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Abstract: The robust stability and convergence to the true state of a moving horizon estimator based on an adaptive arrival cost
are established for nonlinear detectable systems in this paper. Robust global asymptotic stability is shown for the case of non-
vanishing bounded disturbances, whereas the convergence to the true state is proved for the case of vanishing disturbances. Two
simulations were made to show the estimator behaviour under different operational conditions and to compare it with the state of

the art of estimation methods.

1 Introduction

State estimation plays a fundamental role in feedback control, sys-
tem monitoring, and system optimization because noisy measure-
ments is the only information available from the system. Several
methods have been developed for accomplishing such task (see
[1, 2], among others). All these methods have been developed upon
assumptions on the knowledge of noises and the system model as
well as the absence of constraints.

In practice, these assumptions are not easily satisfied, and
research efforts were focused on approaches that do not rely on such
requirements (see [3-5], among others). For example, Hxo filters
are designed minimizing the Hoo norm of the mapping between
disturbances and estimation error. Estimators based on least-square
estimation problems have been presented in [3, 6] and [7]. Both
approaches are based on the adequate selection of the uncertainty
model, resting on the available information of the system, instead of
relying on statistical assumptions on noises. In a similar way, robust
estimation algorithms based on min-max robust filtering, set-valued
estimation and guaranteed cost paradigm, have attracted the attention
of the research community (see [4, 8]).

Building on the success of moving horizon control, moving hori-
zon estimation (MHE) has attracted the attentionof researchers since
the pioneering work of Jazwinski [9] (see also [10-12]). The interest
in such estimation methods stems from the possibility of deal-
ing with a limited amount of data and the ability to incorporate
constraints. In recent years, both theoretical properties of several
MHE schemes, including efficient computational methods, have
been studied (see [13-18]).

In recent years several results on robust stability and convergence
properties have been obtained, advancing from idealistic assump-
tions (observability and no disturbances) to realistic situations
(detectability and bounded disturbances). For nonlinear observable
systems, [12] established the asymptotic stability of the estimation
error for the least-square cost function. Furthermore, for conver-
gent disturbances, the estimation error is also convergent [19-21].
Alessandri et al. proposed an estimation scheme, based on a least-
square cost function of estimation residuals, that guaranteed the
boundedness of estimation error for observable systems subject to
bounded additive disturbances [14, 22]. The review made by Rawl-
ings and Li [20] provides a general view of the problem relying on
incremental input/output-to-state stability (i-/OSS, see Definition 2.1

in Section 2) for detectability [23] and robust global asymptotic sta-
bility (RGAS) for robust stability of the state estimator. This work
reveal two major challenges in the field: i) conditions and a proof
of RGAS for a MHE subject to bounded disturbances and ii) the
development of computational efficient MHE algorithms. Hu et al.
[24] identifies a broad class of cost functions that ensures RGAS
of full information estimators (FIEs). The implication of RGAS on
MHE was further investigated in [25] based on the results of [26].
Moreover, [25] showed RGAS and convergence of estimation error
in case of bounded or vanishing disturbances, respectively. In these
works, the least-square cost function was modified by adding a max-
term to guarantee stability. For a particular choice of weights of
the cost function, these results were extended to least-squares type
[25]. Finally, the necessary assumptions on the cost function were
generalized in [27].

The results described for nonlinear detectable systems subject
to bounded disturbances show a number of drawbacks. In partic-
ular, the disturbances gains obtained in [25] are conservative, and
they depend on the estimation horizon. The same happens with the
estimate on the minimal estimation horizon in the case of MHE.
These estimates depend on a priori bounds of worst case distur-
bances. One attempt to solve these flaws is presented in [28], where
the authors introduce a novel formulation of the cost function that
allows ensuring robust global exponential stability of the estimation
error under a suitable exponential detectability. Using this idea, they
obtain improved estimates for the disturbance gains and the minimal
estimation horizon.

This paper introduces the RGAS and convergence analysis for a
MHE estimator based on adaptive arrival cost proposed in [18] for
the practical case of nonlinear detectable systems subject to bounded
disturbances. This formulation allows us to overcome several draw-
backs in the existing literature, obtaining improved estimates for
the disturbance gains and the minimal estimation horizon and pro-
viding stability proof for both FIE and MHE. To establish robust
stability properties for MHE, it is essential the adequate selection
of the arrival cost employed by the cost function. In various MHE
schemes, the necessary assumptions of the arrival cost are difficult
to verify ([12, 19]), while in others, they can be verified a priori
[25]. In the MHE scheme analyzed in this work, the assumption on
the arrival cost can be satisfied a priori by design. Furthermore, the
disturbances gains become uniform (they are valid independent of
estimation horizon N), allowing to extend the stability analysis to
FIE estimators with least-square cost functions.
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The rest of the paper is organized as follows: Section 2 introduces
the notation, definitions and properties that will be used through the
paper. Section 3 presents the main result and shows its connections
with previous stability analysis. Section 4 discusses two examples
previously used in the literature with the purpose of illustrating the
concepts and showing the difference with others MHE algorithms.
Finally, Section 5 presents conclusions.

2  Preliminaries and setup

2.1  Notation
Let Zj, p) denotes the set of integers in the interval [a,b] and
L>q éenotes the set of integers greater or equal to a. Boldface

symbols denote finite sequences Wk, ko] = {Wky»- -+ Wky } fOT
some ki,ko € Z>p and k1 < ko, and mﬁmte sequences w =
{wg, wgy1,...}, k € Z>, respectively. We denote I, |k as the
estimation of x; at time k € Z>¢. By |x| we denote the Euchdean
norm of a vector z. Let ||z|| := SUPLez., |z | denote the supreme
norm of the sequence x and ||z||(, ) = SUPkez, 4 | |. For short,
we will use simply ||z|| without indices where it is clear from the
context. A function v : R>g — R is of class K if -y is continu-
ous, strictly increasing and y (0) = 0. If v is also unbounded, it is of
class oo A function ¢ : R>g — Rxq is of class £ if ¢ (k) is non
increasing and limy,_, oo ¢ (k) = 0. A function 8 : R>q X Z>q —
R is of class ICL if 3 (-, k) is of class K for each fixed k € Z>,
and 3 (r, -) of class L for each fixed r € R>q. B

The following inequalities hold for all 3 € KL, v € K and a; €
RZO with 5 € Z[l,n]

n

na;, k)

> ank | <Y B(
=1 j=1

()]

The preceding inequalities hold since max{a; } is included in the
sequence {a1, ag,...,an} and K functions are non-negative strictly
increasing functions.

