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Abstract

Motivation: The genome-wide discovery of microRNAs (miRNAs) involves identifying sequences having
the highest chance of being a novel miRNA precursor (pre-miRNA), within all the possible sequences in a
complete genome. The known pre-miRNAs are usually just a few in comparison to the millions of candidates
that have to be analyzed. This is of particular interest in non-model species and recently sequenced
genomes, where the challenge is to find potential pre-miRNAs only from the sequenced genome. The task
is unfeasible without the help of computational methods, such as deep learning. However, it is still very
difficult to find an accurate predictor, with a low false positive rate in this genome-wide context. Although
there are many available tools, these have not been tested in realistic conditions, with sequences from
whole genomes and the high class imbalance inherent to such data.
Results: In this work, we review six recent methods for tackling this problem with machine learning. We
compare the models in five genome-wide datasets: A. thaliana, C. elegans, A. gambiae, D. melanogaster
and H. sapiens. The models have been designed for the pre-miRNAs prediction task, where there is a
class of interest that is significantly underrepresented (the known pre-miRNAs) with respect to a very
large number of unlabeled samples. It was found that for the smaller genomes and smaller imbalances,
all methods perform in a similar way. However, for larger datasets such as the H. sapiens genome, it was
found that deep learning approaches using raw information from the sequences reached the best scores,
achieving low numbers of false positives.
Availability: The source code to reproduce these results is in:
http://sourceforge.net/projects/sourcesinc/files/gwmirna

Additionally, the datasets are freely available in:
https://sourceforge.net/projects/sourcesinc/files/mirdata

Keywords: pre-miRNA prediction, genome-wide, deep-learning

1 Introduction1

MicroRNAS (miRNAs) are critical and key regulators of gene expression2

[1]. They play important regulatory roles in many fundamental biological3

processes such as disease development and progression. For example,4

recent studies demonstrated that miRNAs can serve as tumor suppressors5

in cancer [2]; thus they can assist in diagnosis, prognosis prediction and6

better therapeutic assessment [3]. However, it is very hard to identify new7

miRNAs experimentally, and this difficulty has led to the development of8

computational approaches for prediction [4, 5].9

The computational prediction of novel miRNAs involves identifying 10

small RNA sequences having the highest chance of being real miRNA 11

precursors (pre-miRNAs). The known pre-miRNAs (deposited in miRBase 12

or MirGeneDB) are usually just a few in comparison to the millions of 13

hairpin-like sequences that have to be analyzed in full genome data. In 14

the last few years, a very large number of strategies have been proposed 15

for tackling this problem. On the one side, the advent of high-throughput 16

sequencing technology provided the opportunity of identifying almost all 17

miRNAs that are expressed in a transcriptome. Thus, the discovery of 18

novel miRNAs from RNA sequencing data became very important, giving 19

rise to lots of tools that required this type of data to provide a prediction [6– 20

13]. However, those methods can only detect miRNAs that are expressed 21
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2 Bugnon et al.

