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Abstract

Motivation: In precision medicine, next-generation sequencing and novel preclinical reports have led
to an increasingly large amount of results, published in the scientific literature. However, identifying novel
treatments or predicting a drug response in, for example, cancer patients, from the huge amount of papers
available remains a laborious and challenging work. This task can be considered a text mining problem that
requires reading a lot of academic documents for identifying a small set of papers describing specific relations
between key terms. Due to the infeasibility of the manual curation of these relations, computational methods
that can automatically identify them from the available literature are urgently needed.
Results: We present DL4papers, a new method based on deep learning that is capable of analyzing and
interpreting papers in order to automatically extract relevant relations between specific keywords. DL4papers
receives as input a query with the desired keywords, and it returns a ranked list of papers that contain
meaningful associations between the keywords. The comparison against related methods showed that our
proposal outperformed them in a cancer corpus. The reliability of the DL4papers output list was also
measured, revealing that 100% of the first two documents retrieved for a particular search have relevant
relations, in average. This shows that our model can guarantee that in the top-2 papers of the ranked
list, the relation can be effectively found. Furthermore, the model is capable of highlighting, within each
document, the specific fragments that have the associations of the input keywords. This can be very useful
in order to pay attention only to the highlighted text, instead of reading the full paper. We believe that
our proposal could be used as an accurate tool for rapidly identifying relationships between genes and
their mutations, drug responses and treatments in the context of a certain disease. This new approach can
certainly be a very useful and valuable resource for the advancement of the precision medicine field.
Availability and implementation: A web-demo is available at:
http://sinc.unl.edu.ar/web-demo/dl4papers/
Full source code and data are available at:
https://sourceforge.net/projects/sourcesinc/files/dl4papers/
Contact: lbugnon@sinc.unl.edu.ar

1 Introduction

Precision medicine is a growing field of research and, also, of technological development for improving human
health and quality of life (Lin et al., 2019). In precision medicine, it is assumed that the underlying molecular
causes of disease are, in many cases, specific to each patient, thus identifying them can help to find the best
treatment for each individual (Sboner and Elemento, 2016). In fact, personal sequencing data is very easy
to have nowadays, quickly and at a low cost. The advantages of this approach, both for patients and
physicians, include better and more accurate diagnosis and treatments, as well as safer drug prescription
(Gomez-Lopez et al., 2019). In such a scenario, physicians daily face lists of genomic alterations, where only
a small minority of them could be relevant as biomarkers to drive clinical decision-making. For this reason,
the medical community agrees on the urgent need of novel approaches for prioritizing treatments that could
be clinically actionable in, for example, cancer therapy (Piñeiro-Yáñez et al., 2018).

Selection of the right treatment to be delivered to the right patient and at the right time, based on the
patient genomics profile, is the promise of precision medicine (Vanden Berghe and Hoste, 2019). To achieve
this, it is important to identify specific molecular biomarkers, such as genes with a specific mutation, to
predict drug efficacy on a patient. However, a certain biomarker can present a different response to the
same gene inhibitor. For instance, it has been demonstrated that BRAF V600-mutated tumor types do
not respond uniformly to BRAF-targeted therapy when treated with the drug Vemurafenib (Ducreux et al.,
2019). Thus, understanding the specific relation between a gene, its mutation and a drug, in a specific
context (a given disease) can be crucial for the success of precision medicine (Lee et al., 2018).
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There are available databases containing gene-mutation-drug relations, built from curated literature on
clinical studies (Levy et al., 2011; Landrum et al., 2016; Warner et al., 2016). Unfortunately, manually
curating (that is, doing text normalization and labeling relations) is a very difficult task to achieve due
to the large number of on-going research projects, and the fast-growing volume of articles reporting new
relations, all the time. To face it, many tools for the automatic recognition of individual biomedical entities
(such as genes, mutations, drugs, diseases) in a text have been developed (Rocktaschel et al., 2012; Wei et al.,
2013, 2015; Leaman et al., 2015; Lee et al., 2016c; Wang et al., 2018). However, they are mainly focused on
the identification of single words instead of finding meaningful relations among them, which remains a hard
challenge that has not yet been effectively solved.

