
A new Spiking Neural Network with Extreme
Learning for FPGA implementation

1st Iván R. Peralta
Facultad de Ingenierı́a

Universidad Nacional de Entre Rı́os
Paraná, Argentina

2nd Nanci Odetti
Facultad de Ingenierı́a

Universidad Nacional de Entre Rı́os
Paraná, Argentina

3rd Eduardo Filomena
Facultad de Ingenierı́a

Universidad Nacional de Entre Rı́os
Paraná, Argentina

4th Juan I. Rufiner
Facultad de Ingenierı́a

Universidad Nacional de Entre Rı́os
Paraná, Argentina

5th Nahuel Ricart
Facultad de Ingenierı́a

Universidad Nacional de Entre Rı́os
Paraná, Argentina

6th Hugo L. Rufiner
Instituto Sinc(i) & Laboratorio de Cibernética

FICH-UNL-CONICET & FI-UNER
Santa Fe, Argentina

lrufiner@sinc.unl.edu.ar

Abstract—This paper proposes a parallel fixed point spiking
neural network (SNN) implemented in a field programmable gate
array (FPGA) with spike response neuron model that makes
use of concepts related with extreme learning machines (ELM).
For this reason the network is called “Digital Extreme Learning
Spiking Neural Network” (DELSNN). The network was designed
specifically for its implementation in FPGA. Internal structure
and mode of operation are described, where the capability of
processing continuous spikes is demonstrated. Matlab numerical
calculation software is used for computational model development
and training. Then a VHDL model for final implementation in
FPGA is generated. For the sake of brevity in this paper only
FPGA implementation aspects of DELSNN are presented and
discussed. The entire VHDL project was developed using the
Xilinx ISE platform, and an Atlys kit board which has a Spartan-
6 LX45 as the target FPGA.

Index Terms—Spiking Neural Networks, Extreme Learning
Machines, FPGA, VHDL.

I. INTRODUCTION

Artificial neural networks are inspired by their biological
counterparts and are composed of basic units called neurons.
They are interconnected by different weights which represent
the intensity of the interaction between each other. Currently,
deep artificial neural networks achieve the best performance
in virtually any machine learning benchmark ranging from
speech recognition to natural language processing to name
a few applications [2]. The enormous number of operations
that deep artificial neural networks require, represents a great
drawback. This limits its execution on platforms with limited
processing and energy resources. Currently, their execution is
offloaded to remote computer clusters or GPUs. Nevertheless,
many applications require fast responses and low-energy con-
sumption as crucial features, for example speech processing
in mobile platforms or robotic systems.

Spiking Neural Networks (SNNs) appear as an interesting
alternative to simulate large-scale neural networks in real
time applications [4], [5]. Actually, neuromorphic engineering
[1] allows the emulation of SNNs on hardware in real-time
with much higher efficiency in terms of power and speed

compared to conventional computing platforms. An example
is TrueNorth platform, which is capable of stimulating a
million spiking neurons in real-time with only 3 mW of
power consumption. The counterpart network on a traditional
computing platform was 100, 200 times slower and consumed
100.000 to 300.000 times more energy in each synaptic event
[15].

The SNNs were create two decades ago, as the result of
searching for a closer analogy to biological neurons. The use
of SNN is of special interest in applications that involve a
temporal dynamic in the problem to be solved. These have
been used on recent applications in many areas of pattern
recognition such as visual processing [6], [7], speech recogni-
tion [8], [9], [16], and medical diagnosis [10], [11], among
others [12], [13]. The aforementioned networks faithfully
reproduce the neural biological systems with two effects. On
the one hand they try to imitate the transfer of information
between neurons through pulses called spikes, in the way it
happens in the biological synapses with Action Potentials.
Since the neurons communication is done through spikes (‘1’)
or non-spikes (‘0’), they are well suited to be implemented
on digital hardware. On the other hand, dynamic processing
of the signals inside the neurons is done [14] and multiple
delayed synaptic terminals can be applied between neurons
connections [17]. Thus, they are good candidates to temporal
patterns classification.

Aside from the large neuromorphic structures named above,
many custom implementations of SNN have been presented
in analog and digital hardware [3]. Different architectures
have been shown, ranging from wide framework [18], [19]
capable to process great custom networks (> 10, 000 neurons)
at many times the real-time speed, to compact systems where
small networks are directly implemented onto hardware [20]–
[23]. This latter one is used to apply custom solutions to
small problems or conform preliminary studies that allow
construction of more great SNNs on future.