in a very specific experimental condition, missing other new candidates22

because of lack of expression in that particular experiment. On the other23

side, many different approaches appear that could be used only with the24

raw genomic sequences. Particularly, methods based in machine learning25

(ML) have shown to be well suited to this prediction task [14, 15]. In26

[16] the authors state that existing methods have limited capacity to detect27

miRNA sequences and precursors with low similarity to the reference set,28

while ML models can capture more general features that overcome this29

weakness. This is because most of the ML methods identify candidates30

in non-coding and non-repetitive regions of the genome by using features31

that are extracted from typical properties of known pre-miRNAs. These32

features can be the number of loops, average length, minimum free energy33

when folding the secondary structure, among many others [17–19]. ML34

methods learn how to classify according to the values of these features and,35

moreover, their interactions. This is learnt automatically from the training36

data and for each species.37

Several reviews have analysed the advantages of ML methods for38

pre-miRNA prediction. For example, the study in [20] reviews 20 tools39

published before 2018, where 11 out of 20 are ML-based. This was a40

bibliographic review of papers and tools, which classified and ranked them41

according to citation number in order to determine development trends in42

miRNA tools. Differently, our work is not theoretical but rather a practical43

comparison among several recent ML prediction methods. In [15], 2944

pre-miRNA ML-based prediction tools published in the last 10 years are45

presented and assessed with a number of artificial datasets of varying46

levels of class imbalance. That is, method performance was analyzed47

throughout the ratios between the number of known pre-miRNAs and the48

other sequences, ranging from 1:1 (no imbalance) up to 1:2,000 (high49

imbalance). However, while this review included several algorithms, only50

small and curated datasets were used, without experiments in realistic51

genome-wide scenarios. There are no comparisons among ML-based52

methods with the realistic imbalance existing in genome-wide data. In53

this context, the class imbalance problem becomes critical and affects54

the predictors [21]. A very large imbalance ratio (IR) is present between55

the positive class (a few known pre-miRNAs) and unlabeled data in the56

rest of the genome, and putatively belonging to the negative class. This57

quite simple but very important fact may bias the model to the majority58

class. Therefore, most existing ML proposals for this problem, although59

reporting very high accuracy, might not be completely reliable in such a60

scenario. In order to fulfill this lack of comparisons in a realistic scenario,61

