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Abstract

Most neurological diseases are usually accompanied by a broad spectrum of oculomotor alterations. Being able to
record and analyze these different types of eye movements would be a valuable tool to understand the functional in-
tegrity of brain structures. Nowadays, video-oculography is the most widely used eye-movements assessing method.
This paper presents a study of the existing eye tracking video-oculography techniques and also analyzes the impor-
tance of measuring slight head movements for diseases diagnosis. In particular, two types of methods are reviewed and
compared, including appearance-based and feature-based methods which are further subdivided into 2D-mapping and
3D model-based approaches. In order to demonstrate the advantages and disadvantages of these different eye tracking
methods for disease diagnosis, a series of comparisons are conducted between them, addressing the complexity of
the system, the accuracy achieved, the ability to measure head movements and the external conditions for which they
have been designed. Lastly, it also highlights the open challenges in this research field and discusses possible future
directions.
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1. Introduction

Neurodegenerative motor disorders are usually ac-
companied by a broad spectrum of oculomotor alter-
ations. Studies have shown that activity related to eye
movements is observed in cortical and subcortical ar-
eas, which are directly and indirectly connected with
several neural systems which interact among each other
to control the suitable performance of the ocular and
ocular-cephalic movements. For instance, brain basal
ganglia, brainstem nuclei and the vestibular system are
organized to produce different eye movements [1, 2].

Therefore, an accurate and detailed eye movements
analysis would be a key experimental tool for under-
standing the functional integrity of brain structures in-
volved in motor and cognitive processing. In addi-
tion, it becomes a unique opportunity to detect the pres-
ence of different injuries in the nervous center thanks to
the existing connection with different oculomotor con-
trol abnormalities. These injuries involve a wide vari-
ety of neurological diseases including parkinsonian syn-
dromes [3, 4] amyotrophic lateral sclerosis [5], Hunt-
ingtons disease [6], Alzheimers disease [7], minimal
hepatic encephalopathy [8], among others.

Various types of eye movements are performed in

people’s daily lives, usually without being aware of
them. These movements can be divided into two func-
tional classes [2]. The first class is the one in charge
of making the images remain fixed in the retina and
comprises the next movements: vestibulo-ocular re-
flexes (VORs) which make the direction of the eyes re-
main constant when the head is moved; fixation system
which make the gaze resting on a small predefined area;
smooth pursuit which describe the eye following a mov-
ing object, and optokinetic nystagmus, which stabilize
the fovea in relation to objects in the surrounding en-
vironment. Some variables related to fixation are com-
monly measured in different studies including total and
mean fixation duration, fixation sequences and fixation
rate.

In addition to this, humans use a second class of eye
movement, named saccades, in order to rapidly shift the
fovea in a stepwise manner onto a new target and bring
its superior visual accuracy to bear on objects of interest
during fixation. Several of these movements are made
each second and they are an intrinsic part of the con-
stant cycle of perception, action and cognition. Measur-
able saccade related parameters include saccade num-
ber, amplitude, fixation-saccade ratio and velocity peak
detection. Being able to measure them is also an impor-
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tant contribution.
Besides, there is another kind of saccadic movement

which is used alongside fixations. If the eyes remained
completely fixed at one point for a long time, the retina
would adapt to the constant input and induce the visual
image to slowly fades away. In order to avoid the neu-
ral adaptation, short saccadic movements, known as mi-
crosaccades, shift the image on the retina back and forth
in an involuntary manner in small magnitudes ranging
from 3 min of arc to 1◦[9].

Saccadic and microsaccadic eye movements are
likely to be affected by cognitive impairments, as well
as by dysfunctions related purely to oculomotor execu-
tion. Because of that, they have been extensively studied
for a wide range of applications including the drowsi-
ness detection [10], neurological disease diagnosing and
sleep disorders studies [11]. On the other hand, within
the field of clinical research, fixations are often ana-
lyzed in neuroscience, autism alteration studies [12],
and psychological studies to determine a persons focus
and level of attention [13].

Over the past 20 years, some of these measured vari-
ables of eye movements have been selected as possi-
ble markers for differential diagnosis including in pre-
symptomatic individuals. Being furthermore eye track-
ing a less invasive and low cost clinical test compared
with other diagnosis methods, this technique has be-
come an invaluable tool for clinicians in diagnosis of
neurodegenerative disorders.

Some eye movements abnormalities can be clinically
assessed by trained doctors using, for example, Fren-
zel glasses or ophthalmoscopes [14]. Instead, in some
cases it is necessary to make really accurate measure-
ments, like metrics of saccadic accuracy, latencies with
respect to stimulus onset, or eye velocity peak estima-
tions which are not possible to be done by simple exam-
ination. Furthermore, for some tests with cognitive im-
pairment, it is desirable to present stimulus under spe-
cific conditions such as defined target positions, which
is also made difficult without the assistance of a syn-
chronized device.

However, eye movements can be easily measured and
recorded in the laboratory, covering the main necessities
of accurate information. These recordings are highly
useful for objective and precise identification of disease
status and monitoring of disease progression. For ex-
ample, increased error rate of antisaccades, which indi-
cates cognitive dysfunction, can only be detected in the
laboratory [2]. A number of different eye movements
assessing methods have been developed and some of
them are currently used. Some examples are electro-
oculography [15], scleral search coil system [16], and

video-oculography (VOG) [11]. In recent years, the lat-
ter has become the most widely used, as it is the only
one considered non-invasive and allows for easy coor-
dination of test design and stimuli provision that make
it possible to automatically analyse the data.