In an SNN, weighted spikes at the inputs of a neuron are
integrated over time and when that integral exceeds a certain

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
I.

 R
. P

er
al

ta
, N

. O
de

tti
, E

. F
ilo

m
en

a,
 J

. R
uf

in
er

, N
. R

ic
ar

t &
 H

. L
. R

uf
in

er
; "

A
 n

ew
 S

pi
ki

ng
 N

eu
ra

l N
et

w
or

k 
w

ith
 E

xt
re

m
e 

L
ea

rn
in

g 
fo

r 
FP

G
A

 im
pl

em
en

ta
tio

n"
Pr

oc
ee

di
ng

s 
of

 th
e 

X
 S

ou
th

er
n 

C
on

fe
re

nc
e 

on
 P

ro
gr

am
m

ab
le

 L
og

ic
 -

 S
PL

 2
01

9,
 a

pr
, 2

01
9.



threshold, a corresponding spike is generated at the neurons
output. During the training procedure, the strength of the
synaptic weights can be changed as result of learning rule
application. Actually, a great drawback for use SNNs is their
training. For a recent review in learning rules in SNNs, see
[5]. One recent paradigm that comes from machine learning
community is the Extreme Learning Machine (ELM) [24]. In
this structure the connections between the input and hidden
layers are randomly weighted, and fixed (they are not altered
during training). This strategy is very useful in classification
tasks because only the weights of a single layer are trained.
The purpose of random weights is to project the signals
coming from the first layer in a larger space (by a complex
non-linear transformation). The classes that are difficult to
separate in the original space are projected to a larger space
to allow them to be easily separable in the new representation
space.

In this paper we present DELSNN (Digital Extreme Learn-
ing Spiking Neural Network) and its compact FPGA imple-
mentation. It was designed as an alternative SNN for patterns
classification in a supervised manner, using concepts related
to ELM. This paper describes the internal structure and mode
of operation of the aforementioned network, together with its
implementation in FPGA. Due to the require length constraints
of this paper, the training algorithm and its applications will
not be shown. The reader is referred to [29] to delve into these
aspects of the network.

II. DELSNN

The proposed SNN has a feedforward architecture with
two layers of neurons (I and J) and an input pattern that
can be reduced, for a given instant, to a vector V of N
components (see Fig. 1). Each neuron of I layer connects to
each vector elements Vv and each neuron in output layer J
receives connections from all neurons of layer I. Connections
between layers are composed of several delay propagation
lines weighted by a particular weight for each delay. In
one connection between first layer (I) and the second layer
(J), the k-th connection delay between i and j neurons is
characterized for a dk delay and a weight W k

ij (see Fig.
1). The network is designed to perform data classification
(encoded in spikes) which are grouped into different classes. In
a trained DELSNN, each output neuron represents a possible
class and if an example of that class is presented to the
network, only the neuron associated with that class must emit
spikes. The weights that link the first and second layer of
neurons are set randomly, while the weights of the second
layer are trained with the examples of the training set. It is
worth noting that DELSNN was designed from the beginning
with its FPGA implementation in mind, hence explanation of
its mode operation is will done in the domain of discrete time.

A. Neuronal Model

Diverse neuron models have been proposed such as the
spike response model (SRM) [25], the Izhikevich neuron
model [26], and the leaky integrated-and-fire (LIF) neuron

Fig. 1. Internal structure of DELSNN.

[27]. The neuronal model used for this work is a variant of
the impulse response model (SRM). Below, the operation of
a neuron i belonging to the input layer is described, but this
explanation can be extended to any neuron of the SNN. The
state of the neuron i is described by the state variable ui. This
neuron fires if ui reaches the threshold ϑ. At the instant that
threshold is crossed, the discrete firing time n(f)i is defined,
where f indicates the firing number or spike emitted by the
neuron i. The set of all firing times of the neuron i is defined
by:

Fi =
{
n
(f)
i

}
= {n/ui[n] > ϑ} . (1)

A sequence of spikes emitted by a neuron of the layer I can
be written as a sequence of discrete Dirac impulses:

Si[n] =
∑

n
(f)
i ∈Fi

δ[n−n(f)i ], with Fi =
{
n
(1)
i , ..., n

(s)
i

}
. (2)

The inputs to the neuron i are given by the spikes coming from
each component of the input vector V. In turn, since the input
vector is updated at each simulation instant, the time evolution
of each V component can be described as Vv[n], where n is
the simulation time and v (with 1 ≤ v ≤ N ) indicates the v-th
vector component.