A sequence w is bounded if ||w]|| is finite. The set of bounded
sequences w is denoted as W (wmax) = {w : ||w|| < wmax} for
some wmax € R>g. Moreover, a bounded infinite sequence w
is convergent if [wy| — 0 as k — co. Let us denote the set of
convergent sequences C:

Cw = {w € W (wmax) | w is convergent}.

@

Analogously, Cy is defined for the sequence v.

2.2 Problem statement
Let us consider the state estimation problem for nonlinear discrete
time systems of the form

Tpp1 = f (o, wy),

3)
Yk = h(zg) + vk,

where z, € X CR™, wp e WCR™,y, € Y CR™ and vy, €
VY C R™ are the state, process disturbance, output measurement
and measurement disturbance vectors, respectively. The process wy,
and measurement vy, disturbances are unknown but bounded, i.e,
w € W (wmax) and v € V (Vmax) for some wmax, Vmax € R>q.
X,Y,Wand V are compact and convex sets with the null vec-
tor O belonging to them. In the following we assume that f :
R"™s x R™ — R™* is locally Lipschitz on its arguments and h :
R™® — R™¥ is continuous. The solution of system (3) at time k is
denoted by z (k; z¢, w), with initial condition ¢ and process distur-
bance sequence w. The initial condition xg is unknown, but a prior
knowledge g is available and its error is bounded

To € Xp = {Zo : Xy C X. “4)

The solution of an estimation problem aims to find an estimate
Ty of the current state z, at time k by minimizing a perfor-
mance metric W. At each sampling time k, given the previous
N measurements y[_ ), the following optimization problem is

solved

|-TO - i’O| < emax}7

k
Cmin =Ty np 0+ D e(wj\k’f’jlk)
Tk —N|k, W j=k—N
X= Zx_Nk — Tk-N
A o (5)
Eiap= T (wjlkij\k)’
s.t.
yi= () + o

ij\k e X, uA}j|k eEW, ﬁj\k eV,

where Z;;, is the estimate of the state at time j and Wy, is
the estimate of the process noise at time j, estimated at time k
based on measurements yj, _  j, available at time k. The prior esti-
mate &5, |, and the process noise W, | are the optimization
variables. The stage cost ¢ (wj| k> 0j| k) penalizes the estimated
process disturbance w;|,, and the estimation residuals 0;, = y; —
h (53 1 k) , while the arrival cost I'y, _ | (x) penalizes the prior esti-

mate j,_ |- £ (-,+) and 'y, _ |4, () and their parameters, allows
to ensure the robust stability of the estimator [25]. When the esti-
mation window is not full, & < IV, problem (5) is reformulated and
solved as a full information estimator (FIE)

min ¥ = T3, (xo +Z£(wj|kvﬁj\k)

Zo‘k w ] 1
X0 = &gk — Zo,
R o (6)
i = f (xj\kvwﬂk) ;
s.t.
yj= h (fﬂk) + Uik

itj|k e X, ﬁlﬂk ew, ’[)j|k ey,

as k increases this problem becomes (5) Vk € Z> .

In previous works, the robust stability of MHE has been achieved
by modifying the standard least-square cost function through the
inclusion of a max-term [25, 26] or by a suitable choice of the
cost’s function parameters [25]. Another way to solve this problem is
combining a suitable choice of ¢ (ﬁ]ﬂk, ;| ) with a time—varying
arrival cost of the form

(O]

Pronpe () = |Zp— Nk — Th—N [p—1

k— N\k

whose parameters P, _ N‘k and T, _ v are recursively updated using

the information avallable at time k [18]. This way of defining

I'y— Nk avoids the introduction of artificial cycling in the estimation
process (see [19]). The arrival cost matrix Pk—N\k is given by

P Nk = {

1
an Wk
Wi

if 3-Tr (W) <e,

otherwise,

(®)

with
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1
ap =1— —
k Ny
T . o
Ny, = [1 + T Nk Pkafl\lcflxkaUcfl] T3
[0k — |k ]

Op—Nlk = Yk—N — Jr—N|k>
Wi =Py_N-1jk-1—

R T
Py N-11k—1%k—N|k—1%)— N|k—1

~T - s
Y+ 2 Njg—1Pe-N-11k-1Zk—N|k—1Dk—N-1]k-1

where o, ¢, A € R~¢ are tuning parameters, ¢ > \, Py = A xn
and o > o, Where o, denotes the process noise variance. The
prior knowledge of the window Zj,_ v is updated using a smoothed
estimate [29]

(C)]

The optimization problem (5) can be reformulated in terms of
the initial condition &), the estimated process noises ;| and the
measurement noise ¥ ;, as follows

TN =Lp_Nik-1-

k—N-1
min_ ¥ —akF0|k x0) + Z a (zi)ﬂk,f;ﬂk)
930|k7 =1
> K(ﬁ’j\k’@jlk) 10)
j=k—N
X0 = Zox — Zo,
Tiyik = f (@\k»%\k):
s.t.

yj= h (i’ﬂk) + 0jik
QAZjlk e X, ’lf]jlk ew, @j|k eV.

with g, € (0, 1]. This problem allows to explicitly see the effect of
past data on Zy,. It is easy to see the exponential weighting on Zq),
W;, and 0, j € Zop—N—1 by o, € (0,1] that deemphasizes
their effect on &y In this way, only W), and 0;3 j € Zk— Nk
has full effect on Zy,y..