Several efforts in developing computational methods for the automatic extraction of relevant relations
between biomedical entities from literature have been made. Some proposals can capture some specific
relations between entities based on the co-occurrence of the words (Doughty et al., 2011; Lee et al., 2016b;
Soto et al., 2019), providing high sensitivity but low precision. As an alternative, machine learning (ML)
approaches have been proposed more recently. For example, in (Singhal et al., 2016), some features have been
extracted such as the distance between each word and a keyword, or the frequencies of a “disease-word”’ or
“mutation-disease-word” co-occurrence. Then, a ML classifier for finding mutation-disease associations has
been trained. However, identifying close relations between different entities (for example, gene-mutation or
gene-drug) with high accuracy remains still a challenge. One of the most recent ML proposals consists
of manually extracted features used together with a random forest classifier to identify keyword-pairs
relationships in full documents (Lee et al., 2018). Although this method has outperformed existing models,
it requires a lot of hand-made curation and pre-processing steps to obtain a set of features for a collection
of papers.

The fast-growing of deep learning (DL) algorithms (Bugnon et al., 2019; Stegmayer et al., 2018), together
with the recent emergence of word embeddings (Mikolov et al., 2013; Pennington et al., 2014; Bojanowski
et al., 2017; Lee et al., 2019) that represent a single word by a low-dimensional vector, capturing - in some
way - its semantic information, have lead to substantial improvements in the field of automatic information
extraction from text (Habibi et al., 2017). In fact, text mining using DL has actually many advantages
regarding automatic feature generation and extraction, which could lead to a better use of full documents.
Deep neural networks can automatically extract the most relevant features from them, instead of the classical
feature extraction techniques, which are extremely time-consuming and require the involvement of domain
experts. Thus, a single DL model looking for relevant keyword-pair relations in the text could be the best
way for analyzing full-text manuscripts.

Several DL models for finding relationships between biomedical entities have been recently proposed.
For relation classification between two keywords with a representation at character-level, Li et al. (2017)
proposed the combination of a convolutional neural network (CNN) with a long short-term memory (LSTM)
for entity recognition, and another LSTM for sentence-level analysis. In (Peng and Lu, 2017) a CNN for
predicting protein-protein interaction was proposed, with a feature that measures the distance between
keywords in the same sentence. It was trained and evaluated at sentence-level. The authors state at the
conclusions that it would be interesting to be able to extend the model beyond the sentence boundary. More
recently, Peng et al. (2018) used an ensemble of support vector machines, CNNs and LSTMs, combined
using either majority voting or stacking, in a chemical-protein relation corpus. Lee et al. (2018) proposed
a model for sentence-level analysis based on CNNs and word embeddings pre-trained on Google News. All
the deep learning models in the works cited above have been evaluated only for finding relations between
pairs of keywords at a sentence-level. That is to say, not from a complete document, such as a PubMed
manuscript.

A wider context at document-level, beyond just each single sentence, could certainly help a model to
better find relationships. For example, in the case of a sentence having two keywords and located in the
manuscript introduction, it can actually refer to a result that has not been found in the article under
analysis, but in some previous works. In that case, the context could help to discern about the relevance
of the relationship for the analyzed document. In fact, a sentence in the context of a results or conclusion
section is more likely to be referring to the main topic of the article. Another example might be when a
sentence includes the two input keywords with a positive relation, but then, in one of the following sentences
the lack of statistical support for this result is indicated, refuting the positive relation. Also, the first
sentences in a paragraph can say something like that a trial was made for one patient only, thus results are
preliminary and not being conclusive regarding a complete population. Then, the results presented in the
following sentences can confuse a sentence-level model. Finally, it should be taken into account that when
two input keywords are not in the same sentence, the sentence is directly ignored by such model, precisely
because of the lack of a wider context than the isolated sentence.

