in general
a more flexible parameterization of the SSN. In-
deed, once the optimization of larger-scale, more
flexibly parameterized SSNs becomes feasible,
we also expect them to be able to sample from
richer, deeper generative models.

Function-optimized neural networks

Our approach is complementary to classical ap-
proaches for training neural network models. Pre-
vious work showed how various steady-state
properties of cortical responses (such as recep-
tive fields, or trial-averaged activities) emerge
from optimizing neural networks for some com-
putationally well-defined objective30,40–44. No-
tably, our sampling-based computational objec-
tive required our network to modulate not only
the mean but also the variability of its responses
in a stimulus-dependent manner. This made the
training of networks significantly more challeng-
ing than conventional approaches training net-
works for deterministic targets without explicitly
requiring them to modulate their variability40,43,45.
In return, the dynamics of our network exhibited
rich, stimulus-modulated patterns of variability.
These responses captured a variety of ubiquitous
features of the trial-by-trial behavior of cortical re-
sponses (noise variability, transients, and oscil-
lations) beyond the steady-state or trial-average
properties that could be addressed by previous
work.

Typically, previous network optimization ap-
proaches aimed to determine the types of dy-
namics that arise when a task is executed un-
der minimal mechanistic constraints, using a neu-
ral network as a universal function approxima-
tor. As a result, they yielded fundamental insights
about the macroscopic organization of network
dynamics (e.g. the presence of line attractors45)
but did not attempt to incorporate some of the
most salient constraints on the detailed organi-
zation of cortical circuits. Specifically, they used
networks that were either purely feedforward40,
utilized neuronal transfer functions that lacked the
expansive nonlinearities characteristic of cortical
neurons40,42,44,45, had no separation of E and I
cells40,44,45, or had noiseless dynamics43.

In contrast, our goal was to study the emer-
gence of (probabilistic) computations through dy-
namics and to connect these dynamics to ex-
perimental data at (or near) single cell resolution

(e.g. the neuron- and stimulus-specific reduction
of variability, or the lag between total inhibitory
and excitatory inputs in individual cells). This
required respecting all the aforementioned bio-
logical constraints. Nevertheless, this additional
realism came at the cost of having to limit the
number of optimized parameters to be far lower
than standard approaches with feedforward net-
works or recurrent networks for which dynami-
cal stability is more easily achieved. While this
reduced parametrization made it easier to find
stable solutions, it was still sufficiently expres-
sive. In particular, we found that our results could
not have been obtained without optimization (Ex-
tended Data Figs. 3 and 4), or with the optimiza-
tion of other objective functions (Fig. 5 and Ex-
tended Data Figs. 5–7). Indeed, this parametriza-
tion still included networks that were unstable, or
showed a decrease in mean responses and/or
increase in variability with increasing stimulus
strength (i.e. the opposite of what was required
for matching the GSM), or were modulated in a
non-monotonic way or only minimally altogether
Extended Data Fig. 3).

Neural representations of uncertainty

Our approach markedly differed from previous
work on the neural bases of probabilistic infer-
ence. Previous models were typically derived us-
ing a top-down approach (but see Ref. 43), using
hand-designed network dynamics that explicitly
mimicked specific existing approximate inference
algorithms from machine learning based on sam-
pling33–36,46 or other representations12,19,33,47. As
a result, these models came with strong theoreti-
cal guarantees for their performance but often of-
fered only a mostly phenomenological match to
neural circuit dynamics. In particular, they did not
respect some basic biological constraints (e.g.
Dale’s principle33,35,47), or had to assume an un-
realistically rapid and direct influence of stimuli on
network parameters (e.g. synaptic weights35,46).
In contrast, we used a more bottom-up approach,
starting from known constraints of cortical circuit
organization, and then optimizing the parameters
of networks under such constraints to achieve ef-
ficient sampling-based probabilistic inference –
without pre-specifying the details of the dynam-
ics that needed to be implemented. While this
approach cannot provide formal guarantees on
performance, our optimized network “discovered”
novel algorithmic motifs (oscillations and tran-
sients) for speeding up probabilistic inference. Al-
though some of these motifs have been observed
in previous work46, their function remained un-
clear as they were built-in by design rather than
obtained as a result of optimization, or appeared
purely epiphenomenal. In contrast, these motifs
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served computationally well-defined functions in
our network.

The dynamics of our network may also pro-
vide useful clues for constructing novel machine
learning algorithms. In general, the kind of
time-irreversible, out-of-equilibrium dynamics we
demonstrate for our network have only recently
been appreciated in machine learning22,36. At the
same time, sampling-based inference algorithms
using second-order dynamics with so-called “mo-
mentum” variables, such as Hamiltonian Monte
Carlo, have long been known to improve sampling
speed31. Indeed, it might be interesting to explore
how much the dynamics of our network can be in-
terpreted as a neural implementation of Hamilto-
nian Monte Carlo46. Nevertheless, despite such
second-order dynamical systems often exhibiting
oscillations and transient overshoots, their sam-
pling efficiency has usually been analyzed only in
the more generic terms of the suppression of ran-
dom walk-like behavior. In contrast, our analyses
revealed specific roles for oscillations and tran-
sients. In fact, the setting of continual inference
that we used to demonstrate the benefits of tran-
sients has not been considered in machine learn-
ing applications so far, although we expect it to
be highly relevant for both biological and artificial
cognition.

Cortical variability, transients, and oscilla-
tions

Our work suggests a novel unifying function for
three ubiquitous properties of sensory cortical re-
sponses: stimulus-modulated variability, transient
overshoots, and gamma oscillations. In previous
work, these phenomena have traditionally been
studied in isolation and ascribed separate func-
tional roles that have been difficult to reconcile.
In particular, they have not been derived norma-
tively, i.e. by starting from some functional objec-
tive and then optimizing that objective in a prin-
cipled manner (but see e.g. Ref. 47). For ex-
ample, cortical variability has most often been
considered a nuisance, diminishing the accuracy
of neural codes23. Theories postulating a func-
tional role of variability in probabilistic computa-
tions have only considered the steady-state distri-
bution of responses without making specific pre-
dictions about their dynamical features5,12. Con-
versely, transient responses prominently feature
as central ingredients of models of predictive cod-
ing, where they signal novelty or deviations be-
tween predicted and observed states47. How-
ever, these theories did not address response
variability.

Our work accounts for both transients and vari-
ability starting from a single principle, using only

the equivalent of “internal representation neu-
rons”48 of predictive coding but without invok-
ing specific prediction error-coding neurons. In
particular, our model correctly predicted a spe-
cific scaling relationship between transients and
steady-state responses which we tested by novel
analyses of experimental data (Fig. 7). Further-
more, our mathematical analysis suggested that
prediction-error-like signals (more formally, re-
sponses that scale with the magnitude of change
in the target distribution; Extended Data Fig. 9c)
are a generic signature of continual inference us-
ing sampling-based dynamics, and will thus not
only appear at stimulus onsets but in any sit-
uation when predictions change temporally. A
conclusive test of whether prediction-error-like re-
sponses in the cortex are due to this mechanism
or classical predictive coding mechanisms will re-
quire more specific manipulations of prior expec-
tations.

Gamma oscillations have also been proposed as
a substrate for a number of functional roles in the
past, related to how information is encoded, com-
bined, or routed in the brain8–10,49. These puta-
tive functions need not be mutually exclusive to
that played in our network. Nevertheless, some
of these functions seem difficult to reconcile with
specific experimental findings3,14,15,50. More gen-
erally, theories of gamma oscillations do not typi-
cally address transients.