As «y, change in time as a function of the estimation residual
U N|k» modulates weighting based on the information available in
Y[k—N,k]- This way of computing Py | introduces a feedback
action between the arrival cost matrix P, s and the estimation
residual 9y, |- The updating mechanism (8) provides adapta-
tion capabilities that allows the estimator to incorporate the relevant
information available in yq ;] and follow changes in the system (see
Figures 3 and 4 of [18]).

The updating mechanism (8) is a time-varying filter whose
inputs are Zj_ N|k—1§7{_ Nlk—1 and the initial condition Fj.
It generates recursively a real-time estimation of FPp_np by
updating Pj,_ 1,1 With an exponential time-averaging of

T Nk—1Th— N1

REMARK 2.1 The sequence P := {P0|0, o Pon-ts Pk—N|k}
Vk € Z~q is positive definite, it is decreasing in norm and it is

bounded. The proof of these properties follows similar steps as in
[18].

Now, we introduce a definition of detectability for nonlinear
systems using a stability definition [30], [31].

DEFINITION 2.1 The system (3) is incrementally input/output-to-
state stable (i-10SS) if there exist functions 8 € KL and ~v1, 72 €
KC such that for every initial states 21, 29 € R™*, any two feasible

disturbances sequences w1, w2 € R™ and output sequences y,
Yo, the following inequality holds

|x(k, 21, w1) — z(k, z2,w2)| < max{,@(\zl — 29], k),

(In(@1) = h@2)lljo 51 }
(11)
where z1 = z(k, 21, w1) and w2 = x(k, 22, w2). Basically, this
definition compares any two system trajectories (x (k; z1, w1) and
x (k; z2, w2)), verifying the stability of their difference Vk € Zxg

7 (Hw1 - w2“[0,k—1]) ;Y2

‘I(kazlawl) —m(k,z27w2)| <n, WGRZO- (12)

The difference 7 € R~y would be stable if and only if the
system is detectable and stabilizable. The value of 1 depends
on the difference between the disturbance sequences wi, w2
and output sequences h(x1), h(xz). Since y = h(z) + v, then
y1 = h(z (k, z1,w1)) + v1 and yo = h(z (k, 22, w2)) + va. If
we take x (k,z1,w1) as the true trajectory of the system and
x (k, z2, w2) as the estimated trajectory, then y; = h(z;) + v; and
y; = h(Z;x) + 9 and the difference ||h(z1) — h(z2)|| becomes
v — 2.

In the following section the updating mechanism (8) and the
assumption of i-/OSS [32] will be used to prove robust stability of
the proposed MHE in the presence of bounded disturbances and
convergence to the true state (Zp)x — @) in the case of conver-
gent disturbances (w1, w2 € Cw, v1,v2 € Cy). Before to proceed to
the development of the main results, we state the main properties of
system (3) and assumptions about I'y,_  (-) and £ (-, -).

ASSUMPTION 2.1 The prior weighting I'y,_ |, is a continuous
function 'y, _ |, R"* — R lower bounded by 2 R = R, % €
Koo and upper bounded by 7p : R = R, 4p € Koo such that

2, (IXD) < T 00 < 3w (IXD) 5 (13)
and
2, (XD 2 X% A (X)) < & x| (14)
where x = Zp_ N — Tk—N,0< ¢, < Cpanda € R>s.
Given the updating scheme (8), inequality (13) verifies
1Py I < Do (0) < [P (15)

ASSUMPTION 2.2 The stage cost £(-,-) : R™ x R™ — R is a
continuous function bounded by Vaw> Vo» Tws Yo € Koo such that
Yw € W and v € V the following 1nequahtles are satisfied

(lw]) + 7, (Iv]) < €(w,v) < Fw (Jw]) + 70 (Jo]) . (16)

U)
These assumptions allow us to built upper and lower bounds
of the elements of W. Then, functions 7; and 72 (from
Definition 2.1) are use to measure the distance between the dis-
turbance sequences wij,w2,v1 and va. They are related with
Yo (D) 57, ([0]) ;3w (Jw]) and Aw (Jv]) through the following
inequalities

7 (37" (wh) < erfwl®, a2 (33, () < ealel®, (7)

for c1,2, 1,2 € R>(. Finally, an assumption about the structure and
properties of function 3(r, s) is introduced

ASSUMPTION 2.3 The function §(r,s) € KL and satisfies the
following inequality
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B(r,s) = cgrPs™9, (18)

for some Cg, P, ER>pand g = p.

Inequalities (17) and (18) have been used in previous works [25],
[26] to bound the estimator performance metric W. Finally, the
def nition of a robust global asymptotic stability (RGAS) is intro-
duced to study the stability of a nonlinear system subject to bounded
disturbances.

DEFINITION 2.2 Consider the system (3) subject to disturbances
wew (Wmax) and Vv eV(Vmax) for Wmax, Vmax EREO, with
prior estimate Xg € X (€max). The MHE equation (5) with adaptive
arrival cost (8) is robustly globally asymptotically stable (RGAS) if
there exists functions ® €KL and 1w, v €K such that VXg €X
and VX € X the following inequality is satisf ed Vk €Zx g

|Xk - )A(kl = (D(lXO - )_(ol, K) + nw ka[O,k—l] +
(19)
Ty ka[O,k—l]

In the next section we will show that if system (3) is i-IOSS and
Assumptions 2.1 to 2.3 are fulflled, the MHE estimator (5) with
adaptive arrival cost (8) is RGAS. Furthermore, if the process and
measurement disturbances are convergent (i.e., W €ECGy,v €G)),
then )’Zklk - Xk as k- .

j Kg[Xk—N — Xk—nN |C (Cg s 18P + A%

3 Robust stability of moving horizon estimation
under bounded disturbances

With all the elements introduced in the previous section, we are
ready to derive the main result: the RGAS of the proposed moving
horizon estimator with an estimation horizon Ny jn for nonlinear
detectable systems under bounded disturbances. Furthermore, KL
and K functions exist such that (19) is valid with ®, Ty and Tty for
all estimation horizon N = Npjp,.