in this study we review and systematically compare the performance of62

novel pre-miRNA classifiers based on ML, along several publicly available63

genome-wide datasets of animals and plants, with the real IR of each64

genome and under the same experimental conditions.65

2 Machine learning classifiers66

The first ML methods proposed for miRNA prediction were supervised67

classifiers. The supervised approach needs both positive (known pre-68

miRNA) and negative (non pre-miRNA) sequences in order to build a69

binary classifier for discriminating between them. The classifier builds a70

model that must be capable of predicting whether a new point, that is an71

unlabeled sequence whose class is previously unknown, belongs to one72

class or the other one. For training the model, the main structural features73

of known pre-miRNAs are extracted [19]. Support vector machines (SVM)74

were the first and most widely applied algorithm for this task [22]. In this75

study, we use a supervised approach of SVM that relies only on the positive76

labeled data for building a classification frontier, the one-class SVM (OC-77

SVM). It was shown that this approach can perform better than standard78

(two-classes) SVM in pre-miRNA prediction [23, 24].79

The first model that has been proposed for pre-miRNA prediction 80

with semi-supervised learning was deepSOM [25]: an architecture with 81

several levels of self-organizing maps (SOMs) [26]. During training, each 82

input data point is assigned to a map unit and weights are adapted in 83

an unsupervised way. When there is no further adaptation of the weight 84

vectors in this SOM, only the data assigned to the neurons having at least 85

one positive class sample (the pre-miRNA neurons) are chosen for training 86

the next map. An important drawback of this model is that a very large 87

number of pre-miRNAs candidates got high scores, thus causing a drop in 88

the precision. The deep ensemble-elasticSOM (deeSOM) [21] introduced 89

two key improvements to the deepSOM. First, each layer can be defined as 90

an ensemble of independent SOMs. All positive samples are fed to every 91

initial SOM whilst unlabeled samples are randomly split between each one 92

of the members of the ensemble. This allows to reduce the imbalance at 93

SOMs in the ensemble, each one learning a different unlabeled subspace. 94

The second improvement was an algorithm to adaptively adjust the size 95

of each SOM layer depending on the performance of previous layers. 96

This changed the distribution of samples on each layer, allowing a further 97

depuration of pre-miRNA candidates. 98

The first pre-miRNA predictor for genome-wide based on graphs was 99

miRNAss [27]. This method receives as input a set of labeled feature 100

vectors, which represent sequences and their class: positive for known 101

pre-miRNAs or unlabeled for the rest. An initial graph is built from all 102

the sequences. Then, the nodes topologically far away from the positive 103

examples are labeled as negative examples. Prediction scores are estimated 104

for all the sequences, taking into account that: i) topologically close 105

sequences in the graph must have similar prediction scores; and ii) the 106

scores have to be similar to the values given for true pre-miRNAs in the 107

label vector. Finally, using the prediction scores assigned to the labeled 108

examples, an optimal threshold is estimated in order to separate the 109

pre-miRNAs candidates from the other sequences. 110

In the last years, the emergence of deep learning models has led to 111

significant improvements in many fields [28]. These models had been 112

used in several bioinformatics applications, such as the prediction of 113

new miRNAs and their targets [29]. Deep learning is inspired by the 114

representation of biological neural networks and it can be considered today 115

among the best paradigms of ML approaches for supervised classification. 116

A deep neural network can be built from several layers of nonlinear 117

feedforward networks. One of the layer types that are commonly used 118

include latent variables organized layer-wise in deep generative models 119

such as the restricted Boltzmann machines (RBM) [30]. Very recently, in 120

[31, 32] a deep neural network based on RBM (deepBN) for pre-miRNA 121

prediction was proposed, achieving the best performance in comparison to 122

other state-of-the-art methods [15]. Instead of using handcrafted features 123

like the ones in the models described before, there are other deep neural 124

architectures that can learn the features automatically from raw data. The 125

convolutional neural networks (CNN) have been used to classify RNA 126

families (DeepMir) [33] and to identify miRNAs mirtrons [34]. These 127

works use a one-hot-encoding scheme to convert a RNA sequence of 1×N 128

nt in an 4×N matrix to feed the networks. In other recent work, a long- 129

short term memory neural network (LSTM) was used to learn patterns 130

from the raw sequences, and to classify pre-miRNAs (deepMiRGene) 131

[35], where each sequence is coded in a novel way altogether with the 132

predicted folding structure from RNAfold library. Although DeepMir and 133

deepMiRGene reported interesting results in previous works [33, 35], 134

our preliminary tests with genome-wide data showed that training do 135

not converge. Datasets used in the original works were smaller and with 136

very low imbalance. Therefore, in this study the training algorithms were 137

adapted to generate balanced training batches, allowing the classifiers 138

to adjust the error gradient with a similar weight to both classes. These 139

adapted models will be further referred to as balanced-batches DeepMir 140

(bb-DeepMir) and balanced-batches deepMiRGene (bb-deepMirGene). 141
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Genome-wide discovery of pre-miRNAs 3

Table 1. Genome-wide datasets. Details on the number of labeled and unlabeled
sequences. The imbalance ratio is computed as the ratio between them.

Dataset Positive sequences Unlabeled hairpins Imbalance ratio

CEL 249 1,737,349 1:6,977
DME 307 2,066,807 1:6,732
AGA 66 4,268,407 1:64,672
HSA 1,710 48,099,855 1:28,128
ATH 304 1,355,663 1:4,459