Predictive coding models naturally account for
transients, and can also account for gamma os-
cillations11. However, it is unclear whether these
theories would also account for properties beyond
the mere existence of gamma oscillations. These
would include the frequency modulation by con-
trast3,4 that our model reproduced (Fig. 5), or in-
deed any aspect of the ubiquitous variability of
cortical responses, and its modulation by stim-
uli, which our model also reproduced as a core
feature (Figs. 2, 3 and 5). In contrast, our re-
sults show that variability, transients, and gamma
oscillations can all emerge from the same func-
tional objective: that neural circuits use an ef-
ficient sampling-based representation of uncer-
tainty under time constraints.

The mechanism by which gamma oscillations are
generated in the brain, particularly whether it in-
volves interactions between E and I cells (‘PING’
mechanism) or among I cells only (‘ING’ mech-
anism), is a subject of current debate16. In
our model, voltage-clamping of E cells eliminated
gamma oscillations (Extended Data Fig. 2c-d),
pointing to the ‘PING’ mechanism. However, our
network only included a single inhibitory cell type,
and heavily constrained connectivity, therefore it
remains for future work to study how the pre-
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cise mechanism of gamma generation depends
on such architectural constraints. Studying more
hierarchical or spatially extended versions of our
model may also allow us to study longer-range
aspects of gamma oscillations, such as gamma
synchronization49.
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Methods

Ideal observer model

Following Refs. 5,25, we adopted the Gaussian
scale mixture model (GSM)24 as the generative
model of natural image patches under which the
primary visual cortex (V1) performs inference.
Thus, an image patch x ∈ RNx was assumed to
be constructed by linearly combining a set of local
features, the columns of A ∈ RNx×Ny , weighted by
a set of image patch-specific feature coefficients,
y ∈ RNy , and scaled by a single global (at the
scale of the image patch) contrast variable, z ∈ R,
plus additive white Gaussian noise, resulting in
the following likelihood for the feature coefficients
y:

x|y, z ∼ N
(
z Ay,σ2

x I
)

(1)

where the feature coefficients were assumed to
be drawn from a multivariate Gaussian prior dis-
tribution:

y ∼ N (0,C) (2)

and z was assumed to be drawn from a Gamma
prior: z ∼ Γ(K ,ϑ) (Table S1, see also Ref. 39).

To model inferences in a V1 hypercolumn, we
chose the columns of A (the so-called projective
fields of the latent variables) to be oriented Gabor
filters that only differed by their orientation (evenly
spaced between −90◦ and 90◦, four examples
are shown in Fig. 1a, see also Extended Data
Fig. 1a). The prior covariance matrix C was a
circulant matrix whose elements varied smoothly
as a function of the angular distance between the
orientations of the projective fields of the corre-
sponding latent variables, from positive (for sim-
ilarly oriented projective fields) to negative (for
orthogonally oriented projective fields) (Extended
Data Fig. 1b).

The ideal observer’s posterior over latent feature
coefficients y under the GSM for a given image
patch, x, and a known contrast z, can be written
as5:

PGSM(y|x, z) = N (y;µGSM,ΣGSM) (3)

with µGSM =
z
σ2

x
ΣGSM AT x (4)

and ΣGSM =
(
C−1 +

z2

σ2
x
AT A

)−1

(5)

In general, z would also need to be inferred. How-
ever, as z is just a single scalar of which the in-
ference pools information across all pixels in the
input, we approximated the posterior over z with a
delta distribution at z∗, the true value of z that was

used to generate the input39. Thus, the final pos-
terior over y, after marginalizing out the unknown
z, was approximated by substituting z∗ into Eq. 3:

PGSM(y|x) ' PGSM(y|x, z∗) (6)

Following Ref. 5, membrane potentials, u, were
taken to represent a weakly non-linear function of
visual feature activations y (Supplementary Math
Note):

ui(yi) = αnl byi + βnlcγnl (7)

where b·c is the threshold-linear function, and αnl,
βnl, and γnl are respectively the scaling, base-
line, and power of the transformation (Table S1,
Fig. S1a).

Network dynamics and architecture

Our nonlinear, stochastic E/I network consisted of
NE excitatory and NI inhibitory neurons. Following
Ref. 6, we modeled the dynamics of each neuron
i as:

τi
dui
dt

= −ui(t) + hi(t) +
∑

j Wij rj(t) + ηi(t) (8)

where ui represented the membrane potential of
neuron i, τi was its membrane time constant, hi
its feedforward input, ηi was process noise (in-
corporating intrinsic and extrinsic forms of neural
variability), and Wij was the weight of the synapse
connecting neuron j to neuron i. Firing rates
ri were given by a supralinear transformation of
membrane potentials:

ri(t) = kbui(t)cn (9)

where k and n were respectively the scale and
exponent of the firing rate nonlinearity (Table S1).

We reasoned that any network performing ac-
curate sampling-based inference under our ring-
structured GSM would need to exhibit the same
circular symmetry. We therefore parametrized the
recurrent connectivity of the network to be rota-
tionally symmetric, such that neurons were ar-
ranged into pairs of E and I cells around a “ring”
according to their preferred orientations (Fig. 1c)
and the connectivity of the network (as well as
the process noise covariance, see below) was a
smoothly decaying (circular Gaussian) function of
the tuning difference between two cells. Specifi-
cally, each quadrant of the weight matrix (E→ E,
E→ I, I→ E, and I→ I) was defined as:

WXY(θi , θj) = aXY exp

(
cos[2

(
θi − θj

)
]− 1

d2
XY

)
(10)

where X ,Y ∈ {E; I} and θi = πi/NE/I was the ori-
entation represented by the ith E/I neuron. Thus,
we did not optimize all elements of the weight ma-
trix, but only the eight free parameters aXY and
dXY. We also constrained the aXY amplitudes to
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be positive for Y = E and negative for Y = I, such
that the network obeyed Dale’s principle. This
circulant parametrization implied that training the
network on one particular stimulus-posterior pair
in effect trained the network on all possible rota-
tions of this pair. This reduced the size of the
training set necessary to achieve good general-
ization, and therefore sped up training.

The stimulus-independent process noise (last
term in Eq. 8) was spatially and temporally corre-
lated zero-mean Gaussian (e.g. modeling inputs
from other brain areas, or intrinsic variability in the
network):

〈η(t)〉 = 0,
〈
η(t)η(t + s)T〉 = Ση exp

(
−s/τη

)
(11)

where τη was the timescale of the process
noise (Table S1) and Ση was the stationary (zero-
lag) covariance matrix parametrized block-wise
as:

Ση
EE/II(θi , θj) = σ2

E/I exp

(
cos[2

(
θi − θj

)
]− 1

d2
σ

)
(12)

Ση
EI(θi , θj) = ρ σEσI exp

(
cos[2

(
θi − θj

)
]− 1

d2
σ

)
(13)

which introduced four additional free parameters:
σE > 0, σI > 0, ρ, dσ.

As in standard models of V1 simple cells51, the
stimulus-dependent input to each neuron was ob-
tained by applying a linear filter Wff to the stimulus
followed by a static nonlinearity:

hi(t) = αh

⌊
βh +

∑
j W

ff
ij xj(t)

⌋γh

(14)

where x(t) was the stimulus (input image patch)
received at time t, and αh, βh, and γh were re-
spectively the scale, baseline, and exponent of
the input nonlinearity (Table S1, Extended Data
Fig. 1e). Given the one-to-one correspondence
between the latent variables of the GSM and
excitatory-inhibitory neuron pairs of the network
model (Fig. 1a and c), we determined the external
input to each neuron via an input receptive field
that was identical (up to a constant factor) to the
projective field of the corresponding GSM latent
variable, as this was suggested to be optimal for
sampling by previous work30: Wff = [A A]T /15,
where A was the same matrix as in the generative
model (Eq. 1), and [A A] denotes concatenating
A with itself column-wise.