Here, we propose a novel approach for finding relationships among biomedical entities within complete
texts, with a single stand-alone deep learning model and at document-level. Our tool, DL4papers, is capable
of automatically extracting characteristics from a large pool of text, looking for relationships between
user-defined entities. This means that it can find if there is a relation between, for example, a specific
mutation and a drug, within all published papers on cancer in a repository. To achieve this, it receives
as input the biomedical keywords of interest and all the papers in the repository where these keywords
could be found. Then, each raw text is transformed into a numeric representation using a word embedding
model. This data is used for feeding a deep learning network, which learns to extract useful text features
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 ...the BRAF gene and its V600E mutation melanoma patients can be used to predict response to BRAF inhibitors such as vemurafenib...
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Figure 1: Word embedding designed for representing a document and a pair of input keywords (a specific
example is shown for the gene “BRAF” and the mutation “V600E”). A document of L words is represented
with a M × L embedding tensor. Additionally, two one-hot-encoding vectors for each word are defined. The
entity-type vector of dimension K represents the category of the word (gene, mutation, drug, disease, cell-line).
The 1-D keywords vector indicates which specific entity terms are in the input search query. Finally, all vectors
are concatenated to form a tensor of (M +K + 1)× L elements as input to the DL model.

automatically. As the response, DL4papers returns a list of papers where relevant relations between the
keywords are found. Furthermore, in order to better assist the process, the returned list of output papers is
ordered, according to a relevance score, from more to less relevant, showing among the top-papers the ones
where the strongest relations were identified. Besides, the fragments of texts that are the key ones for the
relationships found are highlighted within the original text documents.

2 The deep learning model

DL4papers is based on an end-to-end DL model. It is trained with full documents and several keyword-pairs
with binary labels, indicating whether there is, or there is not, a relation between them within each text.
Thus, given the input keywords, the model outputs a prediction score for each manuscript in the corpus,
indicating the probability that the input keywords are related in the analyzed document.

For training the DL model, a corpus of documents is vectorized using a word embedding. It takes the
text corpus and produces a vector space of M dimensions in which each word in the corpus is assigned to
a point (embedded vector) in the space (see Figure 1). In order to represent a full text of L words, all
the word vectors in the text are concatenated to form a tensor of M × L elements. Then, two types of
one-hot-encoding vectors for each word in the text are generated. The first one is the entity-type encoding
that indicates to which of the possible K entities the word belongs to (if any). For example, the entities could
be gene, drug, mutation, disease or cell-line (K = 5). The second one is the keyword encoding that indicates
which specific keywords are of interest and related in the text (1 if the word is part of the keywords-pair
and 0 in the other case). These two encodings form a K + 1 vector for each word. It is important to note
that only the keyword encoding part is modified for each specific user search, thus the heaviest part of the
processing must be run only once. An example of the resulting tensor is shown in Figure 1, with a specific
example for the BRAF gene and its V600E mutation. The vector generated by the word embedding, the
entity-type one-hot-encoding vector and the keyword one-hot-encoded vector are concatenated, to form a
(M+K+1)×L tensor, for each part of the document in the corpus. It should be noted that this embedding
design has the potential of allowing the input of several biomedical entities at the same time.

The full end-to-end architecture of the DL model is shown in Figure 2. Given an input keyword pair,
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the tensor that represents a document first passes through two convolutional layers, whose main function is
to compress the word embeddings from M to a smaller dimension N . Then, the resulting N ×L tensor goes
through a series of convolutional layers. The number of convolutional layers in the network is an important
parameter that can lead to a degradation of the accuracy of the network, as reported in (He et al., 2016a).
Therefore, the convolutional layers are grouped in a series of fully pre-activation identity blocks, as suggested
in (He et al., 2016b). These blocks, also known as residual and pooling layers, propagate the input through
the whole network with identity operations. Each residual layer is composed of two convolutional layers, with
their corresponding ELU activations (Clevert et al., 2016) and batch normalization layers (Ioffe and Szegedy,
2015). This results in neural networks with a better generalization capability for the deepest configurations.

Phrases that relate the input keywords could be located in any section of the document, many representative
examples of these situations are needed for training a model. One possible solution is to use data augmentation,
but differently from images where it is widely used, a 1-dimensional translation of the text could break
important semantic relations. Therefore a global max pooling was used in the last layer instead of a standard
fully connected layer. This particular design of the last layer allows the first layers to be trained independently
of the keywords position in the text, given that the parameters of the first layers can be learnt from sentences
that are anywhere in the document. Besides, the global max pooling of the output layer, differently from
most commonly used fully connected layer, has less weights to fit for the same performance, and it has been
demonstrated that this type of layer has less overfitting problems (Lin et al., 2013). Moreover, it provides a
more interpretable output for the model because the position of the maximum is related to the location of
the most activated feature in the input.

