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Abstract—Recently, video-oculographic gaze tracking has be-
gun to be used in the diagnosis of a wide variety of neurological
diseases, such as Parkinson and Alzheimer. For this application,
the so-called feature-based methods are used, more precisely, 2D
regression-based methods. They use geometrically derived eye
features from high-resolution eye images captured by zooming
into the user’s eyes. The main weakness of these methods is that
the head of the user must remain motionless to avoid estimation
errors. In some patients, some involuntary movements cannot be
avoided and it is necessary to measure them. In this paper, we
tackle the measurement of head position as a way to improve the
gaze tracking on these precision demanding medical applications.
As a first stage, we propose to obtain the eye corners coordinates
as a reference point, since they are the most stable points in
front of the eyeball and eyelids movements. The problem was
handled as a regression problem using a coarse-to-fine cascaded
convolutional neural network in order to accurately regress the
coordinates of the eye corner. Particularly, with the aim of
achieving high precision we cascade two levels of convolutional
networks. Finally, we added temporal information to increase
accuracy and decrease computation time. The accuracy of the
estimation was calculated from the mean square error between
the predictions and the ground truth. Subjective performance
was also evaluated through video inspection. In both cases,
satisfactory results were obtained.

Index Terms—Landmark Tracking, Convolutional Neural Net-
works, Head Movements

I. INTRODUCTION

Studies have shown that activity related to eye movements is
observed in cortical and subcortical areas, which are directly
and indirectly connected with several neural systems. They
interact with each other to control the suitable performance
of the ocular and ocular-cephalic movements. As a result, a
broad spectrum of oculomotor alterations are usually observed
in the presence of neurodegenerative motor disorders. An
accurate and detailed analysis of eye movements becomes a
unique opportunity to detect the presence of different injuries
in the nervous center. These injuries involve a wide variety
of neurological diseases including parkinsonian syndromes
[1], amyotrophic lateral sclerosis [2], Huntingtons disease [3]
Alzheimer disease [4] and minimal hepatic encephalopathy
[5], among others. In recent years, the video-oculography
(VOG) has become the most widely used eye-movements
assessment method, as it is the only one considered non-
invasive; also it allows for easy coordination of test design

and stimuli provision that make it possible to automatically
analyse the data [6], [7].

In order to be able to measure alterations in eye movements,
the measurement of them must be performed with high pre-
cision and accuracy. That is why methods that use extracted
eye features, such as pupil center or eye reflections, called
feature-based methods, are the most popular approaches to
gaze estimation in these kinds of applications. Feature-based
methods, more precisely 2D regression-based methods, use
geometrically derived eye features from high-resolution eye
images captured by zooming in on the user’s eyes. Then,
they find a mapping function from the 2D feature space to
gaze directions or the computer screen coordinates. These
techniques are widely used and achieve really good results,
but they have one major issue: the head of the person must
remain motionless, otherwise there will be large errors be-
tween the actual and estimated directions. In order to avoid
these errors, head restraint systems are often used. In spite
of the fact that the head movements are restricted, in people
with certain neurological diseases, it is possible to observe
some involuntary movements. Being able to measure these
head movements would be very important not only to correct
the gaze estimation errors but also because these measurements
seem to be another indicators of the presence or progress of
certain diseases.

As of today, despite its importance for clinical diagnosis,
there are not many studies about gaze estimation techniques
that considers both the head and eye movements in the detailed
conditions. We have also not found any research work aimed
at detecting short involuntary head movements for future
analysis. In this paper we tackle the measurement of the head
position with the goal of being able to register small head
movements only from videos of the patient’s eye. With this
aim, as a first stage we develop a method for estimating the
eye corners coordinates. Since the eye corners are the most
stable points in front of the eyeball and eyelids movements,
the changes in their position may be used as a reference for
the head movements estimation.

