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Abstract
This article  makes available several  genome-wide datasets,  which can be used for  training
microRNA (miRNA)  classifiers.  The  hairpin  sequences  available  are  from the  genomes  of:
Homo  sapiens,  Arabidopsis  thaliana,  Anopheles  gambiae,  Caenorhabditis  elegans and
Drosophila melanogaster. Each dataset provides the genome data divided into sequences and
a set of computed features for predictions. Each sequence has one label: i) “positive”: meaning
that it is a well-known pre-miRNA, according to miRBase v211; or ii) “unlabeled”: indicating that
the sequence has not (yet) a known function and could be a possible candidate to novel pre-
miRNA. Due to the fact that selecting an informative feature set is very important for a good pre-
miRNA  classifier,  a  representative  feature  set  with  large  discriminative  power  has  been
calculated  and  it  is  provided,  as  well,  for  each  genome.  This  feature  set  contains  typical
information  about  sequence,  topology  and  structure.  Dataset  was  publically  shared  in
https://sourceforge.net/projects/sourcesinc/files/mirdata  /.

Keywords: Bioinformatics, miRNA prediction, genome-wide data, miRNA features.

Specifications Table 

Subject area Bioinformatics 

More specific subject 
area

Pre-miRNA prediction 

Type of data Tabular data and genomic sequences

How data was acquired Own genome-wide hairpins sequence extractor; and feature 
extractor miRNAfe [3]

1 http://www.mirbase.org/
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Data format Features in comma-separated-value files and genomic sequences 
in FASTA format.

Data source location Argentina.

Data accessibility Public repository: 
https://sourceforge.net/projects/sourcesinc/files/mirdata/

Value of the data 

● A real-life benchmark dataset for training pre-miRNA classifiers, of several and complete
genomes, is provided. 

● Sequences of each genome is fully labeled and feature extraction of the sequences,
which is a very time-consuming task, has been done and is provided as well.

● For the first  time,  several  animals and plants sequences,  extracted from a complete
genome and not just portions of it, are fully available to the academic community.

● These datasets can be used for a fair and accurate comparison of pre-miRNA classifiers
on real data, in order to guarantee reproducible results.

● Unlike  other  existing  public  datasets,  this  new one  can  be  used  in  a  realistic  and
complete  genome-wide  prediction  task,  avoiding  the  manual  definition  of  artificial
negative samples for training classifiers. 

● To  the  best  of  our  knowledge,  this  is  the  first  time  that  such  a  variety  of  hairpin
sequences as well as corresponding feature extracted data, are made freely available to
the research community.

Data
In this work we provide genome-wide hairpins datasets of animals and plants, which can be
used as benchmark data for training and testing pre-miRNA predictors. Data consists of a set of
FASTA files with folded hairpins sequences of 5 complete genomes:

● Homo sapiens (hsa), 
● Arabidopsis thaliana (ath), 
● Anopheles gambiae (aga), 
● Caenorhabditis elegans (cel), and
● Drosophila melanogaster (dme). 

For each genome, there is a set of well known miRNAs sequences, and a larger set of unknown
sequences that fold into hairpin structures. Table 1 shows the details of the sequences that have
been extracted. For each genome (first column) in the rows, the second column indicates the
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total  number  of  sequences extracted,  which can form hairpins;  the  third column shows the
number  of  known  miRNAs  found  for  each  corresponding  species.  A  large  number  of
discriminative features were computed (77 dimensions in total) and stored in .csv files for each
genome. The features are listed in Table 2: each row has the feature name, description and
dimension (the number of values computed for each feature). A representation of the distribution
of the features among positive and unlabeled examples is depicted in Figure 1. The features
values were normalized subtracting the mean and dividing by the corresponding variance and
then a t-Distributed Stochastic Neighbor Embedding (t-SNE) [24] was computed. This method
generates a 2D projection of the sequences considering the samples neighborhood, based on
the similarity of their features. Moreover, Figures 2-6 show the histograms of the normalized
features.

Table 1. Number of stem loops and pre-miRNAs in each genome.