THEOREM 3.1 Given the i-IOSS nonlinear system (3) with a prior
estimate Xg € Xg of its unknown initial condition Xg and bounded
disturbances W €W (Wmax), V €V (Vmax), Assumptions 2.1 to
2.3 are fulf lled, the prior weighting [ — is updated with algorithm
(8) and the estimation horizon verif es

a -1 o4
+)\m1|n PO C13 1+

' (20)

then the resulting MHE estimator is stable.

Proof. See Appendix 7.

The proof of Theorem 3.1 is constructive and provides an esti-
mate of the estimation horizon N required to guarantee the stability
of the MHE estimator analyzed in this work. The estimates Nmjn
and functions B, @w and @y are conservative, since their derivation
involved conservative estimates of noises, errors, stage and arrival
costs. Functions B (r, S), @w (r) and @y (r) are given by

3 min PO_1 (a3 +3%) +g2° , i=0
B(lxk—N _)_(k—N |' J) = [ |X —X |( 1 i (21)
PNl cf g 18 +A0, Pt (a3m+03%2) +g2° i €ZpNg
CB 18° _k s =02 —1 /-
Ow (kwk) = Pl Y (kwk) +c2 372yw? (kwk) +y1 (6kwk) +y1 6y~ (3yw (kwk)) , (22)
0
o} 18° _» a1 01 -1 /-
ov (kvk) = P W (kvk) +c1 37y * (kvk) +v2 (6kvk) +v2 6y, = (3yv (kvk)) (23)
0
such that the estimation residual can be written as follows
[xk = )A(k|k| = [.5:(|Xk_N — Xk=N |, K) + ow (kwk) + @y (kvk) Vk €ZnN1 (24)

To guarantee the validity of previous results on the entire time hori-
zon we must determine if the resulting system is robust globally
stable. Firstly, we determine the decreasing rate of the function
B (r,s) Nmin samplings time in the future. Adopting an estimator
with a window length N = N such that

- . n
B(br, N) = Nmin
N
the effects of the initial conditions Xg will vanish with a decreasing
rate 8. Ask = o, Xy will entry to the bounded set X| (w, v) < X
def ned by the noises of the system W and V as follows

r, (25)

n
Xp (W, v) =[xk = X | = 6(1 + ) (ow (kwk) +
) (26)
ov(kvk) , HERso.

This set def nes the minimum size region that can be achieved
by removing the error in initial conditions (|Xg — Xo| < €max). For
any MHE with adaptive arrival cost and window length N = Npjn,
two situations can be considered

* The estimator has removed the effects of Xg on )A(k|k such that
|Xk+j - )A(k_H' [K+]j | € X (w,v) for allj €7Z>0, and

* The estimator has not removed the effects of Xg on )A(k“( such that
|Xk+j - )A(k_H' [k+j | EX| (W, V) for somej €Z>0,

Assuming the frst situation, moving forward N samples ahead
equation (24), the following inequalities hold

IXken — Rien | < B (X = Xkl N) + w (kwk) + @v (kvk),
< 'X%Xk' + Qu (kwk) + gy (kvK),

= 6(1+ p) (w (kwk) + @v (kvk)).
27

This equation implies the fact that [Xik+j — Xitjk+j| €
X1 (W, V) V] €Zx0. In the other case, when the estimation error
is outside of X| (w, V), equations (24) and (25) are recalled again
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and the following inequalities hold

. T — & Nyin )"
e — aney] <P (Rmin ) D g (ol +

ov ([lv]]),
a0 (5 (3225)- o
It
5> ii—z (29)
then
VN > Npip 1 0 = (N’X;'"Y (5(211’“;)) <1.  (30)

Equation (28), under condition and (29), reveals a contractive
behaviour of the estimation error with a contraction factor 8. Then,

for some finite time k* € Z~, ,, the estimation error will decrease
until

|Tps — g g | € X7 (w,0) . (31)

In equivalent formulations, equations (27) and (28) put in evi-
dence the existence of a positive invariant set and a Lyapunov like
function for the proposed estimator. From equation (28), one can
see that for the case that the estimation error belong to the set
X7 (w, v)c NX, (Xg (w,v)c denotes the complement of the set
X7 (w,v)) the estimation error decreases in a factor of 6 every Ny,
sampling time.

Taking into account the general case in which |z} — Zy &l €
Xr (w,v) for k € Z>y,,,, . following the same procedure as in
[25], we could define i := L%j (where || denotes the floor func-
tion) and j := k mod N, therefore k = ¢ N + j. Combining equa-
tions (27) and (28) and taking into account that |xj — Ty el <
demax for k € Z[O’ N-1]> the following inequalities are obtained

wy, — &yl < max{lz; — 250 60,8 (14 p) (bw ([w]) + éo (0]))},

Equation (32) can be rewritten as follows

< max{9" (B (|zo = @ol,) + 6w (lwl)) + 6u (vlD)) ;6 (14 12) (G (1w} + 6w (0} (32)
< 0'B (120 — @0l ) +2 (1 + 1) (6w (1w} + 60 ([10])) -
[, = el < 0B (lzo = zol, ) +2 (L +w) (6w (Iwlloe—1)) + 0 (I0ll k1)) (33)

which is just equation (19) with

® (Jxo — ol k) = 0"5 (|20 — Zol, 4) . (34)
7w (ol k1) =21+ 1) 6w (lwliory), G5
o ([olios) =20 +m o (Iolos-r)- GO

This equations imply the fact that the proposed estimator is RGAS.

REMARK 3.1 Functions ¢, and ¢, in equations (22) and (23), and
hence 7 and 7y in equations (35) and (36), do not depend on the
estimation horizon N which means that the moving horizon estima-
tor with adaptive arrival cost is RGAS with uniform gains given by
(22) and (23).

