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4Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ, Santa Fe, Argentina.

Abstract: Objective. Motor imagery brain-computer interfaces (MI-BCIs) based on electroencephalography (EEG), a

promising technology to provide assistance and support rehabilitation of neurological patients with sensorimotor impair-

ments, require a reliable and adaptable subject-specific model to efficiently decode motor intention. The most popular

EEG feature extraction algorithm for MI-BCIs is the common spatial patterns (CSP) method, but its performance strongly

depends on the predefined frequency band and time segment length for analyzing the EEG signal. Approach. In this

work, a novel method for efficiently decoding motor intention for EEG-based BCIs performing multiple frequency band

analysis in multiple EEG segments is presented. This decoding algorithm uses raw multichannel EEG data which are de-

composed into specific T temporal and F frequency bands. Features are extracted at each t-f band by using CSP. Feature

selection and classification are simultaneously performed by means of a fast procedure, based on elastic-net regression,

which allows for the inclusion of a priori discriminative information into the model. The effectiveness of the proposed

method is tested off-line on two public EEG-based MI-BCI datasets and on a self-acquired dataset in two configurations:

multiple temporal windows and single temporal window. Main results. The experimental results show that the proposed

multiple time-frequency band method yields overall accuracy improvements of up to 9% (average accuracy of 84.8%) as

compared to the best current state-of-the-art methods based on filter bank analysis and CSP for MI detection. Also, clas-

sification variability is reduced, making the proposed method more robust to intra-subject EEG fluctuations. Significance.

This paper presents a novel approach for improving motor intention detection by automatically selecting subject-specific

spatio-temporal-spectral features, especially when MI has to be detected against rest condition. This technique contributes

to the further advancement and application of EEG-based MI-BCIs for assistance and neurorehabilitation therapy.

Keywords: Motor Imagery, Brain-Computer Interfaces, Time-Frequency Bands, Sparse Feature Selection, Mixed-Norm

Penalization.
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1 INTRODUCTION

Brain-computer interfaces (BCIs) are advanced communication systems which can restore, enhance or re-

place the normal pathways used by people to interact with and control their environment [1]. By means of a

BCI, a person communicates with the outside world based only on recorded brain activity signals. The most

common type of non-invasive BCI relies on electroencephalography (EEG) [2, 3]. EEG-based BCIs translate

changes of electric potentials acquired at the surface of the head with cerebral origin into output commands

aimed to control an external device, such as a computer (e.g. [4, 5]), a wheelchair (e.g. [6, 7]) or a prosthe-

sis (e.g. [8, 9]). For rehabilitation purposes, BCIs based on motor imagery (MI), i.e., the mental simulation

of real movements without any overt motor output, are a promising approach to support motor recovery of

neurological patients with sensorimotor impairments [10]. Through an MI-BCI controlled robotic orthosis, it

is hypothesized that the direct sensory feedback related to the motor intention could support the recovery of

motor function and stimulate brain plasticity by closing the sensorimotor loop [11]. It is well-known that the

brain activity associated with imagined movements produces changes in the sensorimotor rhythms similar to

those resulting from the corresponding motor execution [12]. These changes reveal amplitude reductions or

increments in certain frequency bands, which are known as event-related desynchronizations (ERD) and event-

related synchronizations (ERS), respectively. These ERD/ERS patterns are most prominent in the mu (8-12

Hz) and beta (13-30 Hz) bands, and are also observable in gamma oscillations (> 30 Hz) close to 40 Hz [13].

Reliably decoding an MI task from the ongoing EEG signal is a challenging pattern recognition problem,

mainly due to the low signal-to-noise ratio of the raw measurements, poor spatial resolution and the intrinsic

non-stationary characteristic of the problem [14]. The imagery of certain movements (e.g., left vs. right hand or

foot vs. hand) can be spatially distinguished in the sensorimotor area. Thus, MI detection involves recognizing

the associated ERD/ERS patterns in the sensorimotor cortex, for which it is common to perform spatial filtering

[15]. Common spatial patterns (CSP) maximizes the variance of a spatially filtered signal for one of the MI

conditions while minimizing it for the other one [16]. Hence, since the variance of a band-pass filtered EEG

signal is equal to its band power, CSP constitutes an appropriate framework for distinguishing between two MI

conditions [17]. Although good classification performance (> 75%) can be achieved by using CSP, its success

strongly relies on the correct selection of the filter band (typically a wide band from 8-30 Hz) and the EEG

time segment extracted after the MI instruction cue [17]. One way to address the issue of selecting the “best”

subject-specific frequency band is by exhaustive search. Although this “manual” approach has been proven to

be effective, it is impractical (due to the computational time required) and it has not been standardized [18]. For

automatic subject-specific frequency bands selection, Ang et al. [19] proposed the filter bank CSP (FBCSP)

method, a four-stage procedure in which CSP is applied at several fixed frequency bands, and where the most

relevant sub-band CSP features are automatically pair-wise selected based upon mutual information criteria.

A modified version of FBCSP, called discriminant FBCSP (DFBCSP) [20], applying subject-specific filter
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bank based on Fisher’s ratio before feature extraction, was introduced yielding better classification accuracies

than those achieved by FBCSP. More recently, the sparse filter bank CSP (SFBCSP) [21] was proposed, in

which a small number of sub-band CSP features are automatically selected based on LASSO (least absolute

shrinkage and selection operator) regression [22]. The SFBCSP method has shown better overall classification

performances over publicly available BCI competition datasets as compared to the traditional CSP, FBCSP

and DFBCSP methods [21]. As a drawback, SFBCSP requires cross-validation estimates of a regularization

parameter (being a time consuming process) and it does not take into account any discriminative information

among features, neglecting important prior knowledge for feature selection.

Although all of the above filter bank methods have shown better performance than the traditional wide-

band CSP, they all use a pre-defined time window in which the filtering procedure is performed (typically from

0.5 to 2.5 s after onset of the MI cue). For the selection of the optimal time window for MI classification,

several groups have proposed approaches that automatically select the “optimal” time window segments for MI

classification. In particular, Ang et al. [23] extended their previous FBCSP method by applying filter banks to

three predefined time segments, in which the optimal time segment is selected after cross-validation as the one

with highest mutual information. More recently, the sparse time-frequency segment common spatial pattern

(STFSCSP) method was presented [24]. The STFSCSP method, after proper channel selection, improves the

SFBCSP criterion by splitting up each frequency band into different time windows, showing the importance of

optimizing both the frequency and temporal bands in an MI-BCI.