In summary, we optimized a total of 15 parame-
ters: 8 describing the weight matrix W (Eq. 10),
4 describing Ση (Eqs. 12 and 13), and 3 speci-
fying the mapping from stimuli to network inputs
(Eq. 14).

Computing the moments of neural responses

For every time t relative to stimulus onset, we
denote the across-trial moments of neural re-
sponses by

µ(t) = 〈u(t)〉 (15)
Σ(t ,∆t) =

〈
(u(t)− µ(t)) (u(t + ∆t)− µ(t + ∆t))T〉

(16)

where 〈·〉 denotes trial-averaging. To compute
these moments, we employed two different meth-
ods. The first approach, which we refer to as
the “stochastic method”, consisted of approxi-
mating the averages via sampling, i.e. simulat-
ing stochastic network dynamics in a set of tri-
als using the same stimulus (Eqs. 8, 9 and 14)
and computing the across-trial sample mean and
sample covariance at each time step. We used
this approach in the first phase of network training
and for obtaining results from the network once it
was trained (see below).

The second approach, which we refer to as “as-
sumed density filtering” (ADF), used deterministic
equations of motion for computing the across-trial
moments. This approach was only used in the
last phase of network training (see below). Based
on Ref. 52, the following exact differential equa-
tions were used to describe the evolution of µ(t)
and Σ(t , ·):

dµ(t)
dt

= T−1 [−µ(t) + h(t) + Wν(t)] (17)

dΣ(t , 0)
dt

=
[
T−1 Σ∗(t)

]
+
[
T−1 Σ∗(t)

]T
+

+ J (t) Σ(t , 0) + Σ(t , 0) J (t)T (18)
dΣ∗(t)

dt
= − 1

τη
Σ∗(t) + Ση T−1 + Σ∗(t) J (t)T

(19)
dΣ(t ,∆t)

d∆t
= e−∆t/τη

[
T−1 Σ∗(t)

]T
+

+ Σ(t ,∆t) J (t + ∆t)T ∀∆t > 0
(20)

where T is the diagonal matrix of membrane time
constants (Table S1), ν = 〈r〉 is the average firing
rate of neurons, Σ(t ,−∆t) = ΣT(t ,∆t) is the time-
lagged cross-covariance of membrane potentials
in the network, Σ∗ =

〈
η (u− µ)T〉 is the instanta-

neous cross-covariance between membrane po-
tentials and temporally correlated process noise
with instantaneous covariance Ση (Eq. 11), and

J = T−1
[
−I + Wdiag

(
∂ν

∂µ

)]
(21)

is the Jacobian of Eq. 17 w.r.t. µ. Integrating
Eqs. 17-20 in turn required evaluating some non-
linear moments of u, namely covariances be-
tween membrane potentials, u, and firing rates,
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r. For the SSN, these moments can be ob-
tained in closed form, assuming the full joint
(space-time) distribution of membrane potentials
is Gaussian52. Thus, in contrast to the first
(stochatic) method, which leads to unbiased, but
potentially high-variance, estimation of the mo-
ments, the ADF method leads to zero-variance,
but potentially biased estimates. To train the
network, as described below, we combined the
strengths of these two approaches.

Training and test stimuli and target moments

The training set (Fig. 2b) consisted of five image
patches:

xα = zα A ȳ (22)

with α = 1, …, 5 and zα ∈ {0, 0.125, 0.25, 0.5, 1.0}.
Therefore, these stimuli had the same content ȳ
– a 27◦-wide Gaussian function centered around
0◦ (i.e. a single dominant orientation) –, and dif-
fered only in their contrast (Fig. 2b). As the
parametrization of our network was rotationally
invariant (see above), such a stimulus was in fact
representative of all image patches that could be
obtained by rotating this patch around the center.
For each training stimulus xα, we computed the
corresponding posterior distributions over u un-
der the GSM (Eqs. 6 and 7). We called these dis-
tributions the “target distributions”, and their cor-
responding means µαtgt and covariances Σα

tgt, the
“target moments” (Fig. 2c,d):

µαtgt =
∫

u(y) PGSM(y|xα) dy (23)

Σα
tgt =

∫
u(y) uT(y) PGSM(y|xα) dy− µαtgt µ

α
tgt

T

(24)

To test generalization in the network, we gener-
ated a set of 500 novel image patches with the
GSM, which were thus not constrained to have
a single dominant orientation (as the prior al-
lowed multiple elements of y with different pro-
jective fields to be non-zero, Eq. 2). To be consis-
tent with the training set, we did not include addi-
tive noise in x, and added a contrast-dependent
baseline to y so that its mean was modulated by
contrast in the same way as in the training set.
For each image patch in the test set, we also
computed the corresponding posterior moments
(Eqs. 23 and 24) to evaluate the network’s test
performance.

Network training

The cost function F which we minimized during
network training consisted of four terms for each

input stimulus α in the training set:

F =
∑
α

(
εmean φ

α
mean + εvar φ

α
var +

+ εcov φ
α
cov + εslow φ

α
slow
)

(25)

The first three terms of Eq. 25 penalized differ-
ences between the (across trial) moments of the
network’s response distribution (Eqs. 15 and 16)
averaged over a finite time window ending at
Tmax = 500 ms after stimulus onset, and the re-
spective target moments of the ideal observer’s
corresponding posterior distributions (Eqs. 23
and 24):

φαmean =
∫ Tmax

Tmin

∥∥µα(t)− µαtgt

∥∥2

F
dt (26)

φαvar =
∫ Tmax

Tmin

∥∥σα(t)− σαtgt

∥∥2

F
dt (27)

φαcov =
∫ Tmax

Tmin

∥∥Σα(t , 0)−Σα
tgt

∥∥2

F
dt (28)

where σα(t) = diag(Σα(t , 0)) and σαtgt = diag
(
Σα

tgt
)

are the response and target variances, respec-
tively. The last term of Eq. 25 was an additional
slowness cost, penalizing the total lagged neural
response autocorrelation, given by the diagonal
of C(τ ) = corr(u(t),u(t + τ )), within a τmax = 100 ms
time window:

φαslow =
∫ τmax

0
‖diag(Cα(τ ))‖2

F dτ (29)

The coefficients ε controlled the relative impor-
tance of these terms (Table S1). In the first con-
trol network (Fig. 5, right column; Extended Data
Fig. 5a-g, and 6), we set εvar = εcov = εslow = 0, but
kept all other meta-parameters and target means
the same. In the second control network (Ex-
tended Data Fig. 5h-n, and 6), we set only εcov =
εslow = 0, but left εvar and other meta-parameters
the same as in the original network. In the third
control network (Extended Data Figs. 6 and 7,
right), all ε··· parameters were the same as for the
optimization of the original network, but the tar-
get covariances were modified to induce contrast-
independent Fano factors (see below).

Optimization involved back-propagation through
time53, for which we used automatic differentia-
tion. We trained the network in two stages. Dur-
ing the first stage, we employed a stochastic gra-
dient method using Ntrial = 50 trials for each train-
ing stimulus to estimate the corresponding mo-
ments of network responses (see above), and
performed 250 iterations of the ADAM optimizer54.
Both the network’s initial conditions and the pro-
cess noise were re-sampled for each trial and iter-
ation. Initial conditions were drawn from a Gaus-
sian distribution N (µ0,Σ0) (Table S1). Moreover,
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across iterations, the beginning of the averaging
time window, Tmin in Eqs. 26-28, was system-
atically changed (“annealed”) from Tmin = 0 ms
(stimulus onset) to Tmax− 50 ms. The finite length
of the averaging window, and in particular in-
cluding samples immediately or shortly following
stimulus onset, encouraged fast sampling. Thus,
setting the explicit slowness cost εslow = 0 did
not qualitatively affect our results (Extended Data
Figs. 6 and 10).