Facial landmark detection is a topic of much interest these
days. Different algorithms aim to automatically identify the
locations of the facial key points on facial images or videos
for different applications. Most of them are designed for
landmarks detection throughout the entire face [8], [9] and
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therefore require the whole face to be present in the image,
regardless of variations in position, angle or illumination.
Others are intended to detect the eye’s corners exclusively
by extracting the eye region from a given face image, mainly
for low cost gaze tracking systems [10], [11]. In such circum-
stances, the extracted region is usually small in comparison to
the image size and therefore the eye has a poor resolution.
Contrary to this, in the studied application, the eyes are
recorded directly at very high resolution. Therefore, their
appearance and the their corners shape change significantly
through the subjects or through small eye movements. This
is why the goal of regressing the exact position of the corner
becomes more challenging.

In recent time, there is a trend to shift from traditional
methods to deep learning based methods, more specifically
Convolutional Neural Network (CNN) for the task of facial
landmark detection and tracking [12]–[14]. In this work, the
problem is handled as a regression problem and a deep
CNN is proposed to regress the landmark positions from the
image appearance. Particularly, with the aim of achieving
high precision, we cascade two levels of convolutional neural
networks to make a coarse-to-fine prediction of the eye corners
position in each frame.

Another point to consider, is the fact that many works
address the landmark detection task in the same way for both
static images and videos. Thus, when detection is performed in
each individual frame, information from preceding frames is
not used. Instead, the location of facial landmarks in preceding
frames could be used to make it easier to find the facial
landmarks in the current frame. One way to add temporal
information consists of tracking the landmark region instead of
detecting it each time. The problem with the direct application
of a conventional tracker is that they are sensitive to appear-
ance changes. At high image resolutions, when the person
blinks the eye’s corner region appearance changes completely
and the tracker get lost. In these cases it is really complex
to recover the region-of-interest (ROI) tracked and when is
recovered, the position is not exactly the same, decreasing
the accuracy. Alternatively, in this work we propose a mix
approach: during the first frames a tracker is initialized with
the two level networks prediction, afterwards the first network
is no longer used. Instead, the corner patch is tracked along
the video and the fine estimation is obtained with the second
network from these patches. This approach showed to provide
a fast estimation and a more accurate measurement. The latter
is accomplished since when the eye’s appearance does not
change, the second level network receive the same patch and
give a similar landmark estimation.

Finally, we can sum up the main contributions of this paper
as follows.

• We created a specific database for this type of videos.
• We designed a coarse-to-fine cascaded convolutional neu-

ral network in order to accurately regress the coordinates
of the eye corner.

• We added temporal information to increase accuracy and
decrease computation time.

(a) (b)

Fig. 1: Eye images from different patients.

II. DATA

Unlike the large number of facial landmark datasets avail-
able [15]–[17], there are no public datasets for this kind
of application. Therefore, it was necessary to generate a
customized database by selecting eye images with accurate eye
related landmark labels for training and testing, and annotate
them with ground truth. Eighteen videos were recorded from
eighteen different patients using the Oscann device [18]. An
infrared camera and an image resolution of 640x480 pixels
were used. As these clinical studies are carry out on either
of the two eyes and the choice is made by the doctor, the
videos were recorded from both eyes. Therefore it was decided
to mirror some of them in order to make them all look the
same. Figure 1 shows an example of eye images from different
patients.

Then, fifteen frames per video were carefully selected. Due
to the large size of the eye in the image, its shape varies greatly
depending on the person and in the presence of eye movements
or blinks. As a consequence and in order to have a wider range
of training data, those frames in which the eye position and the
eyeball direction differ as much as possible were chosen. Each
frame was identified with the patient number, so that we can
split the data in training and validation sets without blending
the patient. Since the eye’s corner are kept relatively stable
again the eye deformations, its accurate detection is critical
to estimate the head movements only from the videos. To this
end, the ground truth was carefully generated by hand for each
eye’s corner.