Species Extracted
hairpins

miRNAs

H. sapiens 48,181,565 1710

A. thaliana 1,355,663 304

A. gambiae 4,268,407 66

C. elegans 1,737,349 249

D. melanogaster 2,066,807 307

Table 2: Features calculated for each sequence
Feature name Description Dimension
nt_proportion Ratio of each base in the sequence (A, C, G and T) 4
dinucleotide_proportion Ratio of dinucleotide elements of each kind, making 16

Features for the possible binary combinations of the 4 
nucleotides

16

gc_content Proportion of  guanine and cytosine on the sequence 1
gc_ratio Ratio between guanine and cytosine 1
sequence_length The length of the sequence 1
stem_number The number of stem-loops 1
avg_bp_stem Average of nucleotides per stem 1
longest_stem_length Longest region where the pairing is perfect 1
terminal_loop_length Number of nucleotides in the stem region 1
bp_number Number of base-pairs 1
dP Number of base pair divided by the nucleotide number 1
bp_proportion Number of each possible base pair normalized by 

sequence length
3

bp_proportion_stem Proportion of base pairs on stems 3
triplets Frequencies of secondary structure triplets, this is the 

32 possible combinations of the 4 nucleotides in a 
sequence of 3

32

MFE Minimum free energy 1
EFE Normalized Ensemble Free Energy calculated with 1
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RNAfold (-p option)
ensemble_frequency The frequency of the minimum free energy in the 

ensemble
1

diversity Structural diversity calculated with RNAfold (-p option) 1
mfe_efe_difference Calculated as |MFE-EFE|/l 1
dQ

Calculated as 1/L ∑
i< j

❑

❑ pij log2 pij, where L is length 

and pij is the probability of pairing of nucleotides i and j 
1

dG Minimum free energy divided by sequence length 1
MFEI1 Ratio between the minimum free energy and the 

%C+G
1

MFEI2 dG/Ns, where Ns is the number of stems. 1
MFEI4 MFE/Nb, where Nb is the total number of base pairs in 

the secondary structure
1

Experimental Design, Materials and Methods
The  importance  of  microRNAs  (miRNAs)  has  been  largely  recognized  by  the  scientific
community.  MiRNAs on average are  about  21 nucleotides  long,  and take part  in  the  post-
transcriptional regulation of gene expression. These short segments of RNA play a role in many
fundamental  biological  processes,  such  as  promoting  or  inhibiting  certain  diseases  and
infections  [1].  Precursors  of  miRNAs  (pre-miRNAs,  also  known  as  hairpins)  are  generated
during  biogenesis  and  have  a  very  well-known  secondary  structure:  a  typical  stem-loop
structure with few internal loops or asymmetric bulges. Unfortunately, a large amount of hairpin-
like structures can be found in a genome [2].
The  computational  prediction  of  novel  pre-miRNAs  involves  training  a  machine  learning
classifier for identifying candidate sequences for being novel miRNAs. However, to the best of
our knowledge, there are no such datasets available. Actually,  in most published works, the
datasets used for training and testing the prediction methods are manually built, use diverse
methodologies  according  to  each  study  [4-16],  and  require  a  (not  negligible)  long  time.
Secondly, it is very hard to fairly compare among different classifiers. Therefore, this makes that
published experiments of most pre-miRNA prediction methods cannot be accurately reproduced
nor be fully trusted, because the users of those tools cannot obtain the same prediction rates as
those published. 
In this dataset,  we included sequences of  model  genomes in animals and plants.  Although
miRNAs may have had a common origin, they had evolved in different ways in the plant and
animal kingdoms. The proteins involved in the maturation process of the precursors and the
places where it takes place, can be very different. In animals, the transcription of the primary
miRNAs (pri-miRNAs) is carried out by RNApol II and RNApol III [17,18]. After transcription, the
pri-miRNAs form stem-loop structures, also called hairpins. These structures are recognized in
the nucleus by Drosha and a miRNA precursor (pre-miRNA) is obtained by cleavage. After that,
the precursor is exported to the cytoplasm, where it is cut near the terminal loop by the Dicer
enzyme,  forming  a  small  double-stranded  RNA [18].  Some species  possess  multiple  Dicer
homologues with different roles. For instance, in  D. melanogaster  and  A. gambiae, Dicer-1 is
required for miRNA biogenesis [19]. Following Dicer processing, miRNA is preferentially loaded
onto particular types of AGO proteins and the complementary miRNA sequence is discarded. In
C. elegans, for example, miRNA duplexes and siRNA duplexes are sorted into ALG‐1 and ALG‐