In the second stage, we continued optimization
using the L-BFGS-B optimizer55, now using the
ADF method to (deterministically) compute the
moments of the network’s response distribution
(see above). We kept the cost-integration time
window at its minimum (Tmax − Tmin = 50 ms, as
reached by the end of the first phase). The slow-
ness penalty cost in Eq. 29 was only applied dur-
ing ADF-based optimization and, for simplicity, it
was approximated using stationary lagged corre-
lations predicted by the ADF-method (Eq. 20) in
the limit of temporally white process noise52.

As the cost function that we used (Eq. 25) was
non-convex, we checked the robustness of our
findings by performing 10 further optimization at-
tempts from random initial conditions. No so-
lutions achieved substantially lower costs, and
those whose final cost was at least approximately
as low as the network presented in the main text
behaved qualitatively similarly (in particular, they
showed contrast-dependent oscillations and tran-
sients, Extended Data Fig. 4). Nevertheless, our
results should not be taken to represent a global
optimum of our cost function.

Langevin sampling

As a comparison (Fig. 4), we also implemented
Langevin dynamics31 to sample from the same
target posteriors as those used to train the op-
timized network. As the GSM target posteri-
ors were Gaussian (Eqs. 3 and 6), the resul-
tant Langevin dynamics was isomorphic to that of
a generic stochastic linear recurrent neural net-
work:

τE u̇ = WL u + h + η (30)

where, for a fair comparison, τE and η were re-
spectively the same time constant and process
noise as in our optimized network (Eqs. 8 and 11-
13). Without loss of generality, we set the in-
put to the network h = 0, as it would be com-
pletely determined by the requirement to match
the response mean to the target mean, µtgt, but
would not affect the autocorrelogram of the sys-
tem, which was the focus of our investigation
here. As variability in a linear network does not

depend on the input (unlike in our nonlinear cir-
cuit model), we used a different WL to match each
target covariance, Σtgt:

WL =
1
γL

(
I−
√
I + γ2

L Σ
η Σ−1

tgt

)
(31)

where γL = 2τη/τE.

Numerical experiments after training

To obtain a reliable estimate of the stationary mo-
ments of neural responses to a fixed input (Figs. 2
and 3), a total of 20, 000 independent samples
(taken 200 ms apart) were drawn from the net-
work, not including transients, as neural activ-
ity evolved according to Eq. 8. Neural activities
in Fig. 2a show 1 s of simulated network ac-
tivity, convolved with a 20 ms sliding window to
match the effects of spike binning to compute av-
erage rates in experiments. Neural trajectories
in Fig. 2b correspond to the neural activity of two
cells in the network with preferred orientations 42◦

(ui) and 16◦ (uj), over a post-transient period of
500 ms. To illustrate both the degree of modula-
tion of the posterior covariances and the match
between posterior and network covariances in
Fig. 3c, the top three PCs of each posterior co-
variance were computed. Neural activity was
then projected onto each PC, and the amount
of variance along each direction was computed.
The middle plots of Fig. 3c present these poste-
rior PCs scaled by either the square root of the
total variance along that direction in the GSM (in
green) or in the network (in red).

Autocorrelograms in Fig. 4a were computed in
500 non-overlapping windows of 2 s of simulated
neural activity each (subsampled at 0.4 ms) after
stimulus onset (excluding transients), and then
averaged across these windows. Autocorrelo-
grams were first computed for individual cells’
membrane potentials and then averaged across
all cells. Cross-correlograms and E–I lags in
Fig. 4b–c were computed from a single 400 s-
long simulation after stimulus onset, excluding
transients (without subsampling). The E–I lag
for each cell was determined as the location of
the maximum in the anti-symmetric component
of the cross-correlogram between its total E and
I input. Langevin samplers in Fig. 4a–b cor-
responded to neural networks with linear, time-
reversible dynamics, not respecting Dale’s princi-
ple, as defined by Eqs. 30 and 31. Autocorrel-
ograms and cross-correlograms for the Langevin
sampler were computed as for the original net-
work.

Average firing rates in Fig. 5a were computed
from the same neural traces used in Fig. 2 to
compute u moments (here taking the average
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of r instead of u). To compute Fano factors in
Fig. 5b, we used an inhomogeneous Gamma pro-
cess with the time-varying rate given by ri(t) for
each neuron i, and the shape of the interspike in-
terval distribution controlled by an additional pa-
rameter, KISI (Table S1). We computed spike-
counts in a 100 ms window over 500, 000 indepen-
dent trials. Our results were qualitatively robust
to the choice of KISI, which primarily determined
the overall magnitude of Fano factors – in partic-
ular KISI > 1 was needed to achieve Fano factors
< 1 at high contrast – but not their modulation by
stimuli.

Power spectra in Fig. 5c were based on simulated
local field potentials (LFPs), computed as the
(across-cell) average neural activity (membrane
potentials), following standard approaches6, us-
ing the same samples as the autocorrelograms
of Fig. 4a (see above). Gamma peak frequency
was identified as the location of the local maxi-
mum (within the gamma band, 20–80 Hz) of the
power spectrum. Transients in Fig. 5d were com-
puted from average firing rates across E cells and
trials (n = 100), further averaged over a sliding 10-
ms time window to mimic the resolution of exper-
imental data. To account for the response delays
observed in experimental data, we used a ran-
dom delay time (truncated Gaussian, with 45 ms
mean and 5 ms s.d.) for the feedforward input of
each E–I cell pair in the network.

To estimate input conductances (Fig. 5e), we
equated the total (excitatory or inhibitory) in-
put current in our model to the (excitatory or
inhibitory) current in a canonical conductance-
based model51. This gave the following expres-
sion:

gE/I
i (t) ≈

Cm
∑

j∈E/I Wij rj(t)

τi
[
VE/I − (ui(t) + Vrest)

] (32)

where Cm is the membrane capacitance, VE/I de-
note the reversal potentials for E/I currents, and
Vrest is a baseline (resting) potential added to the
membrane potentials of our model. We chose
Cm = 20.0 pF, VE = 0 mV, V I = −80 mV, and
Vrest = −65 mV. Conductances in Fig. 5e are
shown relative to their steady-state values during
spontaneous activity, and averaged across 20 tri-
als for a single neuron with preferred orientation
aligned to that of the stimulus.