3 Materials and experimental setup142

3.1 Genome-wide data143

Full genome datasets from 5 species were used : Caenorhabditis elegans144

(CEL), Drosophila melanogaster (DME), Anopheles gambiae (AGA),145

Homo sapiens (HSA) and Arabidopsis thaliana (ATH). Each dataset146

requires several weeks of pre-processing in order to extract the hairpins147

and calculate their features. All sequences and features have been made148

public to be used as benchmarks for model comparison [36]. We have149

used these datasets because they include: a model organism for animals,150

CEL; a model organism for plants, ATH; and the genome of HSA given its151

size and importance. Moreover, included genomes have different numbers152

of miRNAs, hairpins and imbalances, as can be seen in Table 1. The153

processing pipeline in [36] was designed to extract and fold all hairpin154

sequences from the chromosomes and mitochondrial genes. Hairpins155

are regions of RNA transcripts that fold back on themselves to form156

short stem-loops structures, which may have bulges and mismatches.157

This is a very specific characteristic of the pre-miRNAs. The number158

of bulges and mismatches, even their position in the hairpin, are specific159

and distinctive characteristics of a pre-miRNA. Unfortunately, non-pre-160

miRNA sequences can also form hairpins. To extract them, the raw genome161

of each species was analyzed with a window of 500 nt of length, that is,162

larger than any known pre-miRNA of the analyzed species. These windows163

were shifted in small steps to generate overlapped sequences. This cutting164

strategy ensured that no hairpin was lost. The secondary structure of each165

sequence was predicted using RNAfold 2.1.8. Any sequence that did not166

fold properly as a hairpin was discarded. The structures that optimized167

the folding minimum free energy (MFE) [37] were checked to fulfill a168

minimum length of 60 nt and 16 base pair matches. For the positive169

class, BLAST was used to match all the known pre-miRNAs deposited170

in miRBase v21. All other hairpins are considered as unlabeled class.171

It can be seen that the number of microRNAs and the total amount of172

unlabeled hairpins for each of the genomes analyzed are very different for173

each species. If the number of miRNAs is normalized over the genome174

size (in pair bases), ATH has a similar ratio to CEL and DME, but it is175

much higher than HSA and AGA. These relationships hold if the number176

of miRNAs over the total amount of unlabeled hairpins is calculated for177

each analyzed genome, which is named imbalance ratio in Table 1.178

Several features were extracted from these stem-loops with miRNAfe179

[19], such as the ratio of each base in the sequence, the proportion180

of guanine-cytosine on the sequence, the ratio between guanine and181

cytosine, the length of the sequence, the number of stem-loops, the182

number of nucleotides in the stem region, among many other. These183

features were used in OC-SVM, deepBN, deeSOM, and miRNAss. Instead,184

bb-deepMiRGene and bb-DeepMir models do not use hand-engineered185

features but the raw sequence of each hairpin. The prediction of the186

secondary structure of each sequence, provided by RNAfold, is used by bb-187

deepMiRGene as well. Additional details of the feature extraction process188

can be found in [3] and a detailed description of the features inself is189

provided in the Supplementary Material, Table S1.190

3.2 Performance measures 191

The prediction quality of the model was assessed using the classical
classification measures of precision, recall, F1-score and Matthews
correlation coefficient (MCC) defined as

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2

PR

P +R
,

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )

where TP, TN, FP and FN are true positive, true negative, false positive and 192

false negative predictions, respectively. Performance curves were drawn 193

using the scores for each test sequence, according to each model. The 194

precision vs recall curve (PRC) plot is a well-known performance indicator. 195

A recent study [38] has clearly shown that this representation is preferred 196

over the receiver operating characteristics (ROC) plot to assess binary 197

classifiers with highly imbalanced data, where the number of negatives 198

outweighs the number of positives significantly. For high imbalances, a 199

classifier could reach a good performance in terms of specificity, but could 200

perform poorly in providing good quality candidates, with a large amount 201

of false positives. PRC plots, instead, can provide the viewer with a more 202

clear assessment of performance due to the fact that they evaluate the 203

fraction of true positives among the total positive predictions. Given the 204

very large class imbalance of the datasets, F1 and MCC provide the 205

summarized measures by combining precision and recall. The maximums 206

of F1 and MCC along the entire PR curve will be called F1m and 207

MCCm. However, it should be noted that in this scenario very low values 208

can be expected from these measures. For example, if a predictor has only 209

1% of FP in the AGA dataset, the precision could be below P = 0.0015. 210

As a consequence, very low values of F1 and MCC will be observed. 211

An objective comparison of the overall model performances has been 212

performed with the area under the curve of precision-recall (AUCPR). 213

As genome-datasets are heavily imbalanced and precision changes 214

exponentially, a logarithmic ratio is defined as 215

ˆAUCPR = 1−
log(AUCPR)

log(AUCb)
(1)

where AUCb is the area under the baseline precision, that is, a classifier 216

that assigns a positive label for all the test sequences. This ratio gives 217

more information when comparing results on datasets with significantly 218

different IRs, as the ones evaluated here. 219

3.3 Experimental setup 220

The models with published source code were trained and tested using 221

our genome-wide datasets. Experimental evaluation was designed taking 222

into account the practical considerations of the genome-wide pre-miRNA 223

discovery task. Given that the computational cost of the methods are very 224

high with genome-wide data, hyper-parameter optimization strategies, 225

such as grid-search, can be prohibitive. Thus, the hyper-parameters used 226

for each model are those published by the original authors. These are 227

summarized in the Table S2 of Supplementary Material. 228

Each ML model was trained independently for each species in Table 229

1, and evaluated with an 8-fold cross-validation (CV) scheme, for each 230

genome individually, to get an unbiased estimation of performance on 231

unseen data. Each sequence from each genome was labeled either as 232

a positive class (known pre-miRNAs) or unlabeled class. Each fold 233

consisted of independent and non-overlapped training (7/8) and testing 234

(1/8) partitions, each testing partition with the same imbalance ratio as in 235

the full genome. The pre-miRNA candidate scores obtained by the models 236
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Fig. 1. Precision-Recall curves for all the methods and datasets. Precision is in log scale. Bold curves are the mean of cross-validation results while the shaded area is the 10-90 percentile
range.