VOG real-time eye detection and eye tracking is an
active area of research in computer vision community
since a long time. Presently, there are numerous of
gaze trackers devices and software in the market, and
there are more and more applications in which these
techniques make an important contribution. Human-
computer interaction [17, 18], driving safety applica-
tions [19], pilot training [20], market and marketing re-
search [21], studies of perception, attention and learning
disorders [22] are some examples of these. But, while
the idea of eye tracking exists for a long time, recent
technological advances enable more precise quantifica-
tion and automated evaluation making this technology
broadly available to disease diagnosis [23, 24].

Naturally, since there are so many possible applica-
tion regarding eye movements, a lot of different ap-
proaches have been proposed for VOG gaze tracking.
Although there already exist some papers that review
the current gaze tracker systems or methods [11, 25, 26],
as far as we know, our review is the only one specifically
aimed at analyzing and comparing the VOG gaze esti-
mation methods for application to neurological disease
diagnosis and research, taking into account their own
requirements and use conditions. In addition, the im-
portance of measuring slight head movement present in
some neurological diseases is also analyzed.

2. Eye tracking Video Oculography Techniques

Technically, gaze tracking is the procedure of deter-
mining the point-of-gaze (POG) -where one is looking-
on some monitor or screen or the visual axis of the eye
in the 3D space. For this, video oculography devices are
equipped at least with one or more video cameras that
send images to a personal computer for image process-
ing.

Recently, several approaches to gaze estimation have
been reported in the literature. Although they have been
studied focusing on different use conditions, in general,
they can be classified in two categories: appearance-
based and feature-based methods. Clearly, their choice
depends on the application for which they have been
designed. The quality of the camera and hardware, the
required accuracy, the environmental conditions, the de-
sired cost and the freedom of head movements are some
factors that determine the approach to be followed. In
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the following, these two methods are going to be in-
troduced, in order to compare their specifications with
those required for medical applications.

2.1. Appearance-based methods
In recent years more and more applications have been

developed to analyze human behavior in everyday situ-
ations. To do this, it is necessary to monitor the eye
movements in uncontrolled scenarios where it is impos-
sible to adjust the lighting conditions, perform a calibra-
tion or request the user’s assistance. In this context, it is
critical to design very robust methods for the different
types and qualities of the images.

Fortunately, for most applications very high accuracy
is usually not required. For instance, in environmental
control or eye typing, where only a few buttons need to
be activated, it may be more important to reduce costs
by using web cameras, allowing easy and flexible hard-
ware configurations, and avoiding the use of lighting
systems and feature detection algorithms.

On the basis of this new approach, several papers
[27, 28, 29, 30] have presented methods that work with
low-resolution images in different environmental condi-
tions in which appearance-based methods seem to be a
promising option. These methods address the gaze esti-
mation problem by learning a mapping function directly
from eye images to gaze directions. As input, they use
all eye regions pixel values as high-dimensional feature
vectors for estimating gaze directions [31]. The output,
gaze direction, can be represented as the coordinates
(x, y) on the screen where the gaze falls or the rotation
angles of the eye with respect to the head position. For
low quality images, this is a great advantage compared
to the techniques employed by feature-based methods,
which have to segment and analyze geometrically de-
rived eye features from high-resolution observations as
will be seen in the next section.

The mapping function allows to relate the raw in-
put image with the coordinates of the gaze direction.
These functions do not address any particular model,
but are designed ad-hoc and are trained with eye im-
ages of known gaze direction using various regression
techniques, including neural networks [32, 33, 34], lo-
cal interpolation [35, 36], or Gaussian process [37, 38].
Its formulation depends on the regression technique fol-
lowed. Figure 1 shows an example where a convolu-
tional neural network (CNN) is used as a mapping func-
tion.

These approaches make the system less restrictive,
and even though the precision is not good enough for
certain applications, they are very robust even when
they are applied to relatively low-resolution cameras or

Figure 1: Architecture of the CNN used as mapping function to pre-
dict gaze direction. (From Park et al. [27]).

under natural illumination, such as with a phone or com-
puter applications or human computer interaction.

The main problem of these methods is that the ap-
pearance of an eye depends not only upon gaze direc-
tion but also upon the head poses, imaging conditions
and even on the identities of subjects, making it neces-
sary to generate a person-specific training. In addition,
due to the high dimensional feature vectors that must be
mapped into the gaze directions, thousands of individual
training samples are required to calculate the mapping
coefficients.

To overcome these limitations, Sugano et al. [39] pro-
pose a learning-by-synthesis approach to appearance-
based gaze estimation using a large dataset that contains
diverse people, head poses, and gaze directions. Also
to avoid the need of a person-specific training, Lu et
al. [40] extract more advanced eye features, which help
to learn a person-independent relationship between eye
gaze change and eye appearance variation. On the other
hand, Schneider et al. [41] perform embedding for each
person in the training set and then learn a linear transfor-
mation that maps out the individual, subject-dependent
manifolds avoiding the need of individual calibration.