Autocorrelograms and power spectra of Fig. 6c
were computed as in Fig. 4a and Fig. 5c, but for
the directions in the space of neural responses
that corresponded to the first ten principal compo-
nents (PCs) of neural variability. To quantify oscil-
latoriness in neural responses along some direc-
tion in state space (PC, Fig. 6d; or LFP, Extended

Data Fig. 4b), we computed the corresponding
projection of neural responses, and then fitted the
following parametric function to its autocorrelo-
gram:

Cχ(∆t) = [(1− χ) + χ cos(2π f ∆t)] ·

·
[

τ̂

τ̂ − τ̂η
e−

|∆t|
/τ̂ − τ̂η

τ̂ − τ̂η
e−

|∆t|
τ̂η

]
(33)

where τ̂ and τ̂η are two time constant parame-
ters, χ ∈ [0, 1] quantifies the degree of oscillatori-
ness, and f represents the dominant oscillation
frequency. Fits of Eq. 33 to simulated network ac-
tivity were performed using Tensorflow. The form
of Eq. 33 was motivated by noting that, for χ = 0,
it reduces to

C0(∆t) =
τ̂

τ̂ − τ̂η
e−

|∆t|
τ̂ − τ̂η

τ̂ − τ̂η
e−

|∆t|
τ̂η (34)

which is the autocorrelation function of the fluc-
tuations in a single (isolated, and thus not oscil-
lating) neuron with membrane time constant τ̂ re-
ceiving noisy inputs with correlation time τ̂η (this
can be seen by integrating Eqs. 18-20). More
generally, for χ > 0, C0(∆t) (Eq. 34) determines
the envelope of Cχ(∆t) (Eq. 33):

(1− 2χ) C0(∆t) ≤ Cχ(∆t) ≤ C0(∆t) (35)

Overshoots in Fig. 7c and d were obtained using
the same stimulus that was used to train the net-
work at 0.7 contrast, and computed as the max-
imal across-trial average (n = 100) response of
each E cell (membrane potential for c, firing rate
for d), minus its stationary mean response, fur-
ther averaged over 1000 delay configurations in
our network (as for Fig. 5d, see above). Steady-
state differences denote the magnitude of mean
evoked responses of each cell with respect to its
mean pre-stimulus response. Results in the bot-
tom plot of Fig. 7d were computed by averaging
stimuli presented at each neuron’s preferred ori-
entation (±30°) or orthogonal to its preferred ori-
entation (±30°).

Analyses with Gaussian processes

For Fig. 6a-b, we considered a stationary,
moment-matched Gaussian process (GP56) with
an autocorrelation function that was in the same
parametric form as that fitted to network re-
sponses, Cχ(∆t) (Eq. 33), by setting both time
constants to their values characterizing the net-
work (τ̂η = τ̂ = τE = τη = 20 ms). This yielded the
following form:

CGP(∆t) =
[
(1− χ) + χ cos(2π f |∆t|)

]
·

·
(

1 +
|∆t|
τE

)
e−

|∆t|
τE (36)

We used χ ∈ {0, 0.2, 0.7} (where χ = 0 corre-
sponds to an isolated single neuron) at f = 40 Hz.
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We set the mean and variance of the GP to
µGP = 3 and σ2

GP = 4, respectively, without loss
of generality (Supplementary Math Note).

For Fig. 7a and b, and Extended Data Fig. 9,
we used GPs whose stationary distributions all
matched the same target distribution (see below)
before stimulus onset (time t < 0), and con-
verged to the same new target distribution af-
ter stimulus onset (for t � 0). These GPs dif-
fered only in their transient behavior. The GP
that most faithfully captured our optimized net-
work was constructed by taking the temporal evo-
lution of the mean and variance of an actual neu-
ron in the full network around stimulus onset, in-
cluding overshoots (“with overshoots” in Fig. 7a,
and Extended Data Fig. 9a, red). For this, we
chose the neuron whose preferred orientation
matched that of the presented stimulus. More-
over, the autocorrelogram of this GP was also set
to match that neuron’s autocorrelogram (inset of
Extended Data Fig. 9a, right). Two additional GPs
were constructed with the same autocorrelogram
as the first GP, but different mean and variance
time courses. In one, the mean and variance
converged exponentially with a time constant of
τE (“exponential” in Fig. 7a, and Extended Data
Fig. 9a, dashed black). In the other, the mean and
variance immediately jumped at stimulus onset
to their new stationary values (“instantaneous” in
Fig. 7a, and Extended Data Fig. 9a, dashed gray).
While such an instantaneous process is not re-
alisable by any continuous dynamical system, it
provides a useful lower bound on sampling error.

In Fig. 6b and Extended Data Fig. 9b, we used
the average symmetrized Kullback-Leibler diver-
gence between the GSM target distribution, P,
and the distribution sampled by the GP, QT over
some finite time window T to measure the perfor-
mance of these systems:

DSKL
[
P‖QT

]
=

1
4

[〈
E2(T )

(
σ−2
P + σ−2

Q (T )
)〉

+

+
〈
σ2
Q(T )

〉
σ−2
P +

〈
σ−2
Q (T )

〉
σ2
P − 2

]
(37)

where 〈·〉 denotes trial-averaging (as above),
E(T ) = µQ(T )− µP , and µP , µQ(T ), σ2

P , and σ2
Q(T )

are the means and variances of P and QT , re-
spectively (Supplementary Math Note). Fig. 7b
only shows the term of DSKL that depends on the
sample mean, µQ (T ) (via E2(T )):

D
µ
SKL =

1
4

〈
E2(T )

(
σ−2
P + σ−2

Q (T )
)〉

(38)

In Fig. 6b, we used a single target distribution
(matching the stationary moments of the GP,
see above) and averaged over n=100, 000 trials of
sampling from the GP for an increasing amount of
time, T (x-axis), as we also varied χ (lines). GPs

were sampled at a dt=0.5 ms time resolution. In
Fig. 7b and Extended Data Fig. 9b, the target dis-
tribution was changed instantaneously at stimu-
lus onset (t=0) from a response distribution corre-
sponding to a 0-contrast stimulus (spontaneous
activity) to that corresponding to a high con-
trast stimulus (training image at contrast level 0.7;
Fig. 7a and Extended Data Fig. 9b, green lines).
Response distributions were obtained from the E
cell in the original network that was tuned to the
dominant orientation of the stimulus. At each time
point t (x-axis), DSKL (or D

µ
SKL) was computed be-

tween the momentary target distribution and the
distribution of GP samples collected in a 100 ms-
long sliding time window ending at t, averaging
over n=10, 000 trials, for each of the three tran-
sition profiles (lines). GPs were sampled at a
dt=1 ms time resolution.

Experimental data analysis

Fig. 7e shows novel analyses of experimental
recordings from awake macaque V1 during the
presentation of moving gratings of different ori-
entations23. Following the same procedure as in
Ref. 6, only cells that were significantly tuned (ori-
entation tuning index greater than 0.75) and had
an average evoked rate above 1 spike per second
were included in the analysis. For each cell and
each stimulus, a time-dependent firing rate trace
was first obtained by averaging spikes across tri-
als in a 50 ms sliding square window. From these
traces, the steady-state difference and overshoot
size (dots in Fig. 7e top) were then computed re-
spectively as the average evoked response ex-
cluding transients (t > 160 ms after stimulus on-
set) and the maximum of the response trace dur-
ing the transient (t < 160 ms after stimulus onset),
minus the average baseline response (computed
from the 300 ms prior to stimulus presentation).
Results in the bottom plot of Fig. 7e were com-
puted in the same way as for model neurons (see
above).

Statistics

Sample sizes (number of trials) were chosen with
the following criteria. First, when studying prop-
erties of the network, a large enough n was se-
lected (> 10.000 independent samples) such that
standard errors would be smaller than line widths
in the corresponding plots. Second, when com-
paring the network’s behaviour to experimental
results, the same order of magnitude for n was
selected as in the original experiments.

Linear regressions in Fig. 7e (top) and Extended
Data Fig. 9d were performed using SciPy’s ‘lin-
regress’ function, which reports a two-sided p-
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value using a Wald test with a t-distribution of the
test statistic.

In Fig. 7e (bottom) we tested for significance in
overshoot tuning using a two-sided paired t-test
using SciPy’s ‘ttest_rel’ function. Data distribu-
tion was assumed to be normal but this was not
formally tested.

Reporting Summary. Further information on re-
search design is available in the Life Sciences
Reporting Summary linked to this article.

Randomization. No new experimental data was
gathered for this paper.