In this work we propose a method to overcome the limitations of fixed time segments and fixed frequency-

bands analysis in MI-BCI, called penalized time-frequency band CSP (PTFBCSP), in which the “optimal”

subject-specific time-frequency bands are automatically selected. The main characteristics of the proposed

method are: i) it enables the use of multiple time windows for analyzing the EEG trials in different time seg-

ments; ii) filter bank analysis is performed at each time window and iii) the time-frequency band CSP feature

selection and classification are simultaneously made in a fast procedure based upon an integrated model, which

takes into account a priori discriminative information across features. Here the spatio-temporal-spectral fea-

tures extracted with CSP are assumed to be independent. Unlike in [24], in which the time-frequency band

feature selection is automatically made before classification by means of LASSO, in our work we use auto-

matic time-frequency band feature selection simultaneously with classification by means of the generalized

sparse linear discriminant analysis (GSDA) method [25]. We recall that GSDA was conceived as a regularized

version of the traditional linear discriminant analysis (LDA), which simultaneously performs weighted feature

selection, by means of a priori discriminative information between features, and classification. In [25], GSDA

was successfully used to tackle the binary classification of event-related potentials in small training size scenar-

ios, yielding the best overall classification performance as compared to other regularized state-of-the-art LDA

methods.
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In this paper we detail the methodological steps of the proposed method and present experimental classifica-

tion results in three off-line scenarios using two publicly available EEG-based MI datasets and a self-acquired

dataset using two configurations of PTFBCSP, namely when multiple temporal windows are used and when

a single temporal window is used. The latter, which we call penalized frequency band CSP (PFBCSP), is a

particular case of PTFBCSP when T = 1. We hypothesize that: i) the introduction of a priori discriminative in-

formation for feature selection in an integrated model could enhance class separability, and ii) the combination

of time and frequency features (information) could lead to more accurate and robust classification. Comparison

results with the wide-band CSP method, as well as with the state-of-the-art filter bank-CSP-based methods are

presented.

The organization of this article is as follows. In Subsection 2.1 the PTFBCSP method is presented. In

particular, both CSP and GSDA are briefly introduced. The two public MI-EEG databases and our self-acquired

dataset are described in Subsection 2.2. The experimental results can be found in Subsection 2.3. Comparative

classification results over the three datasets are presented in Section 3. Finally, discussions, concluding remarks

and future works are presented in Sections 4 and 5, respectively.

2 MATERIALS AND METHODS

2.1 PENALIZED TIME-FREQUENCY BAND COMMON SPATIAL PATTERNS

The proposed method for MI classification is schematically depicted in Figure 1. PTFBCSP is a combina-

tion of signal processing and machine learning methods. As first step, each raw multichannel EEG signal is

decomposed into T temporal windows (tb1, . . . , tbt, . . . tbT ). Secondly, each tth temporal segment is split up in

F frequency bands (fb1, . . . , fbf , . . . , fbF ). Then, spatial features at each time-frequency band are extracted

by means of CSP. The selection of the optimal spatio-temporal-spectral features together with classification is

automatically made by GSDA.

2.1.1 Feature extraction based on CSP

The CSP method is one of the most popular feature extraction algorithms used in MI-BCIs. It was first used

in multichannel EEG-based BCIs for left vs. right motor imagery [16]. Given two EEG single trials recorded

under two MI conditions, CSP finds a linear transformation maximizing the variance of one condition while

minimizing the variance of the other one.

Let {Xi
c}nc
i=1 be a set of nc band-pass filtered EEG trials, where c = 1, 2 represents each one of the two

considered MI conditions. Here, each Xi
c is a p×m matrix, where p and m denote the number of channels and

the number of sample points per channel, respectively. In the following we shall assume that each single trial

Xi
c is standardized to zero mean and unit variance. The goal of CSP is to find p “appropriate” spatial filters,

Page 4 of 23

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

V
. P

et
er

so
n,

 D
. W

ys
er

, O
. L

am
be

rc
y 

&
 R

. G
as

se
rt

; "
A

 p
en

al
iz

ed
 ti

m
e-

fr
eq

ue
nc

y 
ba

nd
 f

ea
tu

re
 s

el
ec

tio
n 

an
d 

cl
as

si
fi

ca
tio

n 
pr

oc
ed

ur
e 

fo
r 

im
pr

ov
ed

 m
ot

or
 in

te
nt

io
n 

de
co

di
ng

 in
 m

ul
tic

ha
nn

el
 E

E
G

"
Jo

ur
na

l o
f 

ne
ur

al
 e

ng
in

ee
ri

ng
, 2

01
9.



Multichanel EEG tbt

tbT

tb1

Temporal
bands

fbf

fbF

fb1

Frequency
bands

t-f bands

Gt,f

GT,F

G1,1

CSP
features

Output
GSDACSP

...
...

...
...

...
...

Figure 1: Schematic representation of the proposed PTFBCSP. The multichannel EEG trial is decomposed into

T temporal windows. Afterwards, each tth temporal segment is divided into F frequency bands. The CSP is

applied at each time-frequency segment. Finally, the selection of the optimal time-frequency CSP features is

automatically performed together with classification by GSDA.

w1, . . . ,wp ∈ Rp, for linearly transforming an input signal X according to:

Z = W
′
X, (1)

where W = [w1, . . . ,wp] and
′

denotes transpose. The optimization criterion followed by CSP to find the p

spatial filters relies on pool estimates of the covariance matrices for each of the two classes:

Σc =
1

nc

nc∑
i=1

Xi
c(X

i
c)
′
, c = 1, 2. (2)

The CSP analysis proceeds with the simultaneous diagonalization of the two covariance matrices Σ1 and Σ2:

WTΣ1W = ∆1, (3)

WTΣ2W = ∆2, (4)

where each column of the matrix W is appropriately scaled so that the two strictly positive diagonal matrices

∆c, c = 1, 2, satisfy ∆1 + ∆2 = I. By letting γj =
δj1
δj2

, where δjc is the jth diagonal element of ∆c, solving

Eqs. (3) and (4) is equivalent to solving the following generalized eigenvalue problem:

Σ1wj = γjΣ2wj , j = 1, . . . , p. (5)

The generalized eigenvalues γj quantify the variance ratio between classes at feature j. A large γj value

indicates that the corresponding spatial filter wj yields high variance for class 1 and low variance for class 2,

while the opposite happens for a small γj value. Since the goal is to linearly transform the input signals into

signals having the largest possible band-power differences between both classes, the extracted spatial filters wj

are rearranged according to the corresponding γj values in decreasing order. Note that W is non-singular since

its columns wj are linearly independent. Thus, from Eq. (1) we obtained X = (W−1)
′
Z. Each column vector

aj ∈ Rp, j = 1, . . . , p, of the matrix A = (W−1)
′ ∈ Rp×p is called a spatial pattern.
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In general, only a small number K of spatial filters is used for feature computation. Let us define Z∗K

as the p × 2K matrix formed by stacking side-by-side the first and last K rows of the matrix Z, as follows

Z∗K =
[
z1, . . . , zK , zp−(K+1), . . . , zp

]′
. Then, the CSP feature vector is defined as g=̇ [g1, . . . , g2K ]

′
, where

gj=̇ log
(
S2(z∗j )

)
, j = 1, . . . , 2K, (6)

with S2(z∗j )=̇
1
p

∑p
`=1(z

∗`
j − µj)2, µj=̇1

p

∑p
`=1 z∗`j .

In the context of the PTFBCSP, the CSP algorithm is implemented at each frequency band f coming from a

particular time segment t. This results in 2KF extracted features per time-band for each single EEG trial. By

concatenating these time-frequency band CSP features and piling up the corresponding resulting vector of each

one of the n training samples, we construct the following feature matrix G of dimension n× q, q=̇2KFT :

G=̇


g1,1 . . . g1,2KF . . . g1,2KFT

...
. . .

...
. . .

...

gn,1 . . . gn,2KF . . . gn,2KFT

 , (7)

where gi,j denotes the jth time-frequency feature extracted from the ith EEG trial.

2.1.2 Feature selection and classification via GSDA

Selecting the most relevant features from the feature matrix G is tantamount to detecting the most relevant

frequency-bands along all time-segments. The interaction between those features must then be taken into

account to properly analyze their discriminability contributions.

The GSDA method, just like traditional LDA, seeks to find a discriminant direction in which the linear

separation between classes is maximized [25]. The feature selection and classification are simultaneously

performed, aiming to obtain maximal class discriminability. A priori information about discrepancy between

features is included into the model through appropriate ad-hoc anisotropic penalizers. Although complete

details about GSDA can be found in [25], a brief summary of this method is presented below.

Let G be, as before, the feature matrix, and Y be a n × 2 matrix of binary variables such that yic is an

indicator of whether the ith observation belongs to the cth class (c = 1, 2). Let θ ∈ R2 be a score vector (which

transforms binary variables into real ones by mapping the subspace Rn×2 into Rn, by Y → Yθ), and β ∈ Rq

the discriminant vector. Then GSDA consists of solving the following regularized constrained least squares

problem: (
β̂, θ̂

)
= argmin

β∈Rq,θ∈R2

{‖Yθ −Gβ‖22 + λ1‖D1β‖1 + λ2‖D2β‖22},

s.t.
1

n
θTYTYθ = 1, (8)

where λ1 and λ2 are appropriately chosen positive regularization parameters, which balance the amount of

sparsity and the number of correlated variables in the solution vector, respectively, and D1 and D2 are q × q
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positive definite matrices, appropriately constructed so as to point-wise weigh the solution as indicated by a

priori discriminative information.

The solution to the optimization problem (8) can be approximated by iteratively alternating two steps (with

an adequate initialization). Namely:

1. Keep θ fixed and find β̂:

β̂ = argmin
β∈Rq

{‖Yθ −Gβ‖22 + λ1‖D1β‖1 + λ2‖D2β‖22}. (9)

2. Keep β fixed and find θ̂:

θ̂ = argmin
θ∈R2

‖Yθ −Gβ‖22 s.t.
1

n
θTYTYθ = 1. (10)

The first step (Eq. (9)) is a generalized version of the well-known elastic-net (e-net) problem [26], which

can be re-written by means of LASSO [22] if D1 is invertible. The GSDA is implemented with automatic

regularization parameter selection [25]. This implementation makes use of the LARS-EN algorithm introduced

in [27] in which a stop parameter, that sets an upper bound either for the `1-penalizing term or for the number

of non-zero values in the solution vector β̂, can be used for early stopping.

The GSDA method allows a priori discriminative information to be taken into account by the model. The

discriminative power at each feature can be measured by means of a divergence measure. For that, we assume

each one of the elements gi,j of the feature matrix G is a realization of either one of two random variables whose

distributions uniquely characterize each one the two MI conditions. For any fixed jth feature, j = 1, . . . , q,

let f j1 (n) and f j2 (n), n ∈ N , be the probability functions (corresponding to an appropriate discretization N )

associated to MI classes 1 and 2, respectively. Then, the discrepancy d between both classes at the jth feature

can be measured by “distances” between these two probability functions. In particular, let us consider the

Jensen-Shannon (JS) divergence [28], defined as:

d(j) = d(f j1 , f
j
2 )

=̇H(πf j1 + (1− π)f j2 )− πH(f j1 )− (1− π)H(f j2 ), (11)

where H(·) is the Shannon entropy H(f)=̇ −∑n∈N f(n) log(f(n)) [29] and π is a predefined parameter

with 0 < π < 1. For balanced binary classification problems it is natural to set π = 1/2, in that case the JS

divergence defined by (11) is symmetric and its square root is a metric in the strict mathematical sense [28].

A large value of d(j) given by Eq. (11) means that there is relevant discriminative information at feature j.

Thus, since we wish to highlight those features containing a significant amount of discriminative information,

matrices D1 and D2 in Eq. (8) can be constructed so as to strongly penalize those features which contains little

or no discriminative information, while avoiding penalization in the remaining ones. Following these ideas, we
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define the anisotropy matrices D1 and D2 as follows:

D1
.
= diag (1− αj + αjcj) , (12)

D2
.
= diag(cj), (13)

where: cj
.
=

(∏q
`=1 d(`)

)1/q
d(j)

and αj
.
=

max1≤`≤q{c`} − cj
max1≤`≤q{c`} −min1≤`≤q{c`}

, for j = 1, . . . , q.