for the samples in the test partitions were compared with the known labels237

to assess model performance. Friedman test and critical difference diagram238

with post-hoc Nemenyi test were used to assess the statistical significance239

of differences in the ˆAUCPR achieved by each model.240

4 Results241

The precision-recall curves for the prediction of novel pre-miRNAs in the242

genome-wide datasets are shown in Figure 1, for OC-SVM, deepBN, bb-243

deepMiRGene, miRNAss, deeSOM and bb-DeepMir. These curves were244

generated using the scores provided by each method. In these figures,245

the higher the curve the better. As it can be seen, the curves show a low246

precision when recall is high (bottom right corner of each sub-figure),247

where most of the candidates are, in fact, false positives. This is considered248

as a baseline, that is, the model obtains R=1.0 at the cost of classifying all249

test sequences as positive. As the score threshold is increased (from right250

to left), low-quality candidates are discarded, rapidly improving precision,251

but at the cost of losing recall.252

In the CEL dataset, it can be seen that bb-DeepMiRGene has an253

outstanding performance, which can be due to the fact that, differently from254

the others, this method uses information of both sequence and secondary255

structure. This indicates that taking into account both information sources256

seems to be very important for finding good and precise pre-miRNAs257

candidates. In contrast, in spite that bb-DeepMir is also based on deep258

learning, it uses only sequence information and has the lowest score.259

Regarding deepBN, in spite of having reported very good results for pre-260

miRNA prediction in other scenarios, in this genome-wide dataset the large261

class imbalance seems to have affected its performance. For high recall,262

it can be seen that bb-DeepMiRGene reaches the best values, followed by263

OC-SVM and miRNAss. Regarding high precision, where recall is low,264

it can be seen that OC-SVM and deepBN lower its performance. These265

models are not able to deliver a small number of candidates with low266

FP. Regarding deeSOM, it seems to be the method with a more balanced267

trade-off between recall and precision.268

For the DME dataset, bb-DeepMiRGene and OC-SVM work better 269

again. On this dataset, only bb-deepMiRGene and deeSOM could reach 270

good precision results. In the case of the AGA dataset, it should be noted 271

that there is a very low number of known-mirnas, only 57, which seems to 272

deeply affect most of the classifiers. Only bb-deepMiRGene and deeSOM 273

could reach high precision values. The HSA dataset is the largest one 274

and miRNAss needed to build a very large adjacency matrix, which make 275

it not applicable in practice for this amount of sequences. In general, 276

similar behaviours as the dataset before can be observed, except for bb- 277

DeepMir, which reaches here good precision values. Since this data set has 278

a relatively large number of known miRNAs (1,710) and bb-DeepMir uses 279

only sequence information, it seems that there are many similar patterns 280

that are easily found by this method. Here, again, bb-deepMirGene is 281

the best method. Finally, in the ATH dataset, almost all models behave 282

similarly except for bb-DeepMir, which has a very low precision score for 283

moderate recall but reaches a good precision at low recalls. 284

For a global comparison among all the methods, an assessment of 285

performance was done by measuring the maximum F1, maximum MCC 286

score and the ˆAUCPR for each model in each genome (Table 2). In 287

the CEL genome, both F1m and MCCm measures clearly indicate bb- 288

deepMiRGene as the best method (in bold). In this genome, the following 289

methods with high performance are deeSOM, miRNAss and bb-DeepMir, 290

however, at a long distance from the best one. Regarding ˆAUCPR, bb- 291

deepMiRGene is clearly the best one in this genome. In DME, the best 292

method is deeSOM according to F1m and MCCm, closely followed 293

by the deep models bb-DeepMir and bb-deepMirGene. According to 294

ˆAUCPR, the last one is by far the best one. In the AGA dataset, 295

bb-deepMiRGene is again the best one, followed by deeSOM and OC- 296

SVM. According to ˆAUCPR, here the best one is deeSOM, although 297

very close to bb-deepMiRGene. In the largest genome, HSA, again bb- 298

deepMiRGene, bb-DeepMir and deeSOM are the best ones. Finally, in 299

ATH the best method according to F1m is miRNAss, and deeSOM is the 300
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Table 2. Summarized performances for all methods and datasets. F1m and MCCm are the best F1 and MCC along the precision-recall curve. ˆAUCpr is the
logarithmic ratio of the area under the precision-recall curve.