Blinding. As data collection had been performed
by other labs well before our study, it was effec-
tively blind to the purposes of our study. Data
analysis was not performed blind to the conditions
of the experiments.

Data exclusion. In Fig. 7e only cells with a tuning
index greater than 0.75 were selected. No other
data were excluded in the main text. In Extended
Data Fig. 9 the same analysis of Fig. 7e was re-
peated excluding outliers to test for robustness.

Data availability. All experimental data reported
here has been collected by others and published
previously. Experimental data in Fig. 5a-b repro-
duce analyses from Ref. 6 of data from Ref. 23
(data released in the repository of Ref. 57). Ex-
perimental data in Fig. 5c-d was captured directly
from the plots in the original papers Refs. 2–4.
Experimental data in Fig. 7 is a novel analysis
of the data from Ref. 23, with permission from
the authors. The code and parameters to gener-
ate the data corresponding to numerical experi-

ments in the paper has been made publicly avail-
able (see Code availability statement below).

Code availability. The (Python) code and pa-
rameters for the numerical experiments are avail-
able at: bitbucket.org/RSE_1987/ssn_inference_
numerical_experiments. The (OCaml) code
for the optimization procedure can be found
at: bitbucket.org/RSE_1987/ssn_inference_
optimizer.
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Extended Data Fig. 1 | GSM and network parameters. a, Filters: projective fields of the GSM and receptive fields of the
network. Each filter image shows the projective field of a latent variable (columns of A; Eq. 1), which was the same as the
receptive field of the corresponding E-I cell pair in the network (rows of Wff = [AA]T /15; Eq. 14; cf. Fig. 1a and c). b, Prior
covariance in the GSM (C in Eq. 2). c, Sample stimuli generated by the GSM, also used for testing the network’s generalization
in Fig. 3b-c. d-e, Parameters of the optimized network. d, Recurrent weights (top: raw weights; middle: normalized absolute
values) and process noise covariance (bottom) after training. Weights and covariances are shown for only one row (of each
quadrant) of W (Eq. 8) and Ση (Eq. 11), respectively, as they are circulant. Thus, each line shows the weights connecting, or the
covariance between, cells of different types (see legend) as a function of the difference in their preferred stimuli. As the figure
shows, the connectivity profile of either E or I cells in the optimized network was largely independent of whether the postsynaptic
cell was excitatory or inhibitory (top). Overall, recurrent E and I connections had similar tuning widths, with E connections being
slightly more broadly tuned than I ones (middle). Nevertheless, the net E input to any one cell in the network was still more
narrowly tuned than the net I input, due to the responses of presynaptic E cells being more narrowly tuned than those of I cells
(not shown). The optimized network also retained a substantial amount of process noise that was larger in E than in I cells, and
highly correlated both between the E and I cell of a pair and between cells with different tuning (up to a ∼ 30◦ tuning difference;
bottom). e, Input nonlinearity (Eq. 14), converting feedforward receptive field activations (Wff x)i into network inputs hi (black). For
comparison, the distribution of inputs across all cells for the training set is presented in gray. As the figure shows, the optimized
input transformation, capturing the nonlinear effects of upstream preprocessing of visual stimuli, had a threshold that was just
below the distribution of receptive field outputs, ensuring that all stimulus-related information was transmitted in the input signal,
and an exponent close to two, remarkably similar to that used by the cells of the network (cf. Eq. 9 and table S1).
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DIVISIVE NORMALIZATION CLAMPING EXPERIMENTS

Extended Data Fig. 2 | Divisive normalization and the mechanism underlying oscillations in the optimized network. a-
b, Divisive normalization, or sublinear summation of neural responses, has been proposed as a canonical computation in cortical
circuits 38. In turn, the stabilized supralinear network (SSN), which formed the substrate of our optimized network, has been
proposed to provide the dynamical mechanism underlying divisive normalization 27. We thus wondered whether our optimized
network also exhibited it. a, In accordance with divisive normalization, the network’s response to the sum of two stimuli (solid
purple) was smaller than the sum of its responses to the individual stimuli (solid red/blue), and lay between the average (dotted
purple) and the sum (dashed purple). Inset shows stimuli used in this example. b, Generic divisive normalization in the optimized
network. We fitted a standard phenomenological model of divisive normalization (adapted from Ref. 38) to the (across-trial)
mean firing-rate responses of E cells in the optimized network, 〈rE〉, as a function of the feedforward input h to the network
(i.e. without regard to its recurrent dynamics; Eq. 14): 〈r〉(β)

i = b2 +
(
h(β)
i + b1

) [
(Mh(β))i + s2

]−1, where h(β)
i and 〈r〉(β)