A spike that belongs to an element Vv of the input vector
is distributed in each of the propagation delays dk of each
connection that leaves that element. Once the spikes have been
delayed by the propagation delays, they arrive at the neurons
as presynaptic pulses that determine a change in the neuronal
state. Each presynaptic spike that enters the neuron i, increases
(or decrements) its variable ui in an amount W k

vi h[n − dk],

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
I.

 R
. P

er
al

ta
, N

. O
de

tti
, E

. F
ilo

m
en

a,
 J

. R
uf

in
er

, N
. R

ic
ar

t &
 H

. L
. R

uf
in

er
; "

A
 n

ew
 S

pi
ki

ng
 N

eu
ra

l N
et

w
or

k 
w

ith
 E

xt
re

m
e 

L
ea

rn
in

g 
fo

r 
FP

G
A

 im
pl

em
en

ta
tio

n"
Pr

oc
ee

di
ng

s 
of

 th
e 

X
 S

ou
th

er
n 

C
on

fe
re

nc
e 

on
 P

ro
gr

am
m

ab
le

 L
og

ic
 -

 S
PL

 2
01

9,
 a

pr
, 2

01
9.



where h is the function of impulse response (spike) of the
neuron. The increase or decrease of the variable depends
on whether the weight is positive or negative, respectively.
The state ui of neuron i at time n is given by the linear
superposition of contributions of all propagation delays of all
components of input vector: 1

ui[n] =

N∑
ν=1

K∑
k=1

∞∑
τ=0

Vν [τ ]W
k
νi h[n− τ − dk]. (3)

If we consider a neuron of the output layer J, the update
equation of the state variable uj of neuron j at time n is
given by the linear superposition of contributions of all spikes
coming from neurons of layer I:

uj [n] =

M∑
i=1

K∑
k=1

∞∑
τ=0

Si[n]W
k
ij h[n− τ − dk]. (4)

Like the Ec. (2), a sequence of spikes emitted by a neuron
of the J layer can be written as a sequence of discrete Dirac
impulses:

Sj [n] =
∑

n
(f)
j ∈Fj

δ[n− n(f)j ], Fj =
{
n
(1)
j , ..., n

(s)
j

}
, (5)

where n(f)j is the instant of firing number f of neuron j ∈ J.
Taking into account Ec. (3) and (4), one can interpret the

internal functioning of a neuron, that is, the variation of
its state u, as the discrete linear convolution of incoming
spike sequences with an impulse response function h[n]. This
implies that at the moment of simulating the SNN, we can
choose a h[n] with arbitrary form, which is a potentiality of
SRM model.

III. ARCHITECTURE AND IMPLEMENTATION

A complete system diagram is shown in Fig. 2. The SNN is
implemented within the FPGA, whose operation is controlled
by the control unit (GENERAL CONTROL UNIT). This unit
is in charge of controlling and exchanging the incoming and
outgoing SNN spikes with the PC through a UART block
(Universal Asynchronous Receiver-Transmitter).

For each simulation step, the control unit places in its output
vector in a binary vector with the input spikes to the SNN.
Then activates the signal clk spk. The SNN processes the input
and places in its output spikes out another binary vector with
the responses of each of the output neurons for that simulation
step. Then, the SNN activates its output end processing SNN
to indicate to control unit that it has finished processing the
entries. The control unit is responsible, through the UART, to
send these outputs to the PC and to receive the next inputs for
the next simulation step.

A pushbutton is used to generate a reset signal for the entire
system. The leds of the board are also used to report possible
problems or errors in data transmission.

1The internal sum with the upper end ∞ indicates that the sum is done
until the end of the whole input pattern.

Fig. 2. Block diagram of the complete system implemented in the FPGA,
Atlys kit board and communication with the PC.

The main objective of this work is to achieve a functioning
of the SNN in the FPGA but without emphasizing in the
efficiency of operation or the optimal use of FPGA resources.
So that some simplifications are made in order to reduce
the design complexity: a) The main simplification is that one
processing element (PE) is used for each neuron (see [29]).
This implies that each PE will only control a single neuron,
which significantly reduces the number of neurons that can be
implemented in the FPGA. b) The internal registers of each
neuron are represented by means of 32-bit integers, which
allows the direct use of the data type integer of the VHDL
language. This simplifies the neuron design, but does not make
optimal use of the device resources.