At the end of the procedure, the optimal discriminant vector β̂, solution of (8), will contain a few non-zero

entries (due to the `1-norm penalization) which correspond to the most discriminant t-f -band CSP features.

Finally, a simple linear classification rule can be constructed over the projected feature set G∗=̇Gβ̂ ∈ Rn.

2.2 DATASETS

In order to evaluate the applicability of our proposed method in the context of a BCI-based functional hand

motor rehabilitation scenario, a self-acquired dataset of kinesthetic MI vs. rest condition was designed and

recorded with healthy subjects. In addition, two publicly available datasets, widely used for the evaluation of

new algorithms in the MI-BCI community ([19, 20, 21, 23, 24]), were used to test and compare our method in

off-line cross-validation scenarios.

2.2.1 Dataset 1: MI vs. rest

This dataset was collected from eleven healthy subjects (3 females, 4 left-handed, mean age± SD = 25.45±
2.50 years) without any previous BCI experience. The experiment was approved by the local ethics committee

(BASEC-Nr. Req-2017-00631, Cantonal Ethics Commission, Zurich, Switzerland). For data acquisition, a

transportable 64-channel EEG system (eegoTMrt Ant Neuro, Netherlands) was used. EEG data was collected

using 64 surface electrodes placed in accordance with the international 10-20 system. All signals were recorded

with CPz serving as reference and AFz as ground. The signals were sampled at 512 Hz and band-pass filtered

between 0.5 Hz and 40 Hz and then downsampled to 128 Hz. In order to monitor that no actual hand movement

was performed during MI tasks, electromyography (EMG) of two hand muscles and two forearm muscles

(thenar eminence, first dorsal interosseous, flexor digitorum superficialis and extensor digitorum communis)

were simultaneously measured with surface EMG electrodes (Noraxon TeleMyo DTS, Noraxon, USA).

The MI-BCI paradigm consisted of two conditions, namely the kinesthetic imagination of movement of the

dominant hand (grasping movement) and rest/relax condition. The session was composed of four runs separated

by short breaks. Each run consisted of 40 trials (20 for each of the two conditions), yielding a total of 160 trials

at the end of the session. The maximum voluntary contraction (MVC), i.e. the maximum force which a person

can produce in a specific isometric exercise, was recorded at the beginning of the session (for wrist extension,

wrist flexion, thumb abduction and finger abduction). The EMG of each muscle was normalized with respect

to the corresponding MVC to further analyze muscle activation during the EEG trials based on the maximum
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EMG amplitude in each muscle. At the beginning of the session each subject was clearly instructed on the

tasks, and asked to practice until they felt comfortable in performing motor imagery. To assess motor imagery

ability, five kinesthetic items of the KVIQ-10 questionnaire [30] were administered. These items corresponded

to trunk movement, as well as proximal and distal movements of the upper and lower limbs. The KVIQ-10 is

a fast questionnaire which assesses the intensity of MI sensation on a five-point ordinal scale, ranging from 1

(“no kinesthetic sensation”) to 5 (“as clear as executing an action”). At the end of the questionnaire the ability

of each subject in performing MI could be assessed according to his/her final score value (maximal value:

KVIQ-10=25).

During the experiment, subjects were comfortably seated in front of a computer screen with both arms

resting on a desk. The dominant hand with the attached EMG electrodes was placed inside a cardboard box (see

Figure 2a) in order to prevent subjects from seeing their hand which could lead to visual rather than kinesthetic

MI. The experimental protocol is schematically depicted in Figure 2b. Each trial began with a fixation cross

(t = −3 s), followed by an audible beep cue two seconds later (t = −1 s) in order to get the subject’s attention.

At the start of the task (t = 0 s), the subject was asked to imagine grasping movements of the dominant hand

for a period of 4 s if a visual cue (red right arrow) appeared (i.e., MI condition). For the Rest condition, i.e.

if no arrow was presented after the beep, the subject was asked to relax for the same duration. A randomly

selected break-time (between 2.5 and 4.5 s) followed each trial in order to avoid subject routinization to the

protocol timing. At the end of each run, a longer break (> 2 min) allowed the subject to relax.

2.2.2 Dataset 2: Dataset IVa of BCI competition III

This dataset contains EEG recordings of five healthy subjects (aa, al, av, aw, ay) acquired with 118 electrodes

at the extended international 10-20 system positions. Signals were band-pass filtered between 0.05 and 200 Hz.

The signals were downsampled from 1000 Hz to 100 Hz. Each subject performed 280 trials of motor imagery

of either their right hand or right foot (140 for each condition). The MI task was indicated by a visual cue and

lasted 3.5 s. For further information about this dataset we refer the reader to [31].

2.2.3 Dataset 3: Dataset IIb of BCI competition IV

This dataset consists of EEG data from nine right-hand dominant healthy subjects of a study published in

[32]. Three bipolar recordings (C3, Cz and C4) were recorded with a sampling frequency of 250 Hz. For each

subject five sessions were performed. In each session, the subjects were asked to perform MI of either their left

or right hand. In this work, similarly to [20, 21], the third session of the dataset (B0103T, B0203T,..., B0903T)

was used. A total of 160 EEG trials (80 per each MI condition) is available for each subject, in which the MI

task lasted 4.5 s.
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(a)

Fixation
cross

Fixation cross / Rest

Visual Cue / MI
Inter-trial

break

−3 −1 0 4 time [s]

(b)

Figure 2: (a) experimental set-up showing both the EEG and EMG acquisitions systems, as well as the visual

cue presented during a MI trial, for a left-handed subject, (b) schematic representation of one experimental trial

with timing references in seconds.

2.3 DATA ANALYSIS

Our self-acquired dataset (dataset 1) contains EEG signals simultaneously recorded with EMG of four mus-

cles involved in grasping movements. These EMG data were analyzed in order to verify whether the MI tasks

were corrupted by actual movement. Besides visual inspection of the EMG signals, a standard approach for de-

tecting muscle activation consists of determing the onset times at which the EMG signal exceeds a pre-defined

threshold [33]. The envelope of the EMG signal was estimated by means of a lowpass 4th-order zero-phase

Butterworth filter with 50Hz cut-off frequency applied to the zero-mean rectified EMG signals. Sliding win-

dows of 500 ms along each EMG segment, relative to the corresponding MI trial, were taken. For each trial and

each one of the four muscles considered, the trial was considered contaminated with EMG activity if the mean

value of the sliding window was greater than 20% of the corresponding maximum MVC envelope value. For

one of the subjects, more than 50% of the trials in one run were contaminated with EMG activations, reason

for which this subject was not taken into account in the subsequent analysis. Thus, dataset 1 includes EEG

recording of 10 subjects.