This fact implies that the size of the invariant set X7 (w, v) is inde-
pendent of the horizon length N and it only depends on the a priori
bounds for the maximum disturbances (see Example 2). Moreover,
starting with a poor estimate of initial condition Z, estimation error
will decrease thanks to the arrival-cost updating mechanism, which
improves the prior estimate Zg. When the knowledge about the state
at the beginning of the estimation window is accurate (i.e., function
(34) is near zero), one can considerate that the estimation error has
entered in the invariant space X7 (w, v), reaching its minimum value
determined by functions (35) and (36).

REMARK 3.2 Equation (33) also holds for [lwl|(x—n k1] and
0]l (5— 1) instead of [|w]| and [|v]|.

This fact is consequence of the exponential averaging introduced
by variable forgetting factor a. This fact improves the robustness

It can be done omitting last step in equation (42).

and performance of the estimator by adapting the relative signifi-
cance of the arrival cost I',_ y on the estimate ;. The effect is to
generate more accurate estimates of ¢, and ¢, since they depend
on the information available within the estimation window.

Finally, the convergence of the estimation error |zj, — Zp| —
0 is shown for wy, € Cy and vy € Cy. Since ® (|zo — ZTo|, k) €
KL by construction and sequences w and v are convergent,
the right hand side of equation (33) can be rewritten taking
into account only the disturbances within the estimation win-
dow, i.e., [|[wl[jp— N k—1) and [|v]|(x— N p—1]- Since limy oo wy, =
0 and limg_ ., v = 0, one can choose some kj large enough

such that max {wmax, Vmax } < min {m]l (%) ,711;1 (%) } Since

@ (|zg — Tol|, k) € KL, there exist some ko such that ® (-, ka) <
§.Taking k > max{ky, k2}, |z, — 5] < §+ § + § = €. Since
€ is arbitrary, |z — &j,| — 0 when k — oo (see Figure 5 from
example 2). Note that to prove convergence to the true state, one has
to take into account only the disturbances acting on the horizon of
the estimator. On the other hand, to prove RGAS is necessary to take
into account all the history of disturbances.

For the case of non-vanishing disturbances, whenever the horizon
length is chosen as N > N,,;,, the minimum estimation error is
determined by functions (35) and (36). However, when wy, € Cy, and
vg € Cy, we have shown that |xj — Z,,| — 0. This seems to be
an unrealistic situation. However it entai{s that in a noiseless (ideal)
scenario, the algorithm does not introduce artificial noise, and the
estimation error will be upper bounded only by equation (34), which
behaves asymptotically stable to zero whenever N > N,p,;,.

Note that N,,;,, which guarantees the RGAS of the system,
depends on emaz, the class of disturbances considered (upper
bounds of w and v), Fp and the bounds of the stage cost, while
it is independent of ||w||, ||v||. Therefore, the same N,,;, ensures
RGAS for all bounded disturbances and emaz. This implies that we
can prove the RGAS property for full information estimator with
least—square objective function.
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4 Examples

The following examples will be used to illustrate the results pre-
sented in the previous sections and compare the performance of the
estimators. The examples considered in this work are taken from [25]
for a direct comparison of the results.

4.1  Example 1

The first example considers the system

0.8z1 (k) + 0.2z2(k) + 0.5w(k)
—0.3z1(k) 4+ 0.5 cos(za(k))

y(t) = z2(t) +v(t)

z(k+1)= 37

The stage cost is chosen as £(w, v) = 10w? + 10v? and the hori-
zon length is N = 10 for all estimators. The arrival cost is chosen
as T'(x) = 0.1(x — &(t[t))T (x — &(t|t)) for the MAX estimator
([251) and T¢(x) = (x — @(t[t)) IO, (x — @(t|t)) for the ADAP
estimator respectively, where I1g = 10/5 and IIj, is computed using
equations (8) with ¢ = 0.2 and ¢ = 1e6. The MAX estimator uses
§=1,61 = " with s = 0.89% and 65 = 1/N (see equation (3) of
[25]). The full information estimator (FIE MAX, see [26]) is con-
figured with the same parameter used by [25], arrival cost I'g and
§=1,61 = k" and 63 = 1/k.

Table1 Example 1 averaged MSE.

FIEMAX ADAP MAX EKF
T 0.02040 0.02176 0.02206 0.02296
T2 0.00135 0.00151 0.00156 0.00154

Table 1 shows the mean square estimation error of each estimator
averaged over 300 trials. It can be seen that the proposed estima-
tor average mean square estimation error is smaller than MAX ones
and closer to FIEMAX. The main performance difference between
ADAP and FIEMAX estimators is the inclusion of the max term in
the last one, which allows to follow the sudden changes in the signals
(see Figure 1). The EKF provides the worst performance of the esti-
mators analyzed in this example. The FIE estimator is the ones that
uses the bigger amount of information (all the samples available).
On the other hand, the EKF uses the smaller amount of information
(the actual sample). This is the main reason why the FIEMAX pro-
vides the best performance and EKF provides the worst performance
of the estimators considered in this example. The ADAP and MAX
estimators use the same amount of information (/V samples) but they
process the information of previous samples in different way. This
is the main reason for the difference of performance between these
estimators.

Figure 1 shows simulation results for initial condition zg =
[0.5,0]7 and prior estimate Zo = [0, 0]7. The process and measure-
ment disturbances w and v are sampled from an uniform distribution
over the intervals [—0.3,0.3] and [—0.2,0.2], respectively. This
figure shows that the estimators that use the max term (FIEMAX
and ADAP) are able of following the sudden changes, however in
the remaining of the signal the MAX estimator is moving away of
the FIEMAX while ADAP remains closer it. This behaviour is due
to the presence of the max in the performance index of the MAX
estimator, while the ADAP estimator smooths the estimates Ty
It is interesting to point out that the three receding horizon estima-
tors (FIEMAX, MAX and ADAP) have the same behaviour during
the first part of transient behaviour (k < 5). During the second part
of transient behaviour (5 < k& < 10) the FIEMAX and MAX esti-
mators still have the same behaviour while the ADAP move away.
Finally, after the transient behaviour (k > 10), the three estimators
have a different behaviours. These behaviours are explained by the
structure of the performance index and the amount of information
used by each estimator, as it was explained in the previous paragraph.