A. Neural Design

The SNN implementation is carried out following a Serial
Processing Parallel Arithmetic (SPPA) architecture. That is,
an arithmetic is used at the level of bit registers and a serial
processing of each connection that enters a neuron. Given that
we are in an experimental stage in which we wish to evaluate
the SNN performance in response to different responses to
the impulse h[n], the architecture designed must be capable
of representing any model of neuronal response (SRM).

The SRM model is not a simple model to implement, so
there are not many works that have addressed this type of
neural model in compact design implementations [20], [23],
[28]. The main drawback of this model is that to calculate
the membrane potential, the impulse response function must
be multiplied by the interconnection weight of each synapse
that has an active spike. In addition, in order to simulate
the temporal evolution of each connection, the postsynaptic
potentials (PSP) of each synapse must be treated in an in-
dependent registry, which in a SNN with many connections
per neuron, would demand many device resources. Another
important aspect is to determine if the neural model supports
the application of a spike in its input while the evolution
of a previous PSP is occurring. In an extreme case the

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
I.

 R
. P

er
al

ta
, N

. O
de

tti
, E

. F
ilo

m
en

a,
 J

. R
uf

in
er

, N
. R

ic
ar

t &
 H

. L
. R

uf
in

er
; "

A
 n

ew
 S

pi
ki

ng
 N

eu
ra

l N
et

w
or

k 
w

ith
 E

xt
re

m
e 

L
ea

rn
in

g 
fo

r 
FP

G
A

 im
pl

em
en

ta
tio

n"
Pr

oc
ee

di
ng

s 
of

 th
e 

X
 S

ou
th

er
n 

C
on

fe
re

nc
e 

on
 P

ro
gr

am
m

ab
le

 L
og

ic
 -

 S
PL

 2
01

9,
 a

pr
, 2

01
9.



+ MEMBRANE 
REGISTER

SWITCH

SHIFT REGISTERS MEMORY

MUX1

WEIGHTS STORAGE 
MEMORY

MUX2

MULTIPLICATOR

MUX3

DELAY 
COUNTER

COUNTER 
INPUT

COUNTER
SRM[i]

SRM

O
U
T
P
U
T
 
S
P
I
K
E
S

1 BIT

SYNAPSE MODEL NEURON MODEL

I
N
P
U
T
S

CONTROL 
UNIT

MULTIBITS SHIFT REGISTER

THRESHOLD

+

vector_in

reset

clk

clk_spk

spikes_out

end_processing

a)

b)

NEURON

REG1

Fig. 3. Neuronal model implemented in the FPGA. (a) Incoming and outgoing
signals from a neuron. (b) Simplified schematic diagram of the synapse and
neuron model. Thick lines represent multi-bit connections, while thin lines
represent one-bit connections.

neuron must support the application of multiple input spikes
applied consecutively over time. This is important, since if this
capacity is not available, the type of possible coding for the
entry patterns to the SNN is limited.

The design proposed in this work notably reduces the
complexity of implementation through the use of accumulators
and shift registers to represent the evolution of the membrane
potential. In addition, it has the ability to apply consecutive
spikes over time. This capacity has not been evidenced in
any of the models of SRM neurons implemented in FPGA
described so far. The Fig. 3 describes the input and output
signals of the neuronal model and its internal functioning.

Each neuron receives: the vector vector in, with the input
spikes corresponding to a simulation step; the signal clk spk,
which defines the simulation period; the signal clk, that
determines the internal working speed of the neuron and has a
much shorter period than clk spk (typical ratio of 1: 10000),
and the reset signal to manually restart the system. On the
other hand, the neuron has two single-bit outputs. The output
spikes out describes the outgoing spikes of the neuron and
connects itself, depending on the neuronal layer to which
it belongs, to the inputs of its postsynaptic neurons or to
the vector spikes out that comes out of the SNN described
in Fig. 2. It also has as output the signal end processing,
which indicates that the neuron has finished processing its
inputs. 2 Once all neurons of SNN have finished processing,
the signal end processing SNN, described above, is activated,
indicating the end of the processing of the complete network
for a particular input vector.