To prevent crosstalk from non-motor related regions, to reduce the dimensionality of the signals as well as

the setup time for real-time applications, for datasets 1 and 2, only 28 electrodes covering the sensorimotor

areas, in accordance to [34], were selected for further analysis.
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The proposed PTFBCSP method in its two configurations, was tested with all three datasets. Since in

literature it has been shown that SFBCSP provides the best overall classification accuracy as compared to both

DFBCSP and to the original FBCSP methods [21], in this work comparative experiments were done against

CSP and SFBCSP.

In order to separately analyze the impact of using, on the one hand, GSDA for feature selection and, on the

other hand, multiple time windows, our proposed PTFBCSP method was first tested in its single time window

version, PFBCSP. For the single time window analysis, for any EEG trial, EEG segments from 0.5 to 2.5 s after

the onset of the visual cue were extracted. For fair comparison purposes, each EEG segment was band-pass

filtered with a zero-phase Chebyshev type II filter between 4-40 Hz for the CSP algorithm, while for the filter

bank methods (SFBCSP and PFBCSP), 17 sub-bands (F = 17) between 4 and 40 Hz with 4 Hz bandwith and

2 Hz of overlap were applied (fb1 = 4 − 8 Hz, fb2 = 6 − 10 Hz , . . . , fbF = 36 − 40 Hz). The proposed

frequency band setting is based on the methodology proposed and validated in [20, 21]. The final number

of CSP filter pairs was set to 1 (K = 1). Therefore, after applying CSP to each sub-band, a feature vector

of dimension q = 2KF = 34 was constructed from each EEG segment. To avoid poor estimation of the

covariance matrices (which generally occurs when too few training data are available), the CSP algorithm was

implemented by automatic shrinkage covariance estimation as proposed in [35]. The dimension of the resulting

feature matrix G was n× 34, where n is the number of available training samples.

The SFBCSP method was implemented as proposed in [21]. Thus, the LASSO optimization problem was

solved by using the coordinate gradient descent algorithm [36] in which the regularization parameter λ is

estimated by cross-validation on training data. A new matrix G̃ of smaller dimension than G was constructed

from those columns of G for which the sparse LASSO solution vector contained non-zero entries. The PFBCSP

framework was implemented by automatic parameter selection with early stopping. In particular we chose the

GSDA stop parameter equal to 8, i.e. ‖β̂‖0 ≤ 8. Note that while for SFBCSP the classification rule had to be

learned from the optimized featured matrix G̃, in the case of PFBCSP, the classification rule was applied using

the new feature vector G∗ = Gβ̂ ∈ Rn, for which the classes are maximally separated by a linear function. As

suggested in [19], the classification rule was implemented by means of the LDA classification algorithm.

The multiple time-windows analysis in the PTFBCSP method, is a straightforward extension of the single

time-window frequency-band analysis described above. In this case, however, instead of using a single pre-

defined EEG segment, a number T of EEG segment of 2 s with overlap of 1.5 s were extracted from each

trial (tb1, . . . , tbt, . . . , tbT ) from 0 to Tmax s after the visual cue, where Tmax is the length of the MI trial. The

window overlap of 1.5 s was selected in order to cover the entire length of an MI trial, optimize the number of

temporal segments and include the specific 0.5-2.5 s time segment commonly used in the EEG-BCI literature.

The multiple time-windows analysis together with the frequency band analysis resulted in a total of q = 2KFT

CSP features per trial (q = 136 for dataset 1, q = 204 for dataset 2 and q = 170 for dataset 3). In the case

Page 11 of 23

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

V
. P

et
er

so
n,

 D
. W

ys
er

, O
. L

am
be

rc
y 

&
 R

. G
as

se
rt

; "
A

 p
en

al
iz

ed
 ti

m
e-

fr
eq

ue
nc

y 
ba

nd
 f

ea
tu

re
 s

el
ec

tio
n 

an
d 

cl
as

si
fi

ca
tio

n 
pr

oc
ed

ur
e 

fo
r 

im
pr

ov
ed

 m
ot

or
 in

te
nt

io
n 

de
co

di
ng

 in
 m

ul
tic

ha
nn

el
 E

E
G

"
Jo

ur
na

l o
f 

ne
ur

al
 e

ng
in

ee
ri

ng
, 2

01
9.



of PTFBCSP the GSDA stop parameter was set to 4T . The final classification performance of CSP, SFBCSP,

PFBCSP and PTFBCSP was evaluated by using 10× 10-fold cross-validation. In order to statistically analyze

the difference between the performances yielded by each method, one-way ANOVA and the Tukey-Kramer

procedure with a level of significance α = 0.01 were performed.

3 RESULTS

3.1 COMPARATIVE CLASSIFICATION RESULTS

Figures 3, 4 and 5 show the average classification results of the 10×10 cross-validation procedure achieved

by CSP, SFBCSP, PFBCSP and PTFBCSP, for datasets 1, 2 and 3, respectively. Note that for all datasets both

the PFBCSP and PTFBCSP methods show the highest accuracy. In particular, the use of multiple time segments

together with filter bank analysis yields remarkable classification improvements for subjects 2 and 3 of dataset

1, subject 4 of dataset 2 and subject 1 of dataset 3. On the other hand, there are also some subjects (e.g. subject

3 of dataset 1, subject 3 of dataset 2 and subject 5 of dataset 3) for which this procedure does not improve

classification performance.

The overall classification results across subjects for each dataset is summarized in Table 1. Best classification

results are shown in bold. Note that both configurations of the proposed method outperform all the others, and

all improvements were proved to be statistically significant at a level of α = 0.01. For dataset 1, the single time

window PFBCSP method yielded accuracy increments of 15.2% and 3.9%, as compared to CSP and SFBCSP,

respectively. In the case of datasets 2 and 3, those increments were 11.6% and 2.3%, and 10% and 2.9%,

respectively. In the case of the window-time varying PTFBCSP procedure, accuracy increments of 20.9% and

9.0%, were obtained as compared to CSP and SFBCSP, respectively. The corresponding values for dataset 2

were found to be 12.6% and 3.3%, while for dataset 3 those values were 11.4% and 4.3%, respectively.