For many layers, the number of filters in each layer might generate a large number of combinations of
hyperparameters to be tuned, which can be a challenge to achieve in a reasonable amount of time. Therefore,
the network architecture was designed in order to have a small number of hyperparameters. For example,
the number of layers has a direct impact on the receptive field of the network. If only one convolutional
layer with a filter size of three is used, each element of the activation map depends on, only, three words.
Since the final prediction of our model is the maximum value of the activation map, it would depend only
on a portion composed by three words of the text. As shown in (He et al., 2016b), an interesting property of
the identity blocks is that a network with more layers results in equal or better performance. This happens
because the shortcut connections allow the network to easily ignore layers that are not needed. The identity
blocks allow the model to auto-define the number of convolutional layers needed during training, avoiding
the optimization of the number of hidden layers. When there are many identity blocks available in the
architecture, the model is capable of automatically selecting how many of these blocks are really necessary .
The non-necessary blocks will simply be skipped. This means that there is no need to look for the optimum
number of blocks (He et al., 2016b). For this reason, in our model we have used several (R) identity blocks
(and their corresponding average layer) with the minimum kernel size (3). Larger filters are not needed,
since the large number of identity blocks results in a large enough receptive field. Furthermore, in (He et al.,
2016b) it was shown that the main path of the network must be unobstructed to correctly backpropagate
the errors. Therefore, to avoid convolutional layers to interrupt the main path of the network, the number
of filters used on each convolutional layer of each identity block was the same, except for the first layer that
had twice as many filters than the other ones; and for the last layer, which only had one filter.

In summary, the architecture of the DL4papers model has several differences and advantages with respect
to previous deep learning models. First of all, it is capable of processing full texts as inputs. It has been
designed to work at document-level representation, differently from the previous works presented in the
introduction, which can work only at the sentence-level. Besides, those models are combined with other
classical ML models, such as RF or ensembles. Our proposal, instead, is a completely end-to-end deep
learning model, providing a ranked list of articles from more to less relevant to the input keywords. As
detailed above, the model has identity blocks that avoid having to look for an optimum number of layers,
and the global max pooling provides more interpretability to the model results.

3 Materials and methods

3.1 Data

For evaluation of the proposed DL model and fair comparison with related methods on the same public and
freely available data, we have used the recently developed BRONCO1 dataset, which is a curated corpus
including biomedical entities in oncology (Lee et al., 2016a). According to their authors, it is currently the
largest full-text variant-centric corpus annotated with related genes and its mutations, diseases, drugs and
cell-line information. It contains 108 full-text articles, whereas other corpora from previous studies contain
only abstracts or isolated sentences. Its articles are related to cancer and anti-tumor drug screening research,
and they were manually curated by biomedical experts. BRONCO has information on 403 mutations
and their associations with genes, diseases and drugs. Keeping in mind the possible keyword-pairs, it is
worth mentioning that in this dataset each mutation has only one associated gene (Lee et al., 2018). The
mutation-gene search will be done only for a fair comparison with related published methods.

1http://infos.korea.ac.kr/bronco/
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Figure 2: Schematic representation of DL4papers end-to-end architecture.

3.2 Experimental setup

For each full document, the mutation keywords are already available in BRONCO. The other keywords
(genes, drugs, diseases and cell-lines) were retrieved from the texts using the dictionary Biomedical Entity
Extractor2 as in (Lee et al., 2018). Then, for each text, all possible mapping pairs among the biomedical
entities were obtained. Two different types of cases were evaluated: mutation-gene and mutation-drug. Thus,
given all the mutations, genes and drugs that appear in the same text, all possible candidate mutation-gene
and mutation-drug relation pairs were identified. In this document-level extraction, even though the two
entities were not in the same sentence, the relations remained in the candidate set. For example, when the
total number of unique mutations in a document is w1, and the total number of drugs (or genes) is w2,
the possible relations are w1 × w2. Since the goal was building a DL model that classifies these relations
as true or false, an input pair was considered true if it appeared in the list of positive relations defined in
BRONCO, and false otherwise. Among all the relations defined in BRONCO, 285 mutation-gene tagged
as true (positive relationship), and 11,641 as false (negative relationship) were found, which makes a class
imbalance of 1:40. Whereas 209 true and 3,285 false mutation-drug relations have been identified, with a
class imbalance of 1:10. It should be mentioned that only 115 out of these 209 positive cases have both
keywords in the same sentence. Thus, any kind of sentence-level model for the mutation-drug case would
have, at the best, 45% of sensitivity for document classification in this dataset.