Pressing the reset button starts the system. Initially the
control unit puts all registers, counters and values of the SHIFT
REGISTERS MEMORY to zero, to allow a simulation with
null initial conditions. Then, the control unit waits for the

2This output must be differentiated from the output end processing SNN,
which indicates when the complete SNN has finished processing the entries.

activation of the input signal clk spk, which is issued by the
GENERAL CONTROL UNIT. This signal tells the SNN to
begin processing each of the connections with the presynaptic
neurons (in the case that it is a neuron of the last layer) or the
input vector (for the neurons of the first layer) as appropriate.
Then the first bit of the shift register REG1 is loaded with
the logical value present in the first input. The selection of
the entry to be processed is done through the COUNTER
INPUT. The REG1 determines the propagation delay of a
particular input of the vector in. Once the REG1 register
has been modified, it is stored in the SHIFT REGISTERS
MEMORY for its later reuse in the processing of the next
pattern. To map the weights, some outputs of REG1, with
specific delays, are connected to a multiplexer MUX1. Then,
the output of MUX1 is combined by an AND function with
the weight corresponding to that delay. In such a way that if
there is a ‘1’ in the selected delay, the weight for that delay
will accumulate in the first sub-register of the MULTIBITS
SHIFT REGISTER. The weights of the connections are stored
in the WEIGHTS STORAGE MEMORY and the address of
that memory is determined by the DELAY COUNTER and the
COUNTER INPUT. The process described above is repeated
until all the inputs of the neuron are scanned.

Once all the inputs have been processed, the membrane
potential stored in the MEMBRANE REGISTER is calculated.
For this moment, in the first sub-register of the MULTIBITS
SHIFT REGISTER, a weight value is stored, which is the
sum of all the weights of the active delays associated with
each input of the neuron. The impulse response h[n] is stored
in the SRM register. Therefore, the first value of the impulse
response (SRM[1]) multiplied by said total weight is added
to the membrane potential. Then there is a shift to the right
of the values of each sub-register of the MULTIBITS SHIFT
REGISTER. This allows that in the processing of the next
input vector to the neuron, the initial accumulation of weights
is not lost and the complete evolution of the PSP associated
with that first input vector can be described. Therefore, multi-
plication is done for all sub-registers of MULTIBITS SHIFT
REGISTER. That is, in each processing of an input vector,
the multiplication of the i-th sub-register of the MULTIBITS
SHIFT REGISTER with the i-th value of the impulse response
(SRM [i]) is added to the membrane potential. The MULTI-
BITS SHIFT REGISTER is what allows the neuron to process
contiguous spikes at the entrance of the neuron. Finally, if
the MEMBRANE REGISTER exceeds a pre-set threshold, the
spikes out output of the neuron is activated.

The CONTROL UNIT, internal to the neuron, was carried
out by means of a state machine implemented through a
process in VHDL. Its operation is timed by the fast clock
signal clk and is responsible for both the control of the synaptic
model and the neuronal model.

Both the MULTIBITS SHIFT REGISTER and the SRM are
composed of 32-bit sub-registers (integers). The SRM register
is identical for all neurons and is defined in a configuration
file (configuration.vhd) together with other design parameters.

The innovation of the design proposed in this paper is that

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
I.

 R
. P

er
al

ta
, N

. O
de

tti
, E

. F
ilo

m
en

a,
 J

. R
uf

in
er

, N
. R

ic
ar

t &
 H

. L
. R

uf
in

er
; "

A
 n

ew
 S

pi
ki

ng
 N

eu
ra

l N
et

w
or

k 
w

ith
 E

xt
re

m
e 

L
ea

rn
in

g 
fo

r 
FP

G
A

 im
pl

em
en

ta
tio

n"
Pr

oc
ee

di
ng

s 
of

 th
e 

X
 S

ou
th

er
n 

C
on

fe
re

nc
e 

on
 P

ro
gr

am
m

ab
le

 L
og

ic
 -

 S
PL

 2
01

9,
 a

pr
, 2

01
9.



SNN 
computational 

model 

Training Module

Parameters 
of the 
SNN

Real to Integer 
Conversion

configuration.vhd

Training 

Implementation 
in FPGA

Graphics

Comparison

Simulation 

Verification 

SNN Model
FPGA

Integer SNN 
computational 

model

Analog 
Signal

Coding in
 Spikes

Fig. 4. Conceptual diagram of the different stages of work.

it does not need independent registers to store, separately, the
PSP of each entry as it happens in [23]. Instead, an integral
treatment of the inputs is carried out, being able to keep all
information of the membrane potential in the MULTIBITS
SHIFT REGISTER and the MEMBRANE REGISTER. As
evidenced, the proposed model uses a serial processing of the
neuron inputs, which reduces the complexity of the hardware
significantly. However, all neurons are processed in parallel,
which allows obtaining a good relationship between the per-
formance and the occupation of the device.