0.8 T
— REAL
07 FIE MAX [1
06 -- ADAP
- | MAX
05 EKF
S 04
0.3
0.2
0.1
0.0
0 10 20 30 40 50 60 70 80
k

— REAL
FIE MAX
0.1 b i....i....i.== ADAP
: : : : . MAX
— EKF
00 L L L L L L L
0 10 20 30 40 50 60 70 80

Fig. 1: Comparison between different estimators and system states.

4.1.1  MHE in the presence of variable measurement noise:
Now the MHE estimator is evaluated in the presence of time-
varying measurement noise. The variance of the measurement noise
is changed from 0.2 to 1.0 between times 20 and 40, then it returns
to 0.2.

Table2 Example 1 average MSE with variable measurement noise.

FIEMAX ADAP MAX
T 0.02060 0.02068 0.03067
To 0.00168 0.00290 0.00335

Table 2 shows the average mean square error in the presence of
variable measurement noise. In this case we can see that the mean
square error of the ADAP estimator is marginally affected (less
than 2%) by the changes of the measurement noise, while the mean
square error of the MAX estimator increases significantly (more
than 40%). The behaviour of ADAP estimator performance is due
to the adaptation capabilities of the prior weighting updating mech-
anism, which is able of tracking the changes of noises by adapting
the arrival cost 'y _ 5. In the case of MAX estimator, the arrival
cost is updated using information of the system model and noises
[25], therefore any change in the operational conditions is not incor-
porated into the arrival cost, affecting the remaining estimates of
the window. In the case of the FIEMAX estimator, its performance
is not affected (less than 2%) because the FIEMAX uses all the
information available until the current sample.

Figure 2 shows the evolution of the trace of PkilN used in the
prior weight of ADAP estimator in both cases, fix and variable mea-
surement noise. It can be seen that the trace of both matrices grow in
similar way, however when the measurement noise changes its vari-
ance from 0.2 to 1.0 the trace of P, _ ! v increases its value (from 12.5
to 22.5) and them both traces have the same behaviour again. This
change in the arrival cost weight helps ADAP to acquire informa-
tion that allows it to keep the performance (from M SE = 0.02181
to MSE = 0.02088) while the MSE of MAX increases a 40%



sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)

Nestor N. Deniz, M. Murillo, G. Sanchez & L. Giovanini; "Robust stability of moving horizon estimation for non-linear systems with bounded disturbances using adaptive arrival cost"

IET Control Theory \& Applications, Vol. 14, No. 18, pp. 2879-2888, 2020.

35 T T T T T T T

30

25

D)

k

P,

Trace(
-
v

10+

Fig. 2: Comparison of the evolution of trace(PkilN) used by
ADAP estimator for time—varying (red dash dotted) and constant
(blue dashed) measurement noise parameters.

Table 3 Example 2 averaged MSE over 300 trials and different horizon size.

N=2 N=5 N=10
ADAP MAX ADAP MAX ADAP MAX FIE
x1 | 0.18808 0.58652 | 0.03367 0.04615 | 0.00171  0.00772 | 0.00024
xz | 0.23037 0.66768 | 0.04074 0.05077 | 0.00285 0.00951 | 0.00120

(from M SE = 0.02211 to MSE = 0.03085). The trace of P, '
keeps changing until £ = 50 since the last measurement affected by
the noise with variance 1.0 is abandoning the estimation window
(remember N = 10).

4.2  Example 2

As a second example, we consider a second order gas-phase irre-
versible reaction of the form 2A — B. This example has been
considered in the context of moving horizon estimation in [33], [26]
and [25]. Assuming an isothermal reaction and that the ideal gas law
holds, the system dynamics

— K/.Tz w
0= | " |

h(z) = z1(t) + x2(t) + v(t),

(38)

where © = [z, x2], 1 is the partial pressure of the reactant A, 2
is the partial pressure of the product B, and x = 0.16 is the reac-
tion rate constant. The measured output of the system is the total
pressure. The system is affected with additive process and measure-
ment noise w and v drawn from normal distributions with zero mean
and covariance Q = 0.001212 and R, = 0.12, respectively. The
stage cost and prior weighting are chosen as £(w, v) = wTQu_,lw +
Ry '? and Ty (x) = (x — @(k|k)) I, (x — & (k|k) with ITp =
(1/36) 12, where 11}, is determined by an extended Kalman filtering
recursion in the case of the MAX estimator and the adaptive method
in the case of the ADAP estimator with ¢ = 0.1 and ¢ = 1e6. For
the MAX estimator we use §; = 1/N, d2 = 1 and § = 0. In the case
of the ADAP estimator, the stage cost weight matrices are chosen as
Qw = 0.00112 and R, = 0.1. We use a multiple shooting strategy
with a sampling time of A = 0.1 [Seg] and we add the restrictions
x1 > 0and x2 > 0.

Table 3 shows the values of the mean squared error computed
from the time 10 (in order to neglect the initial transient error) up
to the simulation end time and averaged over 300 trials for horizon
sizesof N =2, N =5and N = 10.

The results show that the performance of ADAP estimator is supe-
rior to the one of MAX estimator for any horizon (two to three times

4.0 T T T T T T T
ADAP
MAX

3.5 4!