i were the
feedforward input and the average firing rate of cell i in response to stimulus β, respectively, and b1, b2 and s were constant
parameters. The parameter matrix M was responsible for normalization, by dividing the input hi by a mixture of competing inputs
to other neurons. M was parameterized as a symmetric circulant matrix to respect the rotational symmetry of the trained network
(Extended Data Fig. 1). In total, our model of divisive normalization had 3 + (NE/2) + 1 = 29 free parameters. Model fitting was
performed via minimization of the average squared difference between network and model rates, plus an elastic energy regularizer
for neighbouring elements of M. Shown here is a scatter plot of neural responses to a set of 500 random stimuli (generated as
the generalization dataset, Methods), predicted by the phenomenological model vs. produced by the actual network. Each dot
corresponds to a stimulus-neuron pair. Inset shows three representative average response profiles across the network (dots)
and the phenomenological model’s fit (lines). Note the near perfect overlap between the network and the phenomenological
model in all three cases. The divisive normalization model also outperformed both a linear model and a model of subtractive
inhibition (not shown). These results show comprehensively that, in line with empirical data, our trained network performed divisive
normalization of its inputs under general conditions. c-d, Using voltage-clamp to study the mechanisms underlying oscillations in
the optimized network. To determine whether oscillations in our network resulted from the interaction of E and I cells, or whether
they arose within either of these populations alone, we conducted two simulated experiments. In each simulation, either of the
two populations (E or I) was voltage-clamped to its (temporal) mean, as calculated from the original network, for each input in
the training set. Thus, recurrent input from the clamped population was effectively held constant to its normal mean, but did not
react to changes in the other population. As expected for a network in the inhibition-stabilized regime, clamping of the I cells
resulted in unstable runaway dynamics, precluding further analysis of oscillations (not shown). c, Illustration of the E-clamping
experiment in the optimized network (cf. Fig. 1b). For each stimulus, each E cell’s voltage was clamped to its mean voltage, µE,
obtained when the network was presented with the same stimulus without voltage clamp. d, LFP power spectra in the network
after voltage-clamping of the E population at different contrast levels (colors as in Fig. 2). The network remained stable, but the
peak in its LFP power spectrum characteristic of gamma oscillations was no longer present (cf. Fig. 5c, inset). This shows that
gamma oscillations in the original network required interactions between E and I cells (i.e. they were generated by the so-called
“PING” mechanism 16).
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Extended Data Fig. 3 | Random networks. The parametrization of our network was highly constrained (e.g. ring topology
with circulant and symmetric weight and process noise covariance structure, 1:1 E:I ratio, fixed receptive fields). To test whether
these constraints alone, without any optimization, were sufficient to generate the results we obtained in the optimized network, we
sampled weight matrices at random, by drawing each of the 8 hyperparameters of the weight matrix (Eq. 10) from an exponential
distribution truncated between 0.1 and 10 times the values originally found by optimization. We discarded matrices that were
either unstable or converged to a trivial solution (all mean rates equal 0). Less than 20% of the generated matrices satisfied these
criteria, further confirming that optimization was non-trivial. Results for six such example random networks are shown (columns).
a, Recurrent weights as a function of the difference in the preferred stimuli of two cells (cf. Extended Data Fig. 1d, top). Different
lines are for weights connecting cells of different types (legend). b-c, Mean (b) and standard deviation of membrane potential
responses (c), averaged over the population, as a function of contrast (cf. Fig. 3a). Gray dots on x-axis indicate training contrast
levels. Note the wide array of behaviors displayed by these networks. For example, the standard deviation of responses could
go up, down, or even be non-monotonic with contrast, while the range of mean rates also varied wildly. d-e, Mean firing rate (d)
and Fano factor (e) of neurons as a function of stimulus orientation (relative to their preferred orientation) during spontaneous
(dark red) and evoked activity (light orange; cf. Fig. 5a-b). The peak mean rate of example 3 exceeded 50 Hz and is thus shown
as clipped in this figure. Note that mean rate tuning curves (during evoked activity) were very narrow for most networks (all but
example 5), resulting in 0 Hz rates and thus undefined Fano factors for stimuli further away from the preferred orientation. f, LFP
power spectra at different contrast levels (colors as in Fig. 2). Note the absence of gamma peaks (cf. Fig. 5c, inset). g, Average
rate response around stimulus onset at different contrast levels (colors as in Fig. 2). Black bars show stimulus period. Note the
absence of transients (cf. Fig. 5d). To estimate network moments in b-d, n = 20, 000 independent samples (taken 200 ms apart)
were used. Population averages (n=50 cells) were computed for b and c. Mean firing rates in panel g were computed over n =
100 trials.
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Extended Data Fig. 4 | Comparison of random and optimized networks: cost achieved and dynamical features. Networks
are ranked in all panels in order of decreasing total cost achieved by them (shown in a). Random networks are those shown in
Extended Data Fig. 3. The originally optimized network presented in the main text is indicated with ?, and the network optimized
without enforcing Dale’s principle (Extended Data Fig. 8) is marked with †. Other optimized networks were studied to confirm that
well-optimized networks reliably showed similar behavior. This was important because our cost function was highly non-convex.
Therefore, any minimum our optimizer found, such as that corresponding to the originally optimized network, had no guarantee of
being the global minimum. Therefore, we trained 10 further networks on the original cost function (Methods), starting from random
initial conditions, and show here those whose final cost was at least approximately as low as that of the original network (9 out of
10). a, Total cost (Eq. 25) computed for each of the random networks and (left) for networks that were optimized for the original
cost (right). Colors indicate different components of the cost function (legend, see Eqs. 26-29 for mathematical definitions). The
inset shows the optimized networks only (note different y-scale). Note that the cost achieved by the random networks was 1-3
orders of magnitude higher than that achieved by the optimized networks. Furthermore, none of the optimized networks achieved
substantially lower costs than the one we presented in the main text. b-c, Oscillatoriness (b) and transient overshoot size (c) for
each network in a. Oscillatoriness was computed by numerical fits of Eq. 33 to the autocorrelogram of the LFP generated by the
network (Methods). Transients in population-average firing rates were quantified as the size of the overshoot normalized by the
change in the steady state mean (see also Fig. 7a). Note that compared to the optimized networks – including the one presented
in the main text –, oscillations and transients were almost entirely absent from random networks. Furthermore, all optimized
networks had substantial oscillatoriness and transient overshoots (Extended Data Fig. 4b-c). This suggests that the results we
obtained for the originally optimized network were representative of the best achievable minima of the cost function.
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Extended Data Fig. 5 | Control networks without full variability modulation. Variability modulations are a hallmark of
sampling-based inference 5. To see whether they were also critical for our results, we optimized networks with modified cost
functions, either setting both εvar = 0 and εcov = 0 (Eq. 25), requiring only response means to be matched (a-g; see also Fig. 5,
right column), or setting only εcov = 0, requiring the matching of response means and variances but not of covariances (h-n;
see also Methods). a-b, h-i, Network parameters as in Extended Data Fig. 1d-e. Both networks developed weak connection
weights (a and h, top), with near-identical widths for E and I inputs onto both E and I cells (a and h, middle), and an almost
linear input transformation (b and i). c, j, Sample population activity as in Fig. 2a. d-e, k-l, Matching moments between the
ideal observer and the network for training stimuli as in Fig. 2c-d. Extremely weak coupling in the first network (a, top) meant an
essentially feed-forward architecture. Thus, its response covariance simply reflected its process noise covariance (compare e and
a, bottom). High input correlations in the second network (h, bottom) resulted in a single, global mode of output fluctuations (l).
f-g, m-n, Generalization to test stimuli as in Fig. 3a-b. Insets in g show GSM posterior and network response means for example
test stimuli as in Fig. 3c. Response moments in n are shown only for training stimuli, not for test stimuli, but by distinguishing
variances (blue, bottom) and covariances (lavender, bottom). Both networks completely failed to fit moments that they were
not explicitly required to match. Thus, firing rate tuning curves were preserved in both networks, but Fano factors were barely
modulated in the first network (Extended Data Fig. 6a-b). Critically, neither of these networks showed discernible oscillations or
transient overshoots Extended Data Fig. 6c-e). Response moments in d-g and k-n were estimated from n = 20, 000 independent
samples (taken 200 ms apart). Population mean moments in f and m were further averaged across n=50 E cells. Correlations in
e and l are Pearson’s correlations.
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Extended Data Fig. 6 | Comparison of neural dynamics between the originally optimized network and the control net-
works. a-e, Dynamics of optimized networks as in Fig. 5a-e. The originally optimized network of the main paper (left) is compared
to various control networks, from left to right: without slowness penalty (Extended Data Fig. 10), without covariance modulation
(matching means and variances; Extended Data Fig. 5h-n), without covariance and variance modulation (matching means only;
Extended Data Fig. 5a-g), enforcing constant Fano factors (Extended Data Fig. 7), and with Dale’s principle not enforced (Ex-
tended Data Fig. 8). For ease of comparison, only stimulus-dependent power spectra are shown for the optimized network of the