B. SNN module

A block of higher hierarchy than the neurons (called SNN)
is defined, which groups all of them into a single structure. To
generate said block in VHDL, the neurons are replicated by
means of a loop (for ... generate) within which the connections
between each neuron are defined. The replication of each
neuron is done through the use of generic parameters, which
are stored in the file configuration.vhd. In turn, in this block
the signal end processing SNN is generated by applying an
AND logical function of all signals end processing belonging
to network neurons.

The storage of the weights of each connection is done in a
BROM block, one for each neuron.

IV. PERFORMANCE EVALUATION

The Fig. 4 shows a conceptual scheme of the different
stages to evaluate the correct functioning of the SNN. Firstly,
a computational model of the SNN was implemented and its
operation was evaluated with the excitation of different spike
patterns. The computational model was made in MATLAB
and uses a floating type arithmetic (real numbers). This model
describes the operation of the network, emulating the operation
of the SNN implemented in VHDL. Then the weight values
are determined. The training of the network is done iteratively
in MATLAB (see [29]).

Once the training stage is finished, given that the SNN
model in VHDL was programmed with integer arithmetic, it

is necessary to convert the values of the weights from real
numbers to integers. In Ec. (6) the conversion of the real type
weights to the integer type is described.

weightint = round

(
(Nc − 1) ∗ weightfloat

MAX −MIN

)
, (6)

where Nc is the amount of levels used in the quantization.
The values MAX and MIN are the respective maximum
and minimum for the whole set weights of the SNN once the
training is finished. The round(x) function rounds the value
of x to the nearest integer.

The Ec. (6) not only modifies the decimal part of the
weights, but also modifies the scale of them, so it is necessary
to apply the same transformation to the thresholds of fire.

The representation of signed numbers that is used in this
work is complement to 2 (one bit to represent the sign and
B bits for the magnitude). The number of magnitude bits and
the number of levels (Nc) are related by the Ec. (7),

B = log2(Nc). (7)

Once the conversion of the weights is done, we proceed
to create the file configuration.vhd, which is a text file that
groups all configuration parameters of the SNN. The .vhd
extension allows it to be integrated into the Xilinx Project
Navigator project without any previous steps. In this way,
the file configuration.vhd becomes the nexus between the
computational design in MATLAB of the SNN and the design
in the Project Navigator of Xilinx.

Once the design of the SNN is implemented in the FPGA,
it is necessary to verify its correct operation. To carry out
this verification, a MATLAB script was implemented that
stimulates with a single pattern the two models of SNN:
the computational quantized and the electronic implanted in
the FPGA. After exciting both networks, the script picks
up the output spike sequences of each model and compares
them. It is determined that the operation is correct if both
responses are equal. The spike responses to same stimulus
of both the computational model with its quantized weights
(MATLAB) and the electronic model (FPGA) were identical
in all experiments, corroborating the correct functioning of
DELSNN.

V. RESULTS

Although this paper is limited to describing the implemen-
tation of DELSNN in FPGA, it is worth mentioning that
in [29] the performance of DELSNN in the task of speech
recognition for the classification of isolated digits is shown
with results comparable to other state of the art alternatives
(WER(%) = 12, 75). In most experiments only a 5 bits
weights quantization was necessary to not affect significatively
the network recognition.

The design in VHDL is completely synthesizable on the
FPGA, as an example, the Spartan 6 XC6SLX45 device is
used with 8-bits weights representation. For comparative pur-
poses Table I shows the resources used in different DELSNN
structures. Due to 8-bit quantization, most of the BRAMs were

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
I.

 R
. P

er
al

ta
, N

. O
de

tti
, E

. F
ilo

m
en

a,
 J

. R
uf

in
er

, N
. R

ic
ar

t &
 H

. L
. R

uf
in

er
; "

A
 n

ew
 S

pi
ki

ng
 N

eu
ra

l N
et

w
or

k 
w

ith
 E

xt
re

m
e 

L
ea

rn
in

g 
fo

r 
FP

G
A

 im
pl

em
en

ta
tio

n"
Pr

oc
ee

di
ng

s 
of

 th
e 

X
 S

ou
th

er
n 

C
on

fe
re

nc
e 

on
 P

ro
gr

am
m

ab
le

 L
og

ic
 -

 S
PL

 2
01

9,
 a

pr
, 2

01
9.