3.0 :
. ‘ ‘ ‘ ‘ ‘ ADAP
2501 == MAX
' : : : : : FIE
2.0-: 3 — REAL ||
R ‘
.
§ 15 te I
S e
E ~ ~___.--
0.5:: "'---.,__,__
00 : It It It L It It It
0 10 20 30 40 50 60 70 80

Fig. 3: Comparison of z; between ADAP, MAX and FIEMAX esti-
mators for different horizon length (top N = 2, middle N = 5 and
bottom N = 10).

smaller), showing a decrement of the absolute value of MSE with the
size of the estimation window for both estimator. The FIE provides
the best performance at the price of its computational burden. Since
the FIE has into account all measurements, as time increase the prob-
lem become intractable from a practical point of view. However, it
is useful for benchmark purposes. In this example we can see again
the effect of the arrival cost on the performance of MHE estimator,
playing a central role on the behaviour of the estimators. This effect
is stronger for shorter horizons, since the significance of the arrival
cost on the cost function decreases with the size of the estimation
window. The ADAP estimator always provides a better performance
than the MAX, providing performance improvements ranging from
277% (for N = 10) to 588% (for N = 5).

Figures 3 and 4 show simulation results for 2o = [3,1]%, Zg =
[0.1,4.5]T and estimation horizons of sizes N = 2, 5 and 10, along
with results for a full information estimator using the same param-
eters. These figures show that the behaviour of ADAP estimator
hardly change with horizon length (only the startup behaviours show
significant differences), providing estimates Zy;, that converge to a
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Fig. 4: Comparison of x2 between ADAP, MAX and FIEMAX esti-
mators for different horizon length (top N = 2, middle N = 5 and
bottom N = 10).

neighbourhood of the true states xj,, whose size depends on the vari-
ance of the noises the initial value of the arrival cost weight (Fp) and
the stage costs (see equations (22) and (23)). This result is consistent
with the independence of observer gains m, and 7, from the size
of estimation window N (see Remark 3.1). On the other hand, the
behaviour of the MAX estimator changes significantly with the size
of the estimation window. In all the cases it provides estimates 2y,
that do not converge to the true states xj, showing an offset that
depends on the size of the estimation window. This result is con-
sistent with the dependence of observer gains 7, and 7, with the
estimation window size N (see Remark 16 of [25]). In addition, the
MAX estimator also exhibits the cycling effect caused by the use of
the filtered estimate to update Zj,_ n [29].

These figures also show that the main difference in the perfor-
mance between ADAP and FIE is due to the transient phase (0 <
k < 10), while during the steady state phase (k > 10) both estima-
tors have a similar behaviour. On the other hand, MAX and FIE
estimators show different behaviours along all simulation.

Finally, Figure 5 shows through simulations the convergence of
Zp|1, to o, when disturbances are convergent. In these simulations
the only source of error is Ty # xq, therefore sequences of noises
are convergent w € Cy and v € Cy. In this figure we can see that
independently of the initial condition Zo, £, converges to z.

aaa

5 Conclusions

In this paper we established robust global asymptotic stability for
moving horizon estimator with a least-square type cost function for
nonlinear detectable (i-IOSS) systems in presence of bounded distur-
bances. It was also shown that the estimation error converges to zero
in case that disturbances converge to zero. This was done for an esti-
mator which uses a least-square type cost function whose arrival cost
is updated using adaptive estimation methods. An advantage of this
updating mechanism is that the required conditions on prior weight-
ing are such that it can be chosen oft-line. Furthermore, it introduces
a feedback mechanism between the arrival cost weight and the esti-
mation errors that automatically controls the amount of information
used to compute it, which allows to shorten the estimation horizon.

The standard least-square type cost function is typically used in
practical applications and RGAS has been proved in [25]. However,
for this formulation, the disturbances gains depend on the estimation
horizon. Hence, this result does not allow to establish robust global
asymptotic stability for a full information estimator. We showed that
changing the updating mechanism of arrival cost weight the dis-
turbances gains becomes uniform, allowing to extend the stability
analysis to full information estimators with least-square type cost
functions.

— 1]

—_11 |

1 1.5 2 25
k

— T

—_—19 1
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Fig. 5: Convergence of the estimation error for the case of conver-
gent disturbances.
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7  Appendix: Proof Theorem 1

The following optimal cost of problem (5) can be given by

Uy =Tp-nv (X)) +

J

k
DA CHINE S I ED)
=k—N
which is bounded (Assumptions 2.1 and 2.2) V[t | and V ||
forall j € Zjy—n k) by

Ui <7, () + N7 (16536]) + N7, (1051 (40)
Ui >, () + N, (167]) + N, (1951 - (1)
Due to optimality, the following inequalities hold Vk € [k — N, k — 1]
\1/(55*, w*) <U (2 n,w),
k—Nlk <V (zp—N,w) “2)
< ([Er—N = T—~ 1) + NFw ([[wl]]) + N3o ([[0]]) ,
then, taking into account the lower and upper bounds we have
-1 /5 - _ _
IXI <72, G ([ek—n = Zr-n1) + N7w ([[w]]) + N7 ([0]]) -
By mean of Assumptions 2.1 and 2.2 the last inequality can be written as follows
—1 /9= - -1 - —1 -
IXI <7, B (ler—n = Ze-nD) +7, BNFw (lw])) +7, BN ([[0])
3a i1 . 11 11 43)
< P |Po” | @ lzk—n — Zp—N|+ N (w])) + Nayg (o) ) -
0
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Analogously, bounds for |9 | and [;,| can be found

37 (lvl)

w

N _ 3 _ _ _ _
5| < lwl <N7p (ltg—n — me\)) +1w1 (3 Fw ([lwll)) +~
44)

ol <2, (7 7o e = 3mD)) 2, 3 3 (ol 25" 37 (1ol

Next, let us consider some samples k& € Z> y and assume that system (3) is i-IOSS with 21 = z},_ N, 22 = T Nk W1 = {w;},
wy = {Wj}, v1 = {vj} and vy = {vﬂk} forall j € Zjp_ n p—1- Since z(k) = x (N, 21, w1), (k) = &), = z (N, 22, w2) we obtain

lwr = axpel < B (lon-n = @n-niel V) + 7 (lwy = jell) + 72 (o = o514l) - (45)

In order to get a finite upper bound for the estimation error, the three terms in the right hand side of equation (45) must be upper bounded. The
first term can be written

B (|fﬂk—N = &Nkl N) <BQ2rg-N —Tp-nN|, N)+B(2 x|, N),

1 1
634 |Px!|» ,
- - - ) N +
|P0_1| |T—N — Tp—N] (46)

63a Na 632 Na
B <|Po| & (lwl), ) + B (P()l (||'U||) ) .