For the DL model, a 10-fold cross-validation has been done. In each fold, we have used independent
training and testing partitions and the model parameters (weights) have been tuned with stochastic gradient
descent. The same hyperparameters have been used in each fold (R = 12, N = 6, filter size = 3). The
dimension K = 5 of the one-hot-encoding for entity-type was used because there are five possible entities
to be found in this dataset (gene, mutation, drug, disease or cell-line). The embedding dimension M was
defined by the embedding used. The length L was set to 214 considering the longest document available in
the corpus. Shorter texts than L can be safely zero-padded to fill the complete tensor, since the network does
not have any fully connected layer at the output, thus it is invariant to translation. Regarding the identity
blocks, since they can be used (or skipped) by the deep network model for better modeling the training
data, the number of identity blocks is not a sensitive parameter (see Supplementary Material). That is, if
many identity blocks are available in the architecture, the model is capable of automatically selecting by
itself how many of these blocks are really necessary for better training. In general, it can be stated that the
model architecture is robust to a wide range of hyperparameters, as it is shown in the sensitivity analysis
presented in the Supplementary Material.

As it was previously depicted, there is a substantial imbalance between the number of positive and
negative data points in the set of relation candidates. This is a clear example of a realistic scenario,

2http://infos.korea.ac.kr/bioentityextractor/

5

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. A

. B
ug

no
n,

 C
. Y

on
es

, J
. R

aa
d,

 M
. G

er
ar

d,
 M

. R
ub

io
lo

, G
. M

er
in

o,
 M

. P
iv

id
or

i, 
L

. D
i P

er
si

a,
 D

. H
. M

ilo
ne

 &
 G

. S
te

gm
ay

er
; "

D
L

4p
ap

er
s:

 a
 d

ee
p 

le
ar

ni
ng

 a
pp

ro
ac

h 
fo

r 
th

e 
au

to
m

at
ic

 in
te

rp
re

ta
tio

n 
of

 s
ci

en
tif

ic
 a

rt
ic

le
s"

O
xf

or
d 

B
io

in
fo

rm
at

ic
s,

 2
02

0.



where it is expected that the tool should retrieve just a few (the most) relevant articles among a lot of
full-text manuscripts, such as for example, all PubMed database. Thus, 10-fold cross-validation for both,
mutation-gene and mutation-drug cases considering the natural class imbalance existing in BRONCO were
done. Then, a second experiment also involving a 10-fold cross validation was performed for the comparison
with state-of-the-art methods. To fairly compare our model with the ones reported in [3], where balanced
training and testing sets were used, negative cases were randomly sampled to match the positive ones as in
(Lee et al., 2018).

3.3 Performance evaluation

The methods performance is reported with standard evaluation metrics,

p =
TP

TP + FP
, s+ =

TP

TP + FN
, F1 = 2

s+p

s+ + p
,

MCC =
TP × TN − FP × FN�

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

Gm =
�

s+p,

where TP, TN, FP and FN are the number of true positives, true negatives, false positives and false negatives,
respectively. The sensitivity (s+) measures how good a classification method is for recognizing (and not
missing) the TPs of the problem. The precision (p) measures the relation between TPs and FPs. In a
realistic scenario for practical applications, precision is very important in imbalanced datasets because FPs
can be many more than the TPs. Thus, considering the characteristics of the classification problem under
study, it is important to take into account both sensitivity and precision. Therefore, F1 is used as a global
comparative measure, together with Matthew correlation coefficient (MCC) and Gm, the geometric mean of
sensitivity and precision, which are particularly used for imbalanced datasets.