Despite the recent research progress in the field
of computer vision, estimating human gaze directions
from only eye appearance is still an open challenge.
The performance of appearance-based methods gener-
ally depends on the quality and diversity of the train-
ing data and generalization ability of the regression al-
gorithm. Moreover, their accuracy is not high enough
for clinical uses. For these reasons, appearance-based
methods can be ruled out for devices designed for this
purpose.

2.2. Feature-based methods
Methods using extracted local features such as con-

tours, eye corners, and eye reflections, called feature-
based methods, are the most popular approach for gaze
estimation. These methods use geometrically derived
eye features from high-resolution eye-images captured
by zooming in the user’s eyes (See Fig 2). Once the
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Figure 2: Features from high-resolution eye-images (from Park et al.
[43]).

features are extracted, the connection between the gaze
directions and them can be modeled in various ways.
Besides, depending on whether they are based on eye
geometry or not, these methods can be divided into two
main groups: 2D mapping-based gaze estimation meth-
ods and 3D model-based gaze estimation methods.

The 3D model-based methods [42, 43], directly com-
pute the 3D gaze direction vector from the eye features
based on a geometric model of the eye. Then, the point
of gaze is estimated by intersecting the gaze direction
with the object being viewed, i.e a computer monitor.
In order to calculate the center of the cornea and the
eye vector, these models require accurate estimation of
many user-dependent parameters such as cornea radii,
angles between visual and optical axes, the distance be-
tween the cornea center and pupil center, among oth-
ers. To understand why these parameters should be esti-
mated, and which complex hardware calibration should
be made during initial setup, the model proposed by
Guestrin et al. [44] will be developed. This example is
also a good basis for understanding model-based meth-
ods. The model and their parameters are shown in Fig-
ure 3.

Considering a ray that comes from the light source
Ii, reflects at a point qi, j on the corneal surface, which
is modeled as a convex spherical mirror of radius R,
passes through the nodal point of the camera o j, and in-
tersects the camera image plane at a point ui, j, the next
two equations can be formulated:

qi j = o j + kq,i j(o j − ui j) f or some kq,i j (1)

||qi j − c|| = R (2)

In addition, based on the beam reflection laws, two
more equations can be raised for these points.

(ii − o j) × (qi j − o j) • (c − o j) = 0 (3)

(ii − qi j) • (qi j − c) · ||o j − qi j||

= (o j − qi j) • (qi j − c) · ||ii − qi j||
(4)

Figure 3: Schematic representations of the eye, a camera, and a light
source (from Guestrin et al. [44]).

In the same way, considering a ray that comes from
pupil center p, refract at the point r j on the corneal sur-
face, passes through the nodal point of camera o j, and
intersects the camera image plane at a point vi j, two
more equations can be obtained.

ri j = o j + kr, j(o j − vi j) f or some kr, j (5)

||ri j − c|| = R (6)

Then, applying beam refraction laws, the following
equations are derived where n1 and n2 are the refrac-
tion index of the aqueous humor and cornea combined
and of air respectively.

(r j − o j) × (c − o j) • (p − o j) = 0 (7)

n1||(r j − c) × (p − r j)|| · ||o j − r j||

= n2||(r j − c) × (o j − r j)|| • ||p − r j||
(8)

Finally, considering K as the distance between the pupil
center and the center of corneal curvature leads to:

||p − c|| = K (9)

By means of solving the proposed system of equa-
tions for c and p, the optic axis of the eye in the space
can be reconstructed as the line defined by these two
points. It is important to note that to solve these equa-
tions, all the subject-specific parameters (R,K and n1)
have to be known. In general, if only one camera is
available, they are obtained by the calibration process
-detailed below-. Also, the angle between the optic axis
and visual axis must be calculated and is usually done
during the calibration procedure.

This parameters also rely on metric information re-
quiring camera calibration and exact knowledge of the
light sources and monitor position. These values may
be directly measured once during the first setup but,
to achieve a high accuracy, the eye parameters need to
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be estimated independently for each individual, making
that a previous calibration step cannot be omitted.

The 3D model-based approaches can handle head
movements in a robust manner with high accuracy but
involving this relatively complex initial setup. They
need to use at least a single camera with multiple cal-
ibrated light sources [44] or stereo cameras [45, 46, 47].
Even so, for some clinical diagnoses, it is important
to be able to differentiate between oculocephalic and
pure eye movements, so calculating the absolute posi-
tion of the gaze is not always useful. Furthermore, re-
gardless of the model complexity, the calibration might
be only simplified, but not avoided at all. In some
works, to avoid the calibration process, a very simplified
eye model is used. While it reduces calibration times
and complexity, the accuracy obtained also greatly de-
creases.

On the other hand, the 2D mapping approaches [48,
49, 23] are based in finding a mapping function from
2D feature space like Pupil-Center-Corneal-Reflections
(PCCR), contours, etc. to gaze point such the computer
screen coordinates. That function avoids the need for
the direct measurement or estimation of the eye model
parameters throughout the system setup. Instead, they
are implicitly included in the learning of the mapping
function simplifying the setup process itself. The same
happens with the camera calibration process and the
system geometry determination.

Different features are used as inputs to the mapping
function depending on the application and the image
conditions. Mostly, they can be further divided into
active light techniques such as PCCR or passive light
techniques such as shape-based methods, depending on
whether they require external light sources to detect eye
features.