TABLE I
COMPARISON OF LOGIC RESOURCES UTILIZATION IN DIFFERENT

NETWORKS STRUCTURES WITH 8-BITS WEIGHTS REPRESENTATION FOR
K=3 AND K=10 DELAYS / WEIGHTS PER CONNECTION.

DELSNN
Structure Synapses Slice

Registers
Slice
LUTs

Block
RAM

2x2x2 24 1599 3152 4
80 2271 3641 6

9x9x4 351 5112 10028 13
1170 7296 11673 20

32x4x16 576 7145 11312 20
1920 10569 14188 30

used by the SHIFT REGISTERS MEMORY, which are used
for the models of synapses between neurons. For the 32x4x16
and 1920 synapses case, only 30 of the 116 available BRAMs
were used. The large number of slices used is mainly due to
the fact that all the internal registers of the design are of an
integer type (32 bits). It should be noted that this excessive bit
resolution is not necessary for most of the internal registers of
neurons. All the cases in the table I were tested with a clock
frequency of 100 MHz and the worst case limits the maximum
possible frequency to 117MHz.

VI. CONCLUSIONS

This work presents a proposal for the parallel fixed point
implementation of a new type of SNN in a FPGA. The internal
architecture of SNN implementation was shown and analysed.
FPGA implementation was carried out satisfactorily, remark-
ing an innovative neural design able to perform continuous
spikes processing and low amount of bits required for weigths
representation on internal registers. The results obtained were
highly satisfactory, indicating the potential feasibility of the
technique for use in practical situations. Since that the opti-
mization of the FPGA resources was not a direct goal of this
work, it is also possible to perform an explicit optimization of
the VHDL design to improve its neurons storage capacity and
processing speed in future works.

REFERENCES

[1] Indiveri, G., Horiuchi, T. K. (2011). Frontiers in neuromorphic engi-
neering. Frontiers in neuroscience, 5, 118.

[2] Schmidhuber, J. (2015). Deep learning in neural networks: An overview.
Neural networks, 61, 85-117.

[3] Misra, J., Saha, I. (2010). Artificial neural networks in hardware: A
survey of two decades of progress. Neurocomputing, 74(1-3), 239-255.

[4] Ponulak, F., Kasinski, A. (2011). Introduction to spiking neural net-
works: Information processing, learning and applications. Acta neurobi-
ologiae experimentalis, 71(4), 409-433.

[5] Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., Maida,
A. S. (2018). Deep Learning in Spiking Neural Networks. arXiv preprint
arXiv:1804.08150.

[6] Wysoski, S. G., Benuskova, L., Kasabov, N. (2010). Evolving spiking
neural networks for audiovisual information processing. Neural Net-
works, 23(7), 819-835.

[7] Meftah, B., Lezoray, O., Benyettou, A. (2010). Segmentation and edge
detection based on spiking neural network model. Neural Processing
Letters, 32(2), 131-146.

[8] Tavanaei, A., Maida, A. (2017, November). Bio-inspired multi-layer
spiking neural network extracts discriminative features from speech
signals. In International Conference on Neural Information Processing
(pp. 899-908). Springer, Cham.

[9] Wade, J. J., McDaid, L. J., Santos, J. A., Sayers, H. M. (2010). SWAT:
a spiking neural network training algorithm for classification problems.
IEEE Transactions on Neural Networks, 21(11), 1817-1830.

[10] Kasabov, N., Feigin, V., Hou, Z. G., Chen, Y., Liang, L., Krishna-
murthi, R., ... Parmar, P. (2014). Evolving spiking neural networks for
personalised modelling, classification and prediction of spatio-temporal
patterns with a case study on stroke. Neurocomputing, 134, 269-279.

[11] Ghosh-Dastidar, S., Adeli, H. (2009). A new supervised learning
algorithm for multiple spiking neural networks with application in
epilepsy and seizure detection. Neural networks, 22(10), 1419-1431.

[12] Borisyuk, R., Chik, D., Kazanovich, Y., da Silva Gomes, J. (2013).
Spiking neural network model for memorizing sequences with forward
and backward recall. BioSystems, 112(3), 214-223.

[13] Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G. (2013). Dynamic
evolving spiking neural networks for on-line spatio-and spectro-temporal
pattern recognition. Neural Networks, 41, 188-201.

[14] Gerstner, W., Kistler, W. M. (2002). Spiking neuron models: Single
neurons, populations, plasticity. Cambridge university press.