Using Assumptions 2.1 and 2.3, function §(+) is bounded by

<BQ2|zp—N —Zp—n|, N)+ 8 (

) cg 2P P\’ e 67 34
B (\xk—N - xkauc\,N) < qu lok-n — Tp-n "+ (Pool: £ |zh—N — Tpn |+
o 0 (47)
cg 6 3« Na™1

—1
[Py
Taking into account that P, Lisa symmetric positive definite matrix Vk € Zg ). then [P, 1| < Amax (P,: 1), where Amax (P,: 1) denotes

the maximal eigenvalue of matrix P~ L Denoting Apin (Pk_ 1) as the minimal eigenvalue of matrix P~ Land taking into account that | P, 1| <

|P _&1 |, the maximum conditioning number of matrix P, L can be defined as C P = Amax (Pgol) /Amin (PO_ 1), then

Cﬁ 18p
I

(7 () + 736 (o)) - (48)

~ C —
ﬂ (|$k7N — :Ck—N\k:|7 N) S Niﬁ; (2p +C§;18p) |1‘ka - Ek,Nlp +

The first term in the right side of this equation is bounded due to the assumption that |z n — Zx_ | € Xp (émax), while the second term
are finite constants. To guarantee the validity of previous results on the entire time horizon we extend the definition of 3 (7, s) to N = 0. It is
sufficient to define 53 (r, 0) as follows

B (r,0) == max{r, kﬁﬁ (r,1)} kg € R>1. (49)
The second term in the right hand side of equation (45), can be bounded by the following inequality Vj € Z,_ n 1

1 (Il = j5l) <71 (ol + 1)

(50)
—1( 3 _ _ 1,4 - 10 -
<o (ol +25" (59 Gonmy = 2onD) +25 @30 (0l)) + 751 33 (01D )
Recalling Assumption 2.2 and properties (1), the reader can verify the following inequality
. ~ c13%! |PC>_01|Q1 aay o1 — al

m (lwj = Bjll) < —F5,— lok-n = TN [T + 13 (ll) + 71 6llwl) + (67, 33w (Jwl))) . D

In an equivalent manner, a bound for the third term in the right hand side of equation (45) can be found

) o Cc2 3%2 |P<;ol|a2 _ aas Qg i —1 /0=

v2 (lvj = ¥ikll) € ——Fag @k~ = Tu-n["* + 2 3730 (Jwl)) + 22 (6]|v]) + 72 (67, B (0l) . 52)

Once the upper bounds for the three terms of (45) were found, defining ¢ := max{p,acai,acas}, 1 :=min{q, a1, s} and p:=
max{p, a1, az}, equation (45) can be rewritten as follows

|17k _£k|k‘ < w (Cf’ (C 1817 (Cl 391 + e 3(12) A1 (P071) +Cﬁ 217) +

N'q min

cg 18P 2 _ _

% (ol + e2 37253 (ol + 7 (6llel) + 7 (635" (37w (l]) + 53
1Py |
cg 18P —1 .-
LB 38 (Ioll) + ex 32138 (loll) + 72 (6llvll) +92 (63,1 370 (I0]))) -

1P " v

0
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This equation can be written as follows

ok = agil < B (1ann = Tron|, N) + du (lol) + b (lol) k€ Zg y_1y- (54)

by defining the following functions as follows

— K¢
— Tl _ — Ll _
Baesn — Fo_nl, N) = |’“NN—7,’“N| ((C; (cﬁ 187 4 A% (PO 1) (c1 3% + ¢ 32 )) +ep 2”) , (55)
CB 18p —% g -2 —1 _
w = -1, Tw €2 Yw 71 71\, Lrw )
(Jwl]) : P (Jlwl]]) +c2 3 ([lwll) + 1 (6]lwll) + 71 (67, B ([lw])) (56)
0
B 187 _ g o1 =1 (o=
o (ol = T2 550 58 (i) + ex 355 (o) + 32 Gl + 72 (62, 5 () 57)
0

Functions ¢, and ¢y only depend on the characteristic of the noises w and v, stage costs £ (w, v) (through its bounds vy , Yy Y and 7y ), the
functions 73 and 2 (used to measure i-IOSS property), and the initial value of the prior welght matrix Py, therefore they only affect the steady
state value of the residual defining a bounded set X' (w, v) € X where the estimated states £, will remain.

On the other hand, the function 3 depends on the error at the beginning of the estimation window (z3,_n — Zp_ ), stage costs £ (w,v)
(through its bounds 74, and 7y ), the initial (Py) and final (P~o) values of the prior weight matrix through their eigenvalues and the size of the
estimation horizon N.

The only term that can affect the stability of the estimates is /3, since it depends on the error at the beginning of the estimation window
(N — Zp_N), functions 1 and 2 (used to define IOSS) and the behaviour of the updating mechanism of the arrival cost parameters
(Pf). Then, we want to determinate the minimum horizon length Ny,,;,, required to accomplish a decreasing rate € (0, 1) such that Vr, s :
B(r,s) > B(r, s), which is given by

1
N > Nyin = (6 e Cp (e5187 + A, (P ') (e13™ +232) +¢52°) ) " (58)
Adopting an estimator with a window length N > N,,5,, B(r, s) is bounded by
2 Niin K
Blor, N) < (=) o, (59)

and the effects of the initial conditions |z¢ — Zg| > 0 will vanish with a decreasing rate §. As k — oo, the estimates & k|%x Will entry to the
bounded set X (w, v) € X defined by the noises of the system

Xy (w,v) = {ler — Eel <21+ p) (Pw ([wl) + do ([0} @€ Rso. (60)

This fact completes the proof of Theorem 1. ]
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