In the recent years, eye tracking applications using
webcams under natural illumination have gained highly
relevance in the community. In particular, passive
image-based algorithms for eye localizing and tracking
in the visible spectrum have been researched over the
last years [50, 27, 51]. These algorithms propose the
search for some features like iris or pupil center. For
the purpose of iris tracking, the limbus, which is the
boundary between the sclera (normally white) and iris
(comparatively dark) is optically detected and tracked.
Pupil tracking is similar to iris tracking except that a
smaller boundary between iris and pupil is used for rel-
ative measurement.

Although without active illumination it is easier to
segment the limbus due to the higher contrast between
the iris and the sclera compared to the contrast between
the pupil and the iris, pupil tracking has a lot of advan-

tages. The pupil, which is much less covered by the
eyelids than the limbus, enables vertical tracking. In ad-
dition, the sharper edge between the pupil and the iris
provides a higher resolution.

Various iris and pupil center localization methods
have been reported in the literature [52, 53]. Several
treat iris or pupil center localization as a circle detection
or ellipse fitting problem [54, 55, 56, 57]. Depending on
the viewing angle, both iris and pupil appear elliptical
and consequently can be modeled by different shape pa-
rameters. Simple ellipse models consist of voting-based
methods [58, 59] and model fitting methods [60, 61].
Once the iris center has been successfully localized,
regression-based methods can be used for finding the
corresponding gaze points on the screen.

Since these methods directly map the eyes iris cen-
ter or pupil center location to a target plane such as the
monitor screen, the accuracy and robustness of the cen-
ter localization significantly affect the performance of
gaze tracking. For example, detection has some prob-
lems when the iris moves toward the corners or when
the upper and lower boundaries of the iris are occluded
by the eyelids and eyelashes, leading to gaze estimation
errors.

On the other hand, for applications like clinical re-
search, where experiments are performed in a doctor’s
office, it is not a problem to have infrared lighting, and
thus active methods would be a better option. PCCR is
the most common approach for feature-based gaze esti-
mation methods.

When a light source (usually infrared) illuminates the
eyes at different layers, the boundaries between the lens
and the cornea act as convex mirrors and produces some
reflections or virtual images, which are called corneal
reflections or Purkinje images. In particular, the Purk-
inje image formed by the reflection of the outer surface
of the cornea, called the first Purkinje image, is known
as glint. The glint is the brightest and easiest reflection
to detect and track. The PCCR technique uses the vector
formed by the subtraction between the estimated center
of the pupil and one or more near infrared (NIR) corneal
reflections to estimate the gaze direction [62, 49].

To compute the pupil-glint vector, the pupil center
must also be extracted from the image. As it was al-
ready mentioned, different techniques are avaible for
doing this but, with active illumination, the bright pupil-
dark pupil method (BP-DP) is one of the most widely
used for determining the accurate location of the pupil.
When a light source is placed collinearly to the optical
axis of the camera, most of the light is reflected back
to the camera and the eye image shows a bright pupil.
Conversely, when a light source is located away from
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Figure 4: Example of the calibration points.

the camera’s optical axis, the image shows a dark pupil.
Therefore, eye trackers with active IR illumination can
use the difference between dark and bright pupil im-
ages by synchronously switching between the two light
sources. This technique is very simple and robust in
controlled conditions [11].

Besides that, the detection of the corneal reflec-
tions requires a narrow field of view (FOV) camera
(long focal length) since the reflections are in gen-
eral very small. Therefore, these systems work with
high-resolution eye images captured by zooming in on
movement-restricted users. Under these conditions, eye
features can be easily and robustly extracted, this being
an advantage over other methods.

These reported techniques are widely used and
achieve really good results, but they have two major is-
sues. First, because the mapping function is different
for each person and for each system configuration, it is
necessary to perform a tedious calibration procedure be-
fore each test to obtain the necessary parameters. In a
typical calibration procedure, a set of visual targets such
as those shown in Figure 4, is presented to the user who
normally has to stare to the computer for a period while
the corresponding measurement is being done. After-
words, from these correspondences, a mapping function
is calculated.

The second drawback is that once the calibration has
been performed, the person’s head must remain motion-
less. Otherwise, there will be large errors between the
actual and estimated directions. To avoid these errors
head restraint systems are often used, and the calibra-
tion process is repeated every time movements are ob-
served in the patient. Figure 5 shows an active feature-
based system, and the restraint system it uses to prevent
head movement. With this device, Hernandez et al. [23]
achieve an accuracy of less than 0.4◦, reported as one of
the minimum reaches in the literature.

Figure 5: Example of a gaze tracker with a restraint system (from
Hernandez et al. [23])

A number of efforts are being made to minimize
these shortcomings. 2D mapping methods assume that
the mapping function have a particular parametric form
such as a polynomial or a non-parametric form such as a
neural networks whose coefficients have no physiologi-
cal or physical meaning.