In addition, since an improvement in the BCI performance due to subject-specific models usually implies

higher computational cost, we have evaluated the average required computation time on a PC with Intel R©
CoreTM i7-6700K and 64 GB RAM under Matlab 2017a for each method considered. In particular, for training

the SFBCSP method, the average computational costs were found to be around 1, 0.6, and 1.5 s for datasets

1, 2 and 3, respectively, while for PFBCSP these values were found to be 0.7, 0.4 and 1.1 s. In the case of

the proposed PTFBCSP method the training time was found to be 3.8, 2.5 and 4.2 s, for datasets 1, 2 and 3,

respectively.

For our dataset, the ability of each subject in performing MI was measured by five kinesthetic items and

ranged from “poor” (between 5 and 10) to “very good” (from 20 to 25) MI ability. In order to investigate the

relation between the BCI classification accuracy and the reported MI ability, a pairwise correlation analysis

was performed between the mean accuracy value reached by PTFBCSP for each subject (over the 10x10 cross-

validation) and the corresponding KVIQ-10 score (sum of the 5 items considered). This analysis revealed no
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statistically significant correlation (R = −0.4, p-value = 0.25).

1 2 3 4 5 6 7 8 9 10 Average
Subject

40

50

60

70

80

90

100
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)

CSP SFBCSP PFBCSP PTFBCSP

Figure 3: Average classification results on test data by 10 × 10 cross-validation achieved by CSP, SFBCSP,

PFBCSP and PTFBCSP, for dataset 1. Here ∗ denotes statistical significance difference between methods.

Page 13 of 23

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

V
. P

et
er

so
n,

 D
. W

ys
er

, O
. L

am
be

rc
y 

&
 R

. G
as

se
rt

; "
A

 p
en

al
iz

ed
 ti

m
e-

fr
eq

ue
nc

y 
ba

nd
 f

ea
tu

re
 s

el
ec

tio
n 

an
d 

cl
as

si
fi

ca
tio

n 
pr

oc
ed

ur
e 

fo
r 

im
pr

ov
ed

 m
ot

or
 in

te
nt

io
n 

de
co

di
ng

 in
 m

ul
tic

ha
nn

el
 E

E
G

"
Jo

ur
na

l o
f 

ne
ur

al
 e

ng
in

ee
ri

ng
, 2

01
9.



1 2 3 4 5 Average
Subject

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)
CSP SFBCSP PFBCSP PTFCSP

Figure 4: Average classification results on test data by 10 × 10 cross-validation achieved by CSP, SFBCSP,

PFBCSP and PTFBCSP, for dataset 2. Here ∗ denotes statistical significance difference between methods.
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Figure 5: Average classification results on test data by 10 × 10 cross-validation achieved by CSP, SFBCSP,

PFBCSP and PTFBCSP, for dataset 3. Here ∗ denotes statistical significance difference between methods.
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Dataset CSP SFBCSP PFBCSP PTFBCSP

1 68.05 (± 3.28) 75.45 (± 2.95) 78.42 (± 2.96) 82.26 (± 2.98)∗

2 80.75 (± 2.05) 88.05 (± 1.64) 90.09 (± 1.81) 90.94 (± 1.06)∗

3 72.88 (± 3.77) 77.89 (± 2.66) 80.19 (± 2.72) 81.23 (± 2.46)∗

Table 1: Overview of the overall accuracy values and the corresponding standard deviation in parenthesis (in

%) for each tested method and for each dataset. Best classification result are shown in bold. Here ∗ denotes

that PTFBCSP>SFBCSP with p-values < 0.01.

3.2 TOPOGRAPHICAL MAPS OF THE SPATIAL TIME-FREQUENCY PATTERNS

The application of CSP allows for a neurophysiological interpretation of the resulting patterns [37]. The

spatial patterns, i.e. the column vector of the matrix A introduced in Subsection 2.1.1, illustrate how the

presumed sources are projected to the scalp, while (due to their weighting function) the spatial filters, used

to project the original signals to optimally discriminate two classes with respect to variance, may resemble

the patterns [17]. The proposed PTFBCSP method yields a solution vector with a small number of non-zero

entries, which precisely represent the selected time-frequency band features. By plotting the topography maps

of the most significant spatial filter and pattern associated to the most relevant feature, the neural correlates of

the analyzed signals can be investigated. For a randomly selected trial of subject 2 of dataset 1, the selected

features and the most significant spatial filter and pattern (associated to the most relevant frequency band)

are represented in Figure 6, for the single time window methods (SFBCSP and PFBCSP). Similarly, for the

multiple time windows method (PTFBCSP), the selected features at each time segment considered as well as

the first two most significant spatial filters and patterns (associated to the first two most relevant features) are

depicted in Figure 7.

4 DISCUSSION

In the present work a penalized time-frequency band common spatial pattern algorithm for efficiently decod-

ing motor intention in EEG-based BCI systems was proposed. A standardized subject-specific method, which

allows for multiple frequency band analysis in both single and multiple EEG time segments by considering a

priori spatio-temporal-spectral information in a fast selection and classification procedure, was presented. Un-

like most existing MI decoding methods, our approach provides an automatic way for choosing the “optimal”

subject-specific time-frequency bands. The algorithm uses multichannel raw EEG data which are decomposed

into T temporal segments and F frequency bands. By combining CSP and GSDA, the first spatial filter asso-

ciated to each class is used for feature computation and then, feature selection and classification are simulta-

neously performed with automatic parameter selection. By subject-specifically optimizing both temporal and
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Figure 6: Top: selected features for each of the single time window filter bank methods considered. Bottom:

topographical maps of the most significant spatial filter and pattern corresponding to the most relevant feature

(red bar) for a left-handed subject of dataset 1. a) SFBCSP, b) PFBCSP.

frequency bands, individual classification improvements of up to 20% as compared to current state-of-the-art

MI decoding method, were achieved.