In a first stage, DL4papers was evaluated using the original class imbalance of the dataset. In this case,
performance measures achieved by DL4papers using different embeddings was evaluated. Three embedding
variants were compared: FastText (Bojanowski et al., 2017), Word2Vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014), by means of the Wilcoxon test for paired samples and considering a significance
threshold of α = 0.05. The standard pre-trained word embedding of each variant has been used as provided
by the original authors. This is a common practice that has shown to be better than training the embedding
for a specific domain (Lee et al., 2018).

For the second evaluation, the source code and data partitions used in (Lee et al., 2018) are not publicly
available. In addition, performance measures have been only reported in terms of average scores without
providing standard deviations, interquartile ranges nor minimum and maximum achieved along the folds.
Thus, the results achieved by DL4papers were contrasted with state-of-art methods average results using
one-sample Wilcoxon signed-rank tests and considering a significance threshold of 0.05. In both scenarios,
standard deviations among the ten folds and for all performance measures were also computed.

In addition, in a real case DL4papers will receive an input keywords pair and will return a list of papers,
sorted by relevance score. Therefore, it is highly desirable that the first papers contain the strongest relations
between the keyword terms. Thus, in order to evaluate the tool performance in such truly realistic scenario,
we have measured the top-1, top-2 and top-3 recall of the output list of papers. That is, for all possible pairs
of input queries in BRONCO, the top-n recall considers a hit if at least one paper within the first n articles
in the ordered list has a true relation. The average of top-n recalls, per fold and per input keywords pair, is
the measure reported in Section 4.3.

4 Results and discussion

4.1 Evaluation of embeddings

Figure 3 shows the performance of DL4papers when using three possible embedding variants: FastText,
Word2Vec and GloVe. The differences among the embedding variants lies on the fact that Word2Vec can be
considered as a very large dictionary of existing and generic English terms. The dimension of the embedding
is 300 and its main assumption is that semantic analogies can be preserved under basic arithmetics on the
word vectors, which are trained to be predictive of analogies within a specific domain. In this approach, the
distance between two words is fundamental for correct domain representation. FastText is based on character
n-grams. Its embedding dimension is also 300 but it can generate valid embeddings for any word, which
makes it more suitable for technical documents. GloVe considers the corpus word occurrence statistics for
representation. It tries to achieve analogy preservation under linear arithmetics of the statistical properties
of the corpus, which are those actually used as inputs. The dimension of this embedding is 100. The left
panels in Figure 3 present the boxplots of the performance measures achieved across 10 folds when looking
for mutation-gene relations, whereas the right panels show the same results but for mutation-drug.

As it can be seen in the boxplot, in the case of the mutation-gene relations (left panels) all performance
values are higher than 0.7, except for GloVe precision. The median sensitivity were 0.828 and 0.759, and
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Figure 3: Performance measures: sensitivity (s+), precision (p), F1, MCC and Gm of DL4papers using three
embedding variants: FastText, Word2Vec and GloVe. Models trained and tested with unbalanced data, for
mutation-gene (left) and mutation-drug (right) relations from full documents in BRONCO.

precisions were 0.750 and 0.778 for FastText and Word2Vec, respectively. In the case of GloVe, in spite of
having a high sensitivity (0.862), it reached the lowest values for precision (0.683). Regarding F1, MCC
and Gm, it can be clearly seen that they all three provided very similar scores. The statistical analysis of
sensitivity and precision (one-tail two-paired-samples Wilcoxon test with α = 0.05), has shown that FastText
was more sensitive than Word2Vec and more precise than GloVe.

For the mutation-drug case (right panel), median values were higher than 0.7 in all cases and for all
embeddings, except for GloVe in precision (0.572) and Word2Vec in sensivitity (0.682). As in the previous
case, GloVe has shown the worst performance in most indexes. Median sensitivity was 0.803 and 0.682;
precision was 0.762 and 0.810 using FastText and Word2Vec, respectively. GloVe is the method with higher
variance and worst results. It is also significatively worse than the other methods. Regarding F1, MCC and
Gm, similarly to the previous case all the performance measures provided very similar scores. FasText was
better than Word2Vec in sensitivity (one-tail two-paired-samples Wilcoxon test with α = 0.05). Except for
the comparison of sensitivity against Word2Vec, Glove scores were significantly lower than those achieved
by the other embeddings (one-tail two-paired-samples Wilcoxon test with α = 0.05). Therefore, DL4papers
and FastText has shown to be the best configuration.