III. METHODOLOGY

A. Pre-processing

One of the main challenges faced in implementing this
landmark regression cascade is the limited amount of available
data. Deep learning methods have outperformed state of the
art in various tasks but, due to the large number of parameters
to be learned in the model, they require large amount of data.
One way to add more data to the training process without the
need to collect it is to perform data augmentation. It consists
of a series of methods applied to each image in a random
way during training, in order to train the networks in a robust
manner avoiding overfitting at the same time. The individual
transformations considered are:
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(a) (b) (c)

(d) (e) (f)

Fig. 2: Different appearance obtained from data augmentation
techniques.

• Image rotations by an angle θ between ±40° about the
centre.

• Gaussian blurring with a 5× 5 kernel.
• Change in brightness level.
• Changes in the image shape applying an affine transfor-

mation with random matrices.
• Elastic deformations [19].
For training the second level network, different ROIs were

obtained from the original training images using the eye’s
corner ground truth as the reference point. To make the
network more robust to the varying position of the eye corner,
in each frame the ROI was cropped with a random offset from
the centered reference point. In this way, all possible corner
positions could be learned from the network. In addition, the
ROIs were cropped with random width and height, and then
interpolated to the pre-established size. This also varies the eye
corner aspect and adds new data to the training process. After
that, the data augmentation techniques previously explained
were performed to these patches. Figure 2 shows six different
patches generated by applying these transformations to a single
frame. It should be noted that both, the appearance and the
position of the corner, vary considerably. Finally, the intensity
of the transformed images was normalized between 0 and 1
to be used as network inputs.

In the augmentation process, the landmarks coordinates
were mapped to their new positions. Lastly, these ground truth
coordinates lx and ly were normalized between -1 and 1 using
the following equations:

lxn =
lx− 0.5 · Iw

0.5 · Iw
lyn =

ly − 0.5 · Ih
0.5 · Ih

(1)

where Iw and Ih are the image (or patch) width and height,
respectively.

B. Convolutional Neural Network Structure

For landmark regression, we cascade two levels of convo-
lutional neural networks to make a coarse-to-fine prediction.

TABLE I: Network architecture

First level network Second level network

Block Layer (type) Filter size Layer (type) Filter size
Input eye image image patch

(640x480) (140x140)

Conv 1 convolutional 3x3(32) convolutional 3x3(32)
convolutional 3x3(32) convolutional 3x3(32)
Max pooling Max pooling

Conv 2 convolutional 3x3(64) convolutional 3x3(64)
convolutional 3x3(64) convolutional 3x3(64)
Max pooling Max pooling

Conv 3 convolutional 3x3(128) convolutional 3x3(128)
convolutional 3x3(128) convolutional 3x3(128)
Max pooling Max pooling

Conv 4 convolutional 3x3(128) convolutional 3x3(128)
convolutional 3x3(128) convolutional 3x3(128)
Max pooling Max pooling

Conv 5 convolutional 3x3(256)
convolutional 3x3(256)
Max pooling

Conv 6 convolutional 3x3(256)
convolutional 3x3(256)
Max pooling

Fully flatten flatten
connected dense 600 dense 600

dense 300 dense 300
dense 2 dense 2

The first level network makes an initial prediction of the
eye corner landmarks. The second level network receives the
image patch cropped from the original image centered in
the first prediction, and implement a local refinement of the
landmark coordinate. Since not all videos show the complete
eye, the network was designed to estimate only the coordinates
of one eye corner at a time. After preliminary experiments, the
selected network architecture detailed in Table I was used. The
ReLu activation function was applied after each convolutional
layer and after the first two dense layer. In the last layer, a
linear activation function was used.

C. Training

The first and second networks were trained separately.
During training, the coarse regression network received the
640x480px augmented images as inputs and the refinement
network received the 140x140px patches generated as it was
detailed above. In some videos the eye does not appear
complete within the image. This is why only sixteen of the
patients could be used to train the inner corner model and
seventeen could be used to train the outer corner model. The
following steps were shared by both CNN.

1) Cross-Validation: An eigth-fold cross-validation [20]
approach was used in this study. The data were split into eight
folders depending on the patient number, i.e. in each iteration
two patients were left for testing and the rest was used to train
the neural network. For the outer corner models, as we had an
odd number of patients, three of them were used for validation
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in the first run. The partition was designed in this way to test
the generalization ability of the network to correctly regress
the position of the eye corner on previously unseen patients.
The models were then compared using the average and the
standard deviation of the eight folds.