Polynomial interpolation is one of the main tools for
parametric mapping functions, mainly due to its sim-
plicity of execution and the good quality of the result
obtained from it. In this case, the x and y gaze coordi-
nates are estimated by means of a polynomial function.
For example, a second order polynomial transformation
is defined as:

xc = a1 + a2xe + a3ye + a4xeye + a5x2
e + a6y2

e

yc = b1 + b2xe + b3ye + b4xeye + b5x2
e + b6y2

e ,
(10)

where (xc, yc) is the coordinate of the point on the screen
where the gaze falls, (xe, ye) is the coordinate of the
pupil-glint vector and ai; bi are the polynomial coef-
ficients. These coefficients are calculated in the cali-
bration procedure. During this procedure, the patient
is asked to stare at a set of known targets, while a set of
corresponding points are obtained. For example, for a 6-
point calibration procedure, 6 corresponding points are
obtained (xci, yci); (xei, yei) with i = 1, 2, ...6 and a sys-
tem of 12 equations is generated to calculate the poly-
nomial coefficients ai; bi, by applying the least squares
estimation procedure, that is, minimizing the quadratic
error E2 between the estimations and the calibration
points coordinates. The higher is the order of the poly-
nomial mapping function, the greater will be the number
of calibration points needed to calculate all coefficients.
In Equation 11 the quadratic error function for N cali-
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bration points is displayed.

E2
x =

N∑
i=1

[xci − (a1 + a2xei + a3yei + a4xeiyei + ..)]2

E2
y =

N∑
i=1

[yci − (b1 + b2xei + b3yei + b4xeiyei + ..)]2

(11)
Mimica et al. [63] use a second order polynomial

to minimize the number of calibration points required
comparing to those required by a higher order polyno-
mial. Cerrolaza et al. [64, 65] carried out a study on
the potential effect of the order and systematic inclusion
of all polynomial terms, on the accuracy and robustness
of the gaze tracker. For this, a real VOG system with
different configurations was used. The authors point out
that the gaze estimation accuracy of a gaze tracking sys-
tem is not noticeably increased with the enhancement of
polynomial order or with more complete mathematical
expressions due to the factors of head motion, and cal-
culation method of the pupil-glint vector.

The choice of the mapping function determines not
only the accuracy of the system but also the head move-
ment tolerance and the calibration time. Therefore,
when linear regression solution methods are applied to
solve the mapping function, a second-order linear poly-
nomial is the most used due to its advantages of less
calibration markers and better approximation effect.

Alternatively, Baluja et al. [32] first proposed a
method using a simple artificial neural network (ANN)
to calculate a non-linear mapping function. First, they
mapped images of only the pupil and cornea as the in-
puts to ANN to the coordinates of the gaze point as the
outputs. Then, they included the total eye socket as an
input to improve the system accuracy (about 1.5◦). In
addition, Zhu and Ji [66] utilize generalized regression
neural networks to estimate the gaze direction. For this
purpose, 6 pupil and glint parameters were used as in-
puts to the calibration procedure. The parameters were
chosen in such a way that they represent eye and head
movements and remain relatively unchanged for differ-
ent people. Therefore, even though the accuracy ac-
quired is not good enough (about 5◦), it is a free cali-
bration process and head movements are allowed.

In a similar way, Gneo et al. [67] utilize multilayer
neural feedforward networks to calculate gaze point co-
ordinates based on pupil-glint vectors. In order to mini-
mize the number of output neurons, they use one sep-
arate network with the same input for each gaze co-
ordinate (x, y). The reported results were competitive
with high accuracy (about 0.6◦). More recently, Wang
et al. propose in [49] an improved ANN based on direct

Figure 6: Example of a head-mounted gaze tracker system (from
Wang et al. [49]).

least squares regression to calculate the mapping func-
tion between pupil-glint vectors and actual gaze points.
They combine the advantages of both methods: the high
speed of direct least squares regression and the high ac-
curacy of ANN. They achieved a good accuracy (about
0.4◦) in a head-mounted device which can be seen in
Figure 6.

Thus, as it was pointed out before, the choice of
the model depends on multiple factors: required ac-
curacy, hardware cost, image quality/eye region reso-
lution, available information in the image (e.g., glints),
and configuration flexibility. For instance, feature-based
methods accuracy may decrease when model assump-
tions are violated. In some applications such as clini-
cal research or disease diagnosis, where it is possible to
control the illumination conditions, the camera’s qual-
ity, and the system settings, these methods achieve a re-
ally high accuracy which is critical to investigate imper-
fections in the oculomotor system [68].

Moreover, despite the fact that mapping methods pro-
vide little information about the intrinsic behavior of
the system, they are much simpler to construct than
the model-based methods and do not require additional
hardware calibration, which makes setup much faster
for the system user. That is why, most commercial gaze
tracking systems use 2D mapping features-based meth-
ods with IR camera and active IR illumination, as it is
shown in Figure 7, to achieve the highly accurate per-
formance of gaze estimation.

2.3. Head Movements
So far we have talked about gaze tracking as a pro-

cess that belongs exclusively to the eyes, but it is known
that the gaze is a product of two contributing factors, the
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Figure 7: Diagram of a standard eye tracker with 2D mapping method

head pose (position and orientation) and the eyeball ori-
entation. A person can change gaze direction by rotating
the eyeball while keeping the head stationary; similarly,
a person can change gaze direction by moving the head
while keeping the eye stationary relative to the head.