CEL DME AGA HSA ATH
F1m MCCm

ˆAUCpr F1m MCCm
ˆAUCpr F1m MCCm

ˆAUCpr F1m MCCm
ˆAUCpr F1m MCCm

ˆAUCpr

OC-SVM 0.012 0.047 0.342 0.002 0.015 0.292 0.013 0.033 0.240 0.004 0.014 0.197 0.153 0.121 0.625
deepBN 0.009 0.025 0.220 0.000 0.002 0.044 0.001 0.007 0.002 0.006 0.016 0.241 0.143 0.148 0.595

deeSOM 0.037 0.063 0.378 0.075 0.120 0.166 0.019 0.023 0.367 0.028 0.035 0.365 0.172 0.187 0.649
miRNAss 0.030 0.044 0.357 0.001 0.005 0.020 0.008 0.007 0.071 - - - 0.212 0.173 0.676

bb-DeepMir 0.028 0.023 0.190 0.053 0.015 0.048 0.009 0.009 0.109 0.038 0.050 0.457 0.085 0.060 0.475
bb-deepMiRGene 0.103 0.095 0.567 0.060 0.040 0.387 0.058 0.045 0.336 0.072 0.031 0.511 0.195 0.179 0.686

Fig. 2. CD diagram for the pre-miRNA prediction methods along all genome-wide datasets.