[15] Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,
J., Akopyan, F., ... Brezzo, B. (2014). A million spiking-neuron
integrated circuit with a scalable communication network and interface.
Science, 345(6197), 668-673.

[16] Mir-Amarante, L., Gmez-Rodrguez, F., Jimnez-Fernandez, A., Jimnez-
Moreno, G. (2017). A spiking neural network for real-time Spanish
vowel phonemes recognition. Neurocomputing, 226, 249-261.

[17] Natschlger, T., Ruf, B. (1998). Spatial and temporal pattern analysis
via spiking neurons. Network: Computation in Neural Systems, 9(3),
319-332.

[18] Schoenauer, T., Mehrtash, N., Jahnke, A., Klar, H. (1999, March).
MASPINN: Novel concepts for a neuroaccelerator for spiking neural
networks. In Ninth Workshop on Virtual Intelligence/Dynamic Neural
Networks (Vol. 3728, pp. 87-97). International Society for Optics and
Photonics.

[19] Hellmich, H. H., Geike, M., Griep, P., Mahr, P., Rafanelli, M., Klar, H.
(2005, July). Emulation engine for spiking neurons and adaptive synaptic
weights. In Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE
International Joint Conference on (Vol. 5, pp. 3261-3266). IEEE.

[20] Iakymchuk, T., Rosado, A., Frances, J. V., Batallre, M. (2012, July).
Fast spiking neural network architecture for low-cost FPGA devices. In
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),
2012 7th International Workshop on (pp. 1-6). IEEE.

[21] Moctezuma, J. C., McGeehan, J. P., Nunez-Yanez, J. L. (2015).
Biologically compatible neural networks with reconfigurable hardware.
Microprocessors and Microsystems, 39(8), 693-703.

[22] Wan, L., Luo, Y., Song, S., Harkin, J., Liu, J. (2016, June). Efficient
neuron architecture for FPGA-based spiking neural networks. In Signals
and Systems Conference (ISSC), 2016 27th Irish (pp. 1-6). IEEE.

[23] Rosado-Muoz, A., Fijakowski, A. B., Bataller-Mompen, M., Guerrero-
Martnez, J. (2011, January). FPGA implementation of spiking neural
networks supported by a software design environment. In Proceedings
of 18th IFAC World Congress. Milano, Italy Milano, Italy.

[24] Huang, G. B., Zhu, Q. Y., Siew, C. K. (2006). Extreme learning
machine: theory and applications. Neurocomputing, 70(1-3), 489-501.

[25] Jolivet, R., Timothy, J., Gerstner, W. (2003). The spike response
model: a framework to predict neuronal spike trains. In Artificial Neural
Networks and Neural Information ProcessingICANN/ICONIP 2003 (pp.
846-853). Springer, Berlin, Heidelberg.

[26] Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE
Transactions on neural networks, 14(6), 1569-1572.

[27] Delorme, A., Gautrais, J., Van Rullen, R., Thorpe, S. (1999). SpikeNET:
A simulator for modeling large networks of integrate and fire neurons.
Neurocomputing, 26, 989-996.

[28] Johnston, S., Prasad, G., Maguire, L., McGinnity, M. (2005, September).
Comparative investigation into classical and spiking neuron implemen-
tations on FPGAs. In International Conference on Artificial Neural
Networks (pp. 269-274). Springer, Berlin, Heidelberg.

[29] Peralta Iván R. (2017). Reconocimiento de dı́gitos mediante Redes
Neuronales Pulsantes implementadas en FPGA (Tesis de maestrı́a).
Facultad de Ingenierı́a, Universidad Nacional de Entre Rı́os (FIUNER),
Paraná, Argentina.

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
I.

 R
. P

er
al

ta
, N

. O
de

tti
, E

. F
ilo

m
en

a,
 J

. R
uf

in
er

, N
. R

ic
ar

t &
 H

. L
. R

uf
in

er
; "

A
 n

ew
 S

pi
ki

ng
 N

eu
ra

l N
et

w
or

k 
w

ith
 E

xt
re

m
e 

L
ea

rn
in

g 
fo

r 
FP

G
A

 im
pl

em
en

ta
tio

n"
Pr

oc
ee

di
ng

s 
of

 th
e 

X
 S

ou
th

er
n 

C
on

fe
re

nc
e 

on
 P

ro
gr

am
m

ab
le

 L
og

ic
 -

 S
PL

 2
01

9,
 a

pr
, 2

01
9.