In summary, due to its low performance in all cases, GloVe has been discarded for the next experiments.
The difference in the performance of this method in comparison to the other ones can be mainly due to
its lower dimension. The results show that it was not capable of correctly capturing the context of the
input keywords at the required document-level context. Moreover, GloVe takes into account word to word
co-occurrence, thus it does not work well if many specific words are not part of the training corpus. Due
to these best performance results, FastText was used as the word-embedding method of DL4papers in the
next sections. Regarding performance metrics, since F1, MCC and Gm have provided similar results, from
now on only F1 will be used in the following sections.
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Table 1: Average top-n recall for DL4papers. The top-n recall for a particular keyword pair is 100% if there is
at least one true positive document among the first n articles returned by DL4papers.

Keywords top-1 recall top-2 recall top-3 recall
mutation-gene 91% 100% 100%
mutation-drug 83% 100% 100%

4.2 Comparison with related methods

Figure 4 shows the results of the comparison of DL4papers with other state-of-the-art methods for the same
task of extracting relations between medical entities in a corpus of full texts. The boxplots represent the
performance measures achieved across 10 folds by DL4papers, and the circle and triangle dots are the average
scores for methods in Lee et al. (2018) and Singhal et al. (2016), respectively. Results of both methods for
BRONCO dataset are those originally reported in (Lee et al., 2018).

It can be observed that all methods achieved very high performance scores for the mutation-gene relation
(left panel), mostly higher than 0.900. In particular, Lee et al. and Singhal et al. achieved 0.958 and 0.880
in sensitivity, 0.961 and 0.958 in precision, 0.958 and 0.913 in F1, respectively. Whereas, the scores of
DL4 papers were 0.955, 0.948 and 0.951, for sensitivity, precision and F1, respectively. The performance of
DL4papers and the two alternative methods was not statistically different regarding precision (one-sample
Wilcoxon test p-value=0.759 for both comparisons). In addition, no significant differences were found
between DL4papers and Lee et al. recalls and F1 (one-sample Wilcoxon test p-value equal to 0.837 and
0.683, respectively). On the other hand, DL4papers was significantly better than (Singhal et al., 2016) for
these two measures (one-tailed, one-sample Wilcoxon test p-value = 0.004 and 0.02, respectively). These
results are shown in the left panel of Figure 4, where sensitivity and F1 for the other methods fall within
DL4papers boxplots. As it was stated before, in the BRONCO dataset each mutation has only one associated
gene and they are usually mentioned together in an article. Thus, looking for a mutation-gene relation in
this database is a simple task, and moreover when the testing and training datasets are balanced. However,
it should be mentioned that in BRONCO there are some gene-mutation relations that appear only once,
and therefore in only one document within the complete corpus. During model training with random folds,
if this relationship appears only in a test partition, none of the models will be able to learn it. And thus,
average sensitivity and precision cannot be 100%. Thus, this fact explains the results achieved by the three
compared methods.

In the case of the mutation-drug relations (right panel), performance of DL4papers was significantly
higher than those achieved for the two comparative methods (one-tailed, one-sample Wilcoxon test p-values
¡ 0.05 for all comparisons). As it can be seen, all comparative approaches are outside and below the
corresponding DL4papers boxes. In particular, none of the other methods achieved more than 0.830 in
the measures. DL4papers, instead, achieved the highest performance in all measures, and with standard
deviations that do not include the other methods. Specifically, DL4papers reached 0.915(+/- 0.0711) for
sensitivity, 0.935(+/- 0.0312) for precision, and 0.922 (+/- 0.0276) for F1.

For all the methods, the difference in performance for both cases (mutation-drug and mutation-gene)
can be explained by the fact that within BRONCO there are one-to-many (1:n) mutation-drug relations.
This scenario is, without any doubt, a much challenging and closer-to-real-life problem than the one-to-one
(1:1) relations in the mutation-gene case. It has to be highlighted that, unlike the other methods, which did
not perform well for the more challenging mutation-drug task, DL4papers was able to achieve a very good
performance.