main paper, without showing the dependence of gamma peak frequency on contrast (cf. Fig. 5c, middle), as most control networks
had no discernible gamma peaks. For more details on control networks, see the captions of the corresponding figures (Extended
Data Figs. 5, 7, 8 and 10). Response moments in a were estimated from n = 20, 000 independent samples (taken 200 ms apart).
Mean firing rates in d were computed over n = 100 trials. Panel e shows mean ± s.e.m. (n = 20 trials).
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Extended Data Fig. 7 | Control network: enforcing constant Fano factors. Fano factors need to be specifically stimulus-
independent for a class of models, (linear) probabilistic population codes (PPCs 12), that provide a conceptually very different
link between neural variability and the representation of uncertainty than that provided by sampling 5,18, which we pursue here.
Therefore, we used our optimization-based approach to directly compare the circuit dynamics required by PPCs to those of our
originally optimized network implementing sampling. For this, we trained a further control network whose goal was to match the
mean modulation of the control network (resulting in realistic tuning curves), while keeping Fano factors constant. We achieved
this by devising a set of target covariances that would result (together with the target mean responses used by all other networks)
in constant Fano factors – assuming Poisson spiking and an exponentially decaying autocorrelation function (using analytic results
in Ref. 52). Training then proceeded exactly as for the other networks, with the same ε parameters in the cost function as for the
originally optimized network, only employing the new covariance targets. a-b, Network parameters as in Extended Data Fig. 1d-e.
The network made use of strong inhibitory connections (a, top), large shared process noise (a, bottom), and strongly modulated
inputs (b). c, Sample population activity as in Fig. 2a. d-e, Matching moments between the ideal observer and the network for
training stimuli as in Fig. 2c-d. f-g, Generalization to test stimuli as in Fig. 3a-b. Insets in g show GSM posterior and network
response means for example test stimuli as in Fig. 3c. The network was able to match mean responses in the training set and
to generalize to novel stimuli (d, f-g), while keeping Fano factors relatively constant as required (Extended Data Fig. 6b). For
consistency with previous results, we obtained Fano factors by numerically simulating the same type of inhomogeneous Gamma
process as in the other networks (Methods), thus violating the Poisson spiking assumptions under which we computed the target
covariances of the network (see above) – hence the remaining small modulations of Fano factors. Critically, although the training
procedure was identical to that used for the original network, only differing in the required variability modulation provided by the
targets (see above), this control network displayed no gamma-band oscillations (Extended Data Fig. 6c). Inhibition-dominated
transients did emerge, but were weaker than in the original network (Extended Data Fig. 6d and e). Response moments in d-g
were estimated from n = 20, 000 independent samples (taken 200 ms apart). Population mean moments in f were further averaged
across n=50 E cells. Correlations in e are Pearson’s correlations.
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Extended Data Fig. 8 | Control network: Dale’s principle not enforced. In order to see how much the biological constraints
we used for the optimized network, and in particular enforcing Dale’s principle, were necessary to achieve the performance and
dynamical behavior of the original network, we optimized a network with the same cost function as for the original network (Eq. 25)
but without enforcing Dale’s principle. This meant that the signs of synaptic weights in each quadrant of the weight matrix (the
aXY coefficients in Eq. 10) were not constrained. Otherwise, optimization proceeded in the same way as before (Methods). The
training of this network proved to be much more difficult and prone to result in unstable networks, which we avoided by early
stopping. a-b, Network parameters as in Extended Data Fig. 1d-e. As Dale’s principle was not enforced, only notional cell types
can be shown (legend). Nevertheless, interestingly, the network still obeyed Dale’s principle after optimization (top): all outgoing
synapses of any one cell had the same sign. Note that the outgoing weights of the cells whose moments were constrained (Ẽ
cells, whose activity is shown and analysed in c-g) were actually negative. Therefore, in effect, these cells became inhibitory
during training. c, Sample population activity as in Fig. 2a. d-e, Matching moments between the ideal observer and the network
for training stimuli as in Fig. 2c-d. f, Generalization to test stimuli as in Fig. 3a. g, Matching moments between the ideal observer
and the network for training stimuli as in Fig. 3b (lavender). Note that here, unlike in Fig. 3, response moments are shown only for
training stimuli, not for test stimuli, but by distinguishing variances (blue, bottom) and covariances (lavender, bottom). Overall, the
stationary behavior of this network was broadly similar to that of the originally optimized network (cf. Figs. 2 and 3). Therefore,
it achieved a performance that was far better than the random networks’ (Extended Data Fig. 4a). However, it still performed
substantially worse than networks optimized with Dale’s principle enforced (Extended Data Fig. 4a), and its dynamics were also
qualitatively different: oscillations and transient overshoots were largely absent from it (Extended Data Fig. 4b-c, Extended Data
Fig. 6). Response moments in d-g were estimated from n = 20, 000 independent samples (taken 200 ms apart). Population mean
moments in f were further averaged across n=50 Ẽ cells. Correlations in e are Pearson’s correlations.
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Extended Data Fig. 9 | Further analyses of the role of transients in supporting continual inference. a-b, Analysis of
transients in the response of a single neuron. (Left panel in a is reproduced from Fig. 7a.) a, Temporal evolution of the mean
(left) membrane potential (uE ), and the membrane potential standard deviation (right) in three different neural responses (thick
lines) with identical autocorrelations (matched to neural autocorrelations in the full network, inset, cf. Fig. 4a) but different time-
dependent means (left) and standard deviations (right). Thin green line shows the time-varying target mean (left) and standard
deviation (right). b, Total divergence (Eq. 37, Methods) between the target distribution at a given point in time and the distribution
represented by the neural activity sampled in the preceding 100 ms, for each of the three responses (colors as in a). In comparison,
note that Fig. 7b only shows the mean-dependent term of the divergence (Eq. 38 ,Methods). Black bars in a-b show stimulus
period. Mean and divergence computed as an average over multiple trials (n =10, 000). c, Optimal response trajectories (red
lines) for continual estimation of the mean of a target distribution (thin green lines). Different shades of red indicate optimal
trajectories corresponding to three different target levels (5, 10, and 20 mV, emulating different contrast levels). We optimized
neural response trajectories (Eq. S39, Supplementary Math Note) so that the distance between their temporal average, computed
using a prospective box-car filter (k(t) = 1/T for t ∈ [0, T ] and 0 otherwise, with T = 20 ms), and the corresponding Heaviside
step target signal would be minimized under a smoothness constraint (εsmooth = 1; Eq. S37, Supplementary Math Note). Note the
transient overshoot in the optimal response very closely resembling those observed in the optimized network (Fig. 5d, Fig. 7c-d):
its magnitude scales with the value of the target mean, and it is followed by damped oscillations. Similar results (with less ringing
following the overshoot) were obtained also for an exponentially decaying, “leaky” kernel (not shown). d-e, Relationship between
overshoot magnitude and steady state difference: analysis of experimental recordings from awake macaque V1 23. d, Overshoot
magnitude versus steady state difference: same as Fig. 7e, but restricting the analysis to steady state differences below 60 Hz (to
exclude outliers). Red line shows linear regression (±95% confidence bands). The correlation between overshoot size and steady
state difference is still significant: two-sided Wald test p = 1 × 10−89 (n = 1263 cell-stimulus pairs R2 ' 0.27). e, Systematically
changing the maximal steady state difference (x-axis) used for restricting the analysis of the correlation between overshoot size
and steady state difference (d and Fig. 7e) reveals that the correlation is robust (black line ±95% confidence intervals) and
remains highly significant (blue line, showing corresponding p-values; note logarithmic scale) for all but the smallest threshold
(and thus smallest sample size). Horizontal dotted lines show R = 0 correlation (black) and p = 0.05 significance level (blue) for
reference. As the maximal steady state difference increases, the number of points n considered also increases from n = 4 to
n = 1279. Correlations in a are Pearson’s correlations. Pearson’s R values and corresponding p-values in e were obtained by
linear regression performed as in d.
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Extended Data Fig. 10 | Control network: no explicit slowness penalty. To test whether the explicit slowness penalty in our
cost function (Eq. 29) was necessary for obtaining the dynamical behaviour exhibited by the optimized network of the main text,
we set εslow = 0 in Eq. 25. a-b, Network parameters as in Extended Data Fig. 1d-e. c, Sample population activity as in Fig. 2a.
d-e, Matching moments between the ideal observer and the network for training stimuli as in Fig. 2c-d. f, Generalization to test
stimuli as in Fig. 3a. g, Matching moments between the ideal observer and the network for training stimuli as in Fig. 3b (lavender).
Note that here, unlike in Fig. 3, response moments are shown only for training stimuli, not for test stimuli, but by distinguishing
variances (blue, bottom) and covariances (lavender, bottom). Note that this network behaved largely identically to the originally
optimized network (see also Extended Data Fig. 6). This could be attributed to the fact that our optimization implicitly encouraged
fast sampling by default, simply by using a finite averaging window for computing average moments of network responses, and
in particular by including samples immediately or shortly following stimulus onset (Methods). Response moments in d-g were
estimated from n = 20, 000 independent samples (taken 200 ms apart). Population mean moments in f were further averaged
across n=50 E cells. Correlations in e are Pearson’s correlations.
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