Usually, a person moves the head to a comfortable
position before orienting the eye. Head pose, there-
fore, determines the coarse-scale gaze direction while
the eyeball orientation determines the local and detailed
gaze direction. For example, when the target is located
over 20◦of the field of view, it is much more comfort-
able to rotate the head than to rotate the eyeball.

While in the previous section we reviewed the state-
of-the-art in gaze estimation systems, focusing on track-
ing eye movement, the problem of ensuring the invari-
ance to head movements is also an important and a chal-
lenging research topic. In almost all applications, peo-
ple move their heads while they are using a gaze tracker.
For this reason, for an accurate gaze estimation, it is
necessary to (either directly or implicitly) model both
head pose and eye rotation.

As we pointed out above, appearance-based methods
have been developed in order to be applied in environ-
mental conditions without the possibility of monitor-
ing user conditions. This user freedom movement sit-
uation requires the method to be robust to changes in
head position. For solving this problem two possibili-
ties can be held: learning generic gaze estimators from
large amounts of head pose-independent training data or
adding head pose information to the eye images.

In particular, Lu et al. in [69] address the head mo-
tion problem by synthesizing new training images for

different head poses from those already seen in esti-
mation, while in [70] they perform the gaze estimation
by assuming a fixed head pose and then compensating
for the estimation biases caused by the head pose us-
ing a head pose tracker. Conversely, Zhang et al. in
[27] used a multimodal convolutional neural network
to learn a mapping function from both the head poses
and eye images to the unique gaze directions. Lai et
al. in [71] also combine the eye image information
with head pose tracking selecting features by means
of the neighborhood-based regression algorithm. Al-
though these results outperform the appearance-based
methods state of the art, the accuracy achieved is still
quite poor what that required for clinical applications.

Regardless of the eye tracker method applied, other
researchers have attempted to measure the head move-
ments or head position directly, and to use that informa-
tion to correct the gaze measurements. These systems
usually include two or more cameras and use a complex
facial model to track the movement of the face [72, 73].
In order to track the face from these models, the FOV of
the tracking camera has to be large enough to cover the
entire user’s head. This is not a problem for daily ap-
plications which do not need such a high accuracy like
in [74], but, when feature-based methods are applied,
these restrictions make it difficult to locate the small eye
features and result in less accurate gaze tracking.

To overcome this drawback, some works have pro-
posed the use of two cameras in combination with pan
and tilt mechanisms that allow freedom of person mo-
tion while maintaining the feature method accuracy. In
[75], Hennessey et al. proposed a system that rotates an
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eye tracker with a narrow-angle camera using pan and
tilt servo motors, while in [76] Cho et al. propose a
binocular eye gaze tracking system that, using pan, tilt
and zoom movements, continue to track the eyes with
a narrow camera while the user moves his head freely
in depth. Then both estimate the POG by a 2D map-
ping function modified with the depth of the eyes. All
these methods work relatively well but are very com-
plex, expensive and, most notably, slow. These limita-
tions restrict its use so that in practice, head pose infor-
mation is rarely used directly in the gaze models. It is
more common to incorporate this information implicitly
either through the mapping function (regression-based
method) or through the use of reflections on the cornea
(3D model-based approaches).

Apart from that, the 3D model-based methods are the
most robust to head pose changes and they can obtain
the head pose invariance through various hardware con-
figurations and prior knowledge of the geometry and
cameras. Guestrin et. al [44] presented a general study
for PCCR covering all the possible system configura-
tions in terms of number and positioning of IR light
sources and cameras. In that work the authors claimed
that using only one camera with two light sources is the
simplest configuration that allows for both the estima-
tion of POG and free head user movements. To estimate
the POG with this system configuration, it is necessary
to make a subject-specific calibration procedure that re-
quires the subject to fixate on multiple points. To avoid
the need of calibration, an additional camera is also nec-
essary.

Using one camera and one light source the POG can
be estimated only if the head is completely stationary.
This restriction is shared with the 2D regression meth-
ods, which assume static head conditions. In general,
gaze estimation systems that use one camera and one
light source assume that the head movements are negli-
gible. Therefore, it should be noted that the only video
oculography method that allows large head movements
while maintaining good accuracy are some 3D model-
based methods. But as a drawback, they require a really
complex and calibrated system setting, difficulting their
use in common applications. In addition, the movement
of the head is taken into account implicitly, and it is
not possible to differentiate between oculocephalic and
purely ocular movements.

This is another reason why the eye location algo-
rithms found in commercially available eye trackers use
the 2D regression techniques where the 3D eye loca-
tion is usually unknown and only the relative orienta-
tion of the user’s eye with respect to the user’s head is
measured. Particularly, gaze estimation is based on the

relative position between pupil and glint. Assuming a
static head, methods based on this idea use the glint as a
reference point, thus the vector from the glint to the cen-
ter of the pupil will describe the gaze direction. While
contact-free and non-intrusive, these methods work well
only for a static head, but even minor head can fail these
techniques.

In addition, since the pupil and glints are very small,
the FOV of the eye tracking camera has to be confined to
obtain a high definition eye image. This aspect also lim-
its the head so that the eye does not disappear from the
FOV and emphasizes the problem of sensitivity to head
pose variations, requiring the user to be either equipped
with a head-mounted device or to use a high-resolution
camera combined with a chin rest to limit the allowed
head movements.