Two different configurations of the PTFBCSP method, for single and multiple time windows, were tested

off-line. The overall classification results (Table 1) show, on the one hand, that the use of a priori discriminative

information among features by GSDA (PFBCSP vs. SFBCSP) improves classification performance (up to

3.9%) and, on the other hand, that the use of multiple time windows (PTFBCSP vs. SFBCSP) further improves

the efficiency for motor intention decoding (improvements above 3.3%), mainly when MI has to be detected

in contrast to rest condition (dataset 1, improvements of 9%). Although statistically significant differences

between PTFBCSP and PFBCSP were only found for dataset 1, the obtained results indicate a clear trend in

the use of multiple time windows for improving MI detection, especially when the MI task has to be detected

against a rest condition. Moreover, for some particular subjects (see figures 3, 4 and 5) the improvements

obtained by PTFBCSP are above 10% (e.g. subject 2 of dataset 1, subject 1 of dataset 3). The variances along

the 10 × 10-fold cross-validation show that in some cases (dataset 2), PTFBCSP is more robust to changes

in the training set than all the other single-time window methods considered (see standard deviation values in

Table 1).
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Figure 7: Top: selected features for the proposed PTFBCSP method at each time segment tb1 = 0− 2s, tb2 =

0.5− 2.5s, . . . , tb5 = 2− 4s (arranged in rows). Bottom: topographical maps of the first two most significant

spatial filters and patterns corresponding to the first two most relevant features (red bars) for a left-handed

subject of dataset 1.

The sparse time-frequency segment common spatial pattern (STFSCSP) method [24] and the mutual infor-

mation based selection of optimal spatial–temporal patterns (MIBS-OSTP) [23] are two state-of-the-art meth-

ods for MI classification based on multiple time windows and filter bank analysis. Unfortunately, we were

unable to reproduce the results of these two methods (some signal processing steps used in the algorithms were

not completely reported and the corresponding codes are not publicly available), being the reason for not having

them included in our numerical experiments. However, the classification results obtained by PTFBCSP in the

two publicly available datasets can be compared to those obtained by STFSCSP and MIBS-OSTP. In particular,

in [23], by using MIBS-OSTP, the average classification result over 10×10-fold cross-validation achieved with

the BCI Competition IV Dataset IIb (dataset 3) was reported to be 78.25 ± 1.12 %, while for the PTFBCSP
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method the analogous result was 81.23±2.46 %, corresponding to a classification improvement of about 3.8 %.

A similar comparison can be made with respect to STFSCSP, which is applied after Fisher’s linear discriminant

criteria for automatic subject-specific channel selection. In fact, [24] reports an average classification result for

the BCI competition III Dataset IVa (dataset 2) of 92.66 ± 4.44 %. Although the average accuracy value is

slightly higher (presumably due to the channel selection procedure) than what is achieved by our PTFBCSP

method (90.94± 1.06 %), the standard deviation is quite large, making PTFBCSP more robust.

The topography maps of the most relevant CSP pattern associated to the most relevant time-frequency fea-

ture allow for neurophysiological interpretations of the spatio-temporal-spectral patterns. For the single time

window methods (Figure 6), the frequency band information is located between 22 and 26 Hz, while for the

multiple time segments analysis (Figure 7) the most relevant frequency bands vary from time segment to time

segment. It is remarkable how both single time filter bank methods select the same feature as the most relevant,

which, by visual analysis of the spatial filter, clearly corresponds to the sensorimotor area involved in the MI

task (the subject was left-handed). In the case of multiple-time windows, the first most informative frequency

band is found between 4 and 8 Hz. This 4-8 Hz sub-band corresponds to the theta EEG rhythms, which are

highly correlated with relaxation states [38]. For the second most informative frequency band, enclosing the

mu and beta rhythms, the topography maps here again can be clearly associated with the MI condition. There-

fore, the analysis of the topography maps of the most relevant features suggest that the multiple-time windows

method can identify the most relevant information from both conditions.

Reliably detecting an MI task strongly depends on the subject’s abilities to operate a BCI. It is known that

between 15 and 30% of MI-BCI users fail to modulate their brain signals to effectively control a BCI [39].

This phenomenon, known as BCI-illiteracy, should be taken into account in order to avoid frustrating training

procedures. To control for motor imagery performance, we applied the kinesthetic KVIQ-10 questionnaire. No

statistically significant correlation with classification accuracy was found, which is in accordance with previous

work [40], indicating that the reliability of such questionnaires to assess MI ability is low. In addition, and

although for our self-acquired dataset the subjects were asked to perform cycling MI, the stimulation protocol

did not present internal cues in order to ensure the beginning of a new MI task. This may cause beta-rebound

effect within certain time segments which could perhaps negatively influence the proposed framework.

A limitation of this work is that the classifier was only tested off-line. Nevertheless, in light of the followed

data processing steps and the low testing times (of only a few milliseconds), adapting the algorithm to an on-line

implementation should be rather straightforward. Clearly, however, for these real-time scenarios, classification

accuracy would need to be re-evaluated in the on-line context. In addition, for those datasets with a large

number of channels, we selected 28 electrodes covering the sensorimotor areas. From the set-up time of the

experiment and subject’s comfort point of view, it is desired to find the minimal number of electrodes for

efficient MI detection. An advantage of our method is that, independently from how the electrodes are selected,

Page 18 of 23

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

V
. P

et
er

so
n,

 D
. W

ys
er

, O
. L

am
be

rc
y 

&
 R

. G
as

se
rt

; "
A

 p
en

al
iz

ed
 ti

m
e-

fr
eq

ue
nc

y 
ba

nd
 f

ea
tu

re
 s

el
ec

tio
n 

an
d 

cl
as

si
fi

ca
tio

n 
pr

oc
ed

ur
e 

fo
r 

im
pr

ov
ed

 m
ot

or
 in

te
nt

io
n 

de
co

di
ng

 in
 m

ul
tic

ha
nn

el
 E

E
G

"
Jo

ur
na

l o
f 

ne
ur

al
 e

ng
in

ee
ri

ng
, 2

01
9.



it offers the flexibility to adapt (without any modification) to such changes in the data structure. This claim is

supported by the classification results achieved with dataset 3 (above 81%), which relies on only 3 channels.