Comparing the scores of DL4papers using FastText as the word-embedding tool, shown in Figure 3, with
those in Figure 4, it can be noticed that, for both cases, the latter were much higher. This is due to the
fact that in the first case a more realistic scenario was considered, with a large imbalance between classes
in both training and testing datasets. However, as mentioned before, in the second case the datasets were
balanced for a fair comparison with the competitor methods. It is interesting to note that although class
imbalance here was 1:40 in the testing dataset (Figure 3), with more than 10,000 available cases and only
around 300 positives, DL4papers reached a F1 of around 75%.

4.3 DL4papers findings in a real case-study

The average sensitivity, measuring the reliability of DL4papers findings in a real and practical case is
reported in Table 1 as top-1, top-2 and top-3 recall. Particularly, these results were obtained considering
the keyword-pairs that had appeared in at least two papers (true positives). For the mutation-gene case,
it was found that the highest output score was always assigned to a relevant paper at the top-2 and top-3
recall. That is why the average top-n recall for DL4papers was 91% only for the top-1, and 100% for all
the other cases evaluated. Similarly, for the mutation-drug case and the top-1 recall, just a few cases of the
output list were lost. However, in those cases, the true positive document appeared in the second position
of the ordered output list. For this reason, the average top-1 recall was 83% but the top-2 and the top-3
recall were 100%. In summary, the top-n results show that, given a specific keywords pair, the output list
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DL4papers

Figure 4: Performance scores in cross-validation and balanced experiments for mutation-gene (left panel) and
mutation-drug (right panel) relations. Performance measures from state-of-the art methods are indicated for
comparison.

generated by DL4papers is highly reliable. That is, it can be assured that only the top-2 articles have to be
read, because we can assure that a true relationship between the keywords can be found in them.

Some examples of concrete cases and their corresponding outputs, with mutation-gene and mutation-drug
keywords, were further explored. DL4papers was set to highlight the regions in the original text of an article
where the evidence of relations between the input keywords were found. This was achieved by looking at
the activation values of the last layers of the model for a particular output. By backpropagating the output
signal towards the input layer, it is possible to highlight the original text in the input text that correspond
to the particular output analyzed. We have used class activation mapping (CAM) (Zhou et al., 2016) at the
output activation map and calculated backwards the influence zone of each high value, using the filter sizes
and the number of convolutive layers. Given the number of layers and filters sizes for each layer, the receptive
field that the network used to generate the activation map peaks can be located and used to highlight the
corresponding text. This is a very desirable characteristic for a model, which certainly contributes to the
explainability of the results (Rudin, 2019). Figure 5a) shows an example of one of the results for the case of
the pair mutation-gene V600E and BRAF. As it can be seen, the specific parts of the text indicated by the
deep model explicitly show the relationship between BRAF and its mutation. This reveals why this paper
resulted to be a positive response to the V600E-BRAF relation. In Figure 5b) an analogous case is shown
for the specific mutation-drug, R175H and NSC319726 input keywords. In the Supplementary Material, two
other real cases are analyzed in more detail.

b)

a)

Figure 5: Examples of some possible outputs of DL4papers for: (a) mutation-gene output for V600E and BRAF
keywords; and (b) mutation-drug output for R175 and NSC319726 keywords.
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5 Conclusions

In this work a new method capable of automatically extracting relations between specific keywords and from
full documents, DL4papers, was presented. The model receives as input a keywords pair and a corpus of
articles, and it returns a ranked list of the documents containing relevant relations between those keywords.
The core of DL4papers is a deep convolutional neural network that receives as input a word embedding
of the article. Our proposal outperformed state-of-the-art methods for mutation-gene and mutation-drug
relations in a publicly available corpus of cancer research. Furthermore, the high reliability of DL4papers
results was demonstrated revealing that articles with true relations are always returned at the first or the
second position of the output ranked documents. Our results indicate that DL4papers is a powerful tool that
can help the advancing of many research and professional areas where keyword relations in full documents
need to be discovered. Regardless it has been evaluated with an oncology corpus, the approach could be
fully replicated and reused in any other application domain, as well. Moreover, the architecture behind
DL4papers allows the input not only of two keywords, but also of any number and types of keywords. This
is a very valuable feature of our tool. For instance, it could assist in the accurate and fast identification of
the most relevant relationships among genes, mutations, drugs responses, diseases, cell-lines and treatments
from literature.
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