In many clinic applications where tests are conducted
for only a few minutes and it is not easy to perform
complex system calibrations, those restraint systems are
suitable and work very well. Even so, despite the fact
that the head movements are restricted, in people with
certain neurological diseases, it is possible to observe
some involuntary movements and it is very important
be able to measure them not only to correct the gaze
estimation errors but also because these measurements
are indicators of the presence or progress of certain dis-
eases.

As it was pointed out before, there are a lot of re-
search works that deal with the problem of obtaining
enhanced gaze estimation in presence of large move-
ments and head pose variations for daily applications
[74]. But, despite their importance for clinic diagnosis,
there are not many studies performing the feasibility of
a gaze estimator that considers both the head and eye
movements in a really zoomed and high-resolution im-
ages with the objective to detect short involuntary head
movements.

Some works study the way of achieving head pose
invariance for 2D regression methods, for example [66]
use Generalized Regression Neural Networks (GRNN)
instead of polynomial functions to account head implic-
itly by the gaze mapping function. They also include
more parameters as mapping function inputs like glint
coordinates and pupil radio to account for the different
head motions. In [77] authors also employed GRNN but
with the aim of compensating the errors generated by
the non-linear polynomial for different head poses ob-
taining a gaze estimation robust to head but with much
lower spatial gaze resolution.

Despite these advances, there are no studies done
to quantify these slight movements based only on the
zoomed eye image which is necessary for some neuro-
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logical disease diagnosis.

3. Clinical applications

One of the best-known clinical applications of high-
precision eye tracking is refractive surgery assistance
[78, 79]. With this type of surgery, eye refractive disor-
ders (myopia, hypermetropia and astigmatism) are cor-
rected by modelling the cornea by laser ablation [80].
As expected, this procedure requires great precision,
and although the patient is asked to look at a fixed point
during the few minutes that the surgery lasts, the pa-
tient’s eye is not fixed and small movements may oc-
cur. Therefore, modern laser devices are equipped with
sophisticated eye-tracking systems, which by detecting
and tracking the pupil and limbus, follow the eye move-
ments and rectify in real time the position of the mirrors
that direct the laser. To achieve this adjustment, cameras
with acquisition frequencies of the order of 1000 Hz and
latencies of less than 3 ms are used [81]. Most of these
devices perform the compensation for linear eye move-
ments (in the x/y-axis), rolling eye movements and eye
torsions around the visual axis known as cyclotorsions
[82].

As discussed in the introduction, eye tracking is used
not only as an assistant for clinical applications but also
for the diagnosis of neurological diseases, applications
on which this review focuses. In the last few years a
series of tests have been developed to analyse differ-
ent alterations in eye movements. In particular, it has
been found that the alterations of saccadic eye move-
ments (SEM) provide relevant information.

A widely used test to measure these movements con-
sists of asking the patient to look at a point in the centre
of the screen until a new point appears on the periph-
ery. At this moment, the patient must look towards it
(Pro-Saccade task) or the opposite side (Anti-saccade
task) as rapidly and as accurately as possible. In addi-
tion, the second target can be turned on before the first
target is turned off (Overlap) or a few milliseconds af-
ter the first target is turned off (Gap). By combining
these paradigms, other metrics can be obtained for anal-
ysis. This type of test are very simple to perform for the
patient and allow to measure different parameters to be
used as markers such as those that can be observed in
Figure 8.

Numerous studies based on this type of test have been
carried out in patients with Alzheimer’s disease (AD)
[84], where it has been possible to distinguish some
of the ocular movement alterations, finding significant
contributions for the diagnosis of the disease, even in
its early stages. In [85, 83] the authors presented a

Figure 8: Dynamics of the saccade as a function of time in the Saccade
tests. (from Noiret et al. [83]).

study of SEM in patients with Alzheimer and healthy
control patients finding significant differences. For in-
stance, it was found that AD patients had higher latency
and latency variability regardless of the tasks. More-
over, AD patients made more uncorrected Anti-Saccade
(AS) and took more time-to-correct incorrect AS. In ad-
dition, close relationships were found between the ma-
jority of SEM variables and dementia screening tests,
especially the MiniMental State Examination (MMEE)
and episodic memory measure. Also in [86] the AS test
was performed, finding significant differences in both
the number of AS errors and the number of errors that
remain uncorrected.

Parkinson’s disease and other parkinsonian syn-
dromes [87] are another of the conditions in which this
type of measurements provides very important informa-
tion [88, 89]. One of the most prominent features of
eye movement abnormality in PD are saccade hypome-
tria, abnormally fragmented saccades, called multistep
or staircase saccades, an increment of the latency of the
saccades and a marked difficulty in inhibiting the sac-
cade movement reflex during the test of the AS [87].

Measurements of eye movement abnormalities have
also drawn attention as a biomarker in the diagnosis
of multiple sclerosis (MS) [90]. For this task, a par-
ticular paradigm known as the endogenously generated
sacadde paradigm is used. The same is similar to the
pro-sacadde test but an intermediate step is added to it.
After the initial target disappears from the screen, an
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Table 1: Comparison of the different methods.