The current version of the method was evaluated by setting the same GSDA stopping parameter and the

same electrode set for all the subjects and datasets. It is expected that the presented classification accuracies

can be further improved by making these selection subject-dependent. Future works include the study of in-

ference methods for subject-specific regularization parameters estimation such as Bayesian learning [41], the

balancing principle [42] or aggregation [43]. In addition, regarding optimal channel selection, the approach

known as “group LASSO” [44] can be included in our model for subject-specific selection of the best sub-set

of EEG channels [45, 46]. Finally, real-time implementation of the proposed method must be studied, in order

to conclude whether the trial duration is optimal, whether the multiple time segments is suitable for on-line

feedback and whether the method is robust and accurate enough for establishing a good BCI communication.

5 CONCLUSION

A novel classification method combining multiple frequency bands and time windows to increase classi-

fication accuracy in MI-BCIs was proposed. Two configurations of the presented algorithm were tested with

public datasets from BCI competitions as well as with our own dataset, showing better classification results

when compared to other state-of-the-art time-frequency band CSP methods.

When MI has to be detected against a rest condition, the multiple-time windows framework on average

improves MI detection as compared to the single time window methods. As a drawback it requires longer

MI times after the onset of the cue. Hence, if faster detection speed is required, PFBCSP constitutes a good

compromise between classification accuracy and time delay after the MI cue.

In addition to showing improvements with respect to state-of-the-art classification methods, several research

directions for further increasing performance are highlighted. For instance, the subject-specific adaptation

capabilities of the proposed method could be further improved by selecting the most relevant channels, time

segments and hyperparameters for each subject. We consider the present work an important step towards

improved motor intention detection, which could also find application in rehabilitation scenarios, e.g. in the

form of an MI-BCI-triggered robotic hand orthosis.

6 ACKNOWLEDGEMENTS

This research was supported in part by the ETH Zurich Foundation in collaboration with Hocoma AG,

the Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, CONICET, Argentina, through PIP 2014-

2016 No. 11220130100216-CO, the Air Force Office of Scientific Research, AFOSR/SOARD, through Grant

FA9550-14-1-0130 and by the Universidad Nacional del Litoral, UNL, through CAI+D-UNL 2016 PIC No.

50420150100036LI.

The first author expresses her sincere gratitude to the Zeno Karl Schindler Foundation (ZKF, Geneva,

Page 19 of 23

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

V
. P

et
er

so
n,

 D
. W

ys
er

, O
. L

am
be

rc
y 

&
 R

. G
as

se
rt

; "
A

 p
en

al
iz

ed
 ti

m
e-

fr
eq

ue
nc

y 
ba

nd
 f

ea
tu

re
 s

el
ec

tio
n 

an
d 

cl
as

si
fi

ca
tio

n 
pr

oc
ed

ur
e 

fo
r 

im
pr

ov
ed

 m
ot

or
 in

te
nt

io
n 

de
co

di
ng

 in
 m

ul
tic

ha
nn

el
 E

E
G

"
Jo

ur
na

l o
f 

ne
ur

al
 e

ng
in

ee
ri

ng
, 2

01
9.



Switzerland) for financial support and for providing her with the opportunity to visit the Rehabilitation En-

gineering Laboratory at ETH Zurich in the context of a 6-months doctoral exchange program.

The authors have confirmed that any identifiable participants in this study have given their consent for

publication. The authors also thank Christian Mancini for setting up part of the experimental protocol used to

collect our self-acquired dataset.

Page 20 of 23

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

V
. P

et
er

so
n,

 D
. W

ys
er

, O
. L

am
be

rc
y 

&
 R

. G
as

se
rt

; "
A

 p
en

al
iz

ed
 ti

m
e-

fr
eq

ue
nc

y 
ba

nd
 f

ea
tu

re
 s

el
ec

tio
n 

an
d 

cl
as

si
fi

ca
tio

n 
pr

oc
ed

ur
e 

fo
r 

im
pr

ov
ed

 m
ot

or
 in

te
nt

io
n 

de
co

di
ng

 in
 m

ul
tic

ha
nn

el
 E

E
G

"
Jo

ur
na

l o
f 

ne
ur

al
 e

ng
in

ee
ri

ng
, 2

01
9.



REFERENCES

[1] J. Wolpaw and E. W. Wolpaw, Brain-Computer Interfaces: principles and practice. Oxford University Press, USA, 2012.

[2] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of classification algorithms for EEG-based brain-

computer interfaces,” Journal of neural engineering, vol. 4, no. 2, 2007.

[3] J. del R. Millán, P. W. Ferrez, F. Galán, E. Lew, and R. Chavarriaga, “Non-invasive brain-machine interaction,” International

Journal of Pattern Recognition and Artificial Intelligence, vol. 22, no. 05, pp. 959–972, 2008.

[4] J. R. Wolpaw, D. J. McFarland, G. W. Neat, and C. A. Forneris, “An EEG-based brain-computer interface for cursor control,”

Electroencephalography and clinical neurophysiology, vol. 78, no. 3, pp. 252–259, 1991.

[5] A. Nijholt, D. P.-O. Bos, and B. Reuderink, “Turning shortcomings into challenges: Brain-computer interfaces for games,”

Entertainment Computing, vol. 1, no. 2, pp. 85–94, 2009.

[6] F. Galán, M. Nuttin, E. Lew, P. W. Ferrez, G. Vanacker, J. Philips, and J. d. R. Millán, “A brain-actuated wheelchair: asynchronous

and non-invasive brain–computer interfaces for continuous control of robots,” Clinical neurophysiology, vol. 119, no. 9, pp. 2159–

2169, 2008.

[7] Y. Yu, Z. Zhou, Y. Liu, E. Yin, N. Zhang, Z. Wang, Y. Liu, X. Wu, D. Hu, et al., “Self-paced operation of a wheelchair based

on a hybrid brain-computer interface combining motor imagery and P300 potential,” IEEE Transactions on Neural Systems and

Rehabilitation Engineering, vol. 25, no. 12, pp. 2516–2526, 2017.

[8] D. J. McFarland and J. R. Wolpaw, “Brain-computer interface operation of robotic and prosthetic devices,” Computer, vol. 41,

no. 10, 2008.

[9] S. R. Soekadar, M. Witkowski, N. Vitiello, and N. Birbaumer, “An EEG/EOG-based hybrid brain-neural computer interaction

(BNCI) system to control an exoskeleton for the paralyzed hand,” Biomedical Engineering/Biomedizinische Technik, vol. 60,

no. 3, pp. 199–205, 2015.
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