best according to MCCm. In ˆAUCPR, again bb-deepMiRGene is the301

best one.302

As it can be seen in Table 2, the performance of the methods is very303

variable according to the size and imbalance of the genome data evaluated.304

Therefore, by using one measure alone, it is very difficult to indicate only305

one best method for all cases. However, since precision is in takes different306

orders of magnitude and the ˆAUCPR is logarithmic scale, this measure307

gives more weight to the methods that reach better precision scores. High308

precision is very desirable when searching for new pre-miRNAs candidates309

in order to have less false positives to test. According to ˆAUCPR, it can be310

seen that bb-deepMiRGene reaches the higher values in most datasets, with311

exception of AGA, in which deeSOM is the best one. The very large class312

imbalance effect can be seen specially in AGA, where deepBN, miRNAss313

and bb-DeepMir cannot reach good results, while on ATH, the scores are314

high for all models. In order to provide a statistical analysis of results,315

a Friedman test was done, showing that differences in in the ˆAUCPR316

results are statistically significant (p = 3,3e-15). Critical difference (CD)317

diagram (Fig. 2) shows that bb-deepMiRGene and deeSOM are the best318

methods for the genome-wide prediction of pre-miRNAs. OC-SVM can319

reach a good ˆAUCPR, especially for high recall, but it cannot reach high320

precision values. These comparative results have shown that while the321

genome-wide imbalance affected all the methods, deep models (deeSOM322

and deepMiRGene) were the most robust for all species.323

Another relevant aspect of the methods reviewed, besides performance,324

is the computational cost. Using the same hardware specifications and the325

CEL dataset, OC-SVM took, on average, 7s for training each fold. This326

was the fastest method since it uses only the known positives for training327

and does not model the negative class. OC-SVM was followed by bb-328

DeepMir with 10 min and deeSOM with 20 min on average for each fold.329

However, miRNAss took 23 hs to train one fold because the adjacency330

matrix must be calculated pairwise among every sequence. Similarly, bb-331

deepMiRGene took 37.5 hs because of the conversion from sequences332

to embedding for such large genome data. The cost of predicting new333

sequences was negligible in all the cases after the models were trained.334

Another important issue, from a very practical point of view, is: how335

many wet experiments should be done in order to find high-quality and true336

novel pre-miRNAs in the large quantity of sequences of a full genome?337

In order to answer this question a detailed analysis of the pre-miRNA338

candidates provided by the models evaluated is presented in Figure 3.339

Each sub-figure shows the number of sequences considered as candidates340

(C = TP + FP) at each score threshold along with the number of TP from 341

the testing partition. At the upper right corner is the initial number of 342

sequences from the test partition presented to each model, including the 343

well-known pre-miRNAs labeled as positives. For example, in the case 344

of the CEL dataset there are 32 TP for 217,138 candidates. At the left of 345

each sub-figure is shown how many testing true positives have remained 346

with the highest score threshold, these are the top pre-miRNAs candidates 347

of each method. As the threshold is increased, from right to left in the 348

figure, the slope in the curves shows that large quantities of low-quality 349

candidates are discarded but TP are reduced very slowly, until only a few 350

TP remains with different numbers of candidates. In summary, for these 351

figures the lower the curve the better is the method. 352

In the CEL dataset, bb-DeepMiRGene could reach the lowest number 353

of candidates for each TP value. For example, if 10 TPs are preserved, the 354

output candidates will be on average 506 for bb-deepMiRGene, 2,023 for 355

OC-SVM, 2,133 for deeSOM, 2,515 for miRNAss, 7,337 for deepBN and 356

17,937 for bb-DeepMir. Similarly, in order to have 2 TPs, the candidates 357

numbers provided by each method will be 34 for bb-deepMiRGene, 520 358

for OC-SVM, 123 for deeSOM, 310 for miRNAss, 1,110 for deepBN, 359

and 850 for bb-DeepMir. This means that bb-deepMiRGene provides 360

between 3 to 25 times less candidates than the other methods to discover 361

the same number of TP. As a direct consequence, less wet experiments 362

would be needed to confirm the novel pre-miRNAs. In DME and AGA, 363

it is clear how miRNAss, deepBN and bb-DeepMir produce at least one 364

order of magnitude more FP than the other methods for low TP. In HSA, 365

it seems that there are two groups. First, it can be seen that OC-SVM 366

and deepBN cannot reduce the number of candidates further than 1,000. 367

Instead, bb-DeepMir, bb-deepMiRGene and deeSOM reach a very low 368

candidate number, in the order of 100 sequences for 2 TP. In this case, bb- 369

DeepMir seems to reach even lower values but variance is very high. For 370

ATH, all methods but bb-DeepMir have similar behaviour. It is interesting 371

to note that for bb-deepMiRGene and deeSOM, the best 10 candidates 372

would include, on average, 2 TP, which is an outstanding result from a 373

practical point of view. 374

Finally, all these comparative results illustrate a very important aspect 375

that should be measured in all methods developed and used for pre-miRNA 376

prediction. Drastically reducing the candidates is an important factor to 377

reduce the costs of wet experimental confirmation. The most common 378

case in a real genome-wide application would have millions of hairpins- 379

like sequences, while it is commonly expected that only a few hundreds 380

of them might contain true miRNAs. Thus, in a pre-miRNA classifier the 381

ability for predicting a reasonable number of candidates to be tested in wet 382

experiments is a characteristic of paramount importance. In this regard, 383

the adapted version of bb-deepMiRGene, with balanced batches in the 384

training, and the deeSOM (originally designed for high imbalance) are the 385

best methods for genome-wide pre-miRNA prediction. 386
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Fig. 3. Candidates-TP curves for the five datasets. Bold lines are the mean values for test partitions, and the shaded area its 10-90 percentile range.

5 Conclusion387

In this work we have compared several recent computational models for388

pre-miRNA discovery. For the first time, the extensive use of genome-389

wide data from five genomes (C. elegans, D. melanogaster, A. gambiae,390

H. sapiens and A. thaliana) allowed to compare the models in the same391

experimental conditions, testing them in a realistic scenario. Experimental392

results demonstrated that bb-deepMiRGene, a deep-learning network393

using the sequential and structural information of sequences, outperforms394

other state-of-the-art methods. This indicates the importance of taking395

into account both information to train deep learning models for finding396

pre-miRNAs candidates in genome-wide data. Additionally, deeSOM, a397

semi-supervised method that uses structural features as input, also reaches398

good performance, especially taking into account the precision for a low399

number of candidates.400

Key points401

• Six novel pre-miRNA prediction models based on machine learning402

were tested on five genome-wide datasets.403

• The models based on deep learning showed the best performances in404

all datasets.405

• The deep model that used information of both sequence and secondary406

structure has obtained the best results for genome-wide data.407

• Further research on deep learning based methods, with more realistic408

genome-wide datasets, is needed to improve current pre-miRNAs409

prediction.410
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