2) Network parameters: The network was trained to min-
imise the mean square error (mse) between the landmarks
labels and predictions applying the Adam Optimizer. To select
the training parameters, a grid was designed in which different
learning rates, batch sizes, patch sizes and dropout rates were
tested. The best performance was achieve with learning rate:
0.0001; batch size: 16; patch size for the second network:
140x140px.

3) Testing: For testing, the original 15 frames of each
patient were used following the validation scheme. To this end,
the first network made the coarse prediction and, centered in
its prediction, the patch was cropped and it was used as input
for the second network which regressed the final coordinate.
This prediction was transformed to pixel value by means of:

lxp = lxn · 0.5 · Pw + 0.5 · Pw + l

lyp = lyn · 0.5 · Ph+ 0.5 · Ph+ t
(2)

being l and t the right and top patch positions and (lxp, lyp)
the eye corner coordinate in pixels. For each model, the mean
error and the standard deviation were calculated among all
patients.

In addition, a subjective analysis with videos was carried
out. Due to the laboriousness of annotating hundreds of data,
it is really difficult to have an objective performance evaluation
over the large videos. Furthermore, some aspects such as the
tremor of the estimated point around the corner are complex
to evaluate only by means of these metrics, but can be easily
evaluated by inspection.

4) Tracking: The tracker used to follow the patch through-
out the video was the Kernelized Correlation Filter (KCF) from
OpenCV3 [21]. To initialize the tracker, the two-step network
prediction was applied to the first frame and the ROI centered
in its prediction was selected. After that, the first part of the
network was no longer used and the input patch to the second
network was update with this tracker along the videos.

IV. RESULTS

In Figure 3 it can be seen a diagram of the entire process
applied as an example to a particular frame. It is possible to
observe how the patch is cropped on test time and how the
second network improve the first network prediction. Figure 4
shows the mean error and standard deviation of the predictions
given by the first and second networks on the complete dataset.
The results show separately the predictions made on the inner
and the outer corner of the eye. It can be seen that the second
network greatly improves the results of the first one achieving
a significantly better prediction.

Despite the fact that the mean accuracy obtained was quite
good, and it improved even more by adding the tracker, the
jiterring did not disappear completely. For this reason, we
decided to add an off-line filter that smooths the prediction

over time [22]. This feature was subjectively evaluated and
it was found that the filter significantly improves this unde-
sirable effect. These qualitative results for difficult validation
videos can be seen in the videos of the following link:
https://agostinal.github.io/Corner-detector-project. It is impor-
tant to point out that for this application it is not necessary to
work online since the final purpose is to use the predictions
to post-process an eye tracking algorithm.

Finally, the tracking instance was also evaluated subjectively
throughout the videos, finding that it is robust to blinking and
rapid eye movements. Furthermore, the computation time was
measured during each video both applying the cascade to each
frame and following the tracking approach where only the fine-
convolutional neural network is applied to each frame. The
analysis was made in CPU as the algorithm it is thought to
be used in a doctor office. It was found that applying patch
tracking, the processing time was reduced 4 times. While on
average the double cascade lasts 300 ms per frame, applying
the tracker reduces the time per frame to 70 ms. This becomes
very significant if it is considered that the videos are taken at
100 fps.

V. CONCLUSION

A model for eye corner coordinate estimation was con-
structed from scratch. The model was designed for a par-
ticular application for which it was necessary to collect and
annotate the complete database. A coarse-to-fine cascaded
convolutional neural network was implemented for static-
frames landmark regression. Temporal information was added
both from the patch tracking along the videos and from the im-
plementation of a temporal filter to smooth the estimation. The
experimental results confirmed the efficacy of the proposed
method in different videos. With these promising results, we
expect to provide a valuable information to be able to measure
changes in the head position during clinical routine trials in
patients.
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