Method Ref. Accuracy Head Calibration System Setup
(degrees)

Appearance [39] 6.5◦ Free head pose Free 1 Camera
[40] 7.8◦ Not considered Free 1 Camera
[27] 6.9◦ Free head pose Free 1 Camera
[71] 2◦ 5◦ Allowed (tracked) Needed 1 Camera
[69] 2.5◦ Free head pose Needed 1 Camera

Model [44] 0.9◦ Moderate (2-3 cm) Multiple points 1 Camera - 2 light sources
[45] < 1◦ Moderate (10 dm3) One point 2 Cameras - 2 light sources
[46] < 1◦ Yawing and pitching allowed One point 2 Cameras - multiple light
[47] > 1◦ Natural head movements 4 points 2 Cameras - 2 light sources
[47] > 1◦ Natural head movements 4 points 2 Cameras - 2 light sources

Shape [52] 2.42◦ Fix 9 points 1 Camera
[57] 1◦ Allowed (tracked) Needed 2 Cameras
[60] 4◦ Fix 4 points 1 Camera
[74] 2-5◦ Allowed (tracked) Needed 1 Camera

2D [63] 0.8◦ Fix 9 points 1 Camera - 2 light sources
Mapping [65] 0.38◦ Fix 16 points 1 Camera - 2 light sources

[23] 0.4◦ Fix 9 points 1 Camera - 2 light sources
[32] 1.5◦ Allowed Moving mouse 1 Camera
[66] 5◦ Natural head movements Free 1 Camera - 2 IR arrays
[67] 0.6◦ Fix 4 x 5 grid 1 Camera - 3 IR arrays
[49] 0.4◦ Head mounted 16 points 1 Camera - 4 light sources
[75] <2◦ Free head pose (Tracked) 9 points 2 Cameras - 1 IR plate

1 pan-tilt mechanism
[76] 0.69 Back and forth movements 6 points 4 Cameras - 16 NIR leds

3 depth pan-tilt mechanism
[77] - Natural head movements 9 points 1 Camera - 1 light source

arrow is shown on it whose direction may be equal or
opposite to that of the final target. With such studies,
saccade latencies were found to increase in patients with
MS even as a function of the disease duration [91]. In
addition, these patients frequently exhibit fatigue symp-
toms at any stage of the disease, having a major impact
on their quality of life. Recent reports have shown an
increase in endogenous saccade latencies and a reduc-
tion in the peak velocities associated with this symptom
[92].

4. Conclusions

In this article, several gaze tracking algorithms and
their respective advantages and disadvantages for use

in disease diagnosis were analyzed. Table 1 summa-
rizes the state of the art of VOG methods by grouping
them according to their classification. The method ac-
curacy is calculated as the mean angular error of the
gaze estimation. In addition, the system setup (number
of cameras and infrared lamps), the number of calibra-
tion points used, and the allowed head movements are
specified. It should be noted that it would be a signifi-
cant contribution to be able to provide the resolution of
the hardware used, unfortunately this information is not
available in many of the original works. In addition, due
to the variety of methods presented, providing only the
camera resolution would not be enough to account the
hardware resolution. Since in some cases the images are
taken from the whole face while in others are taken with
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zoom on the eye, these differences make it very difficult
to uniquely characterize acquisition systems.

Appearance-based and passive-shape based methods
are not suitable for clinical applications because of their
low accuracy. These methods have been researched for
daily applications which are carried out in natural illu-
mination conditions and/or with low-resolution cameras
but not for clinical applications, where the experimen-
tal environment can be controlled with the possibility of
even using infrared illumination.

3D model-based methods have an excellent head tol-
erance. However, the hardware requirements for their
implementation is really complex as they need several
light sources, multiple cameras and a perfect system cal-
ibration. Besides, it is not possible to differentiate be-
tween oculocephalic and purely ocular movements.

Thus, we conclude that active 2D regression-based
methods are the best option for clinical diagnosis or re-
search applications, since they use features coming from
the human eye, such as pupil center and corneal reflec-
tions, and they can be implemented using a single cam-
era and a few NIR LEDs. However, these techniques are
very vulnerable to head movements and require users to
hold their head very still using a headrest, chin rest or
bite bar. This restraint system are not enough in pres-
ence of some neurological disease, where involuntary
head movements occur.

In light of the aforementioned advantages and disad-
vantages of each methodology considered, it is clear that
it is still an open issue to find an optimal way of measur-
ing the head movements, to be able to use both to correct
the gaze point estimation and as another biomarker in
the disease analysis. We consider that the path to follow
to reduce these shortcomings is to focalize on the ap-
plication for which the device is being designed. In the
case of eye trackers for neurological disease diagnosis,
it would be helpful to exploit the hardware functional-
ities where the patient’s movements are restricted to a
minimum of space during the test duration. In this way,
research could be focused on methods that also incorpo-
rate measurements of small displacements or rotations
from the initial position.
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generation: state of the art and refractive surgical outcomes. Eye
and Vision, 2(1):6, 2015.

[82] Ioannis M Aslanides, Georgia Toliou, Sara Padroni,
Samuel Arba Mosquera, and Sai Kolli. The effect of
static cyclotorsion compensation on refractive and visual
outcomes using the schwind amaris laser platform for the
correction of high astigmatism. Contact Lens and Anterior Eye,
34(3):114–120, 2011.

[83] Nicolas Noiret, Nicolas Carvalho, Éric Laurent, Gilles Chopard,
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