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. A

. B
ug

no
n,

 C
. Y

on
es

, J
. R

aa
d,

 D
. H

. M
ilo

ne
 &

 G
. S

te
gm

ay
er

; "
G

en
om

e-
w

id
e 

ha
ir

pi
ns

 d
at

as
et

s 
of

 a
ni

m
al

s 
an

d 
pl

an
ts

 f
or

 n
ov

el
 m

iR
N

A
 p

re
di

ct
io

n"
D

at
a 

in
 B

ri
ef

 (
in

 p
re

ss
),

 2
01

9.



2  proteins.  In  humans,  by  contrast,  the  four  AGO  proteins  are  associated  with  almost
indistinguishable sets of miRNAs because no strict small-RNA-sorting system exists. In plants,
the primary miRNAs are transcribed only by RNApol II. In addition, the length of the pri-miRNAs
may have a high variation [20]. Unlike the process of the pri-miRNAs in animals, in plants the
process of maturation of the miRNAs is carried out completely in the nucleus. This maturation
process is not  performed by Drosha,  because it  is  not  found in  plants.  Instead,  Dicer1-like
processes most pri-miRNAs by sequential cleavage in the basal and the apical junctions of the
terminal loop [21]. Following this processing, the duplex miRNAs is exported to the cytoplasm.
In the cytoplasm, miRNAs are loaded onto cytoplasmic AGO protein [20]. Thus, since the pre-
miRNAs biogenesis is different in the animal and plant kingdom, we have included sequences of
the species considered as model genomes in these kingdoms.

Materials and Methods

Each  complete  raw  genome  was  downloaded  from  ftp://ftp.ncbi.nlm.nih.gov/genomes/.  The
input genome-wide data (a multi-fasta file named, for example, genome.fa) is pre-processed
with  our  open-source  toolkit  HextractoR2,  which  automatically  extracts  and  folds  all  hairpin
sequences  from  raw  genome-wide  data.  It  predicts  the  secondary  structure  of  several
overlapped segments, with longer length than the mean length of sequences of interest for the
species  under  processing,  ensuring  that  no  one  is  lost  nor  inappropriately  cut.  Then,  the
prediction of the secondary structures of the sequences obtained was done with the minimum
free energy algorithm [22] of RNAfold. After that, miRNAfe [3] was used to extract features for
each sequence.  Finally,  BLAST matching between the extracted sequences and the known
miRNAs in miRBase [23]  has been done,  in  order  to  automatically identify and label  those
sequences that are, actually, well-known pre-miRNAs.

Each genome has been cut into overlapping windows of a large length (500 nt). This window
has been chosen in order to correctly capture a complete hairpin, but also to take into account
the neighborhood of any possible hairpin when estimating the secondary structure. This is very
important since the results of estimating a secondary structure can be very much affected by the
neighborhood  of  the  sequences.  Then,  the  prediction  of  the  secondary  structures  of  the
sequences obtained in the previous windowing step has been done. To do this, the minimum
free energy algorithm [5] of RNAfold has been used. This algorithm uses dynamic programming
for finding the secondary structure that minimizes the energy released. Those hairpins that did
not exceed a minimum length of 60 and level pairing of 16 were eliminated.
In order to obtain sequences with lengths similar to those of the well-known pre-miRNA of the
particular  genome under  analysis  (found with  BLAST matching of  the  extracted sequences
against miRBase),  the extracted sequences were trimmed trying to optimize the normalized
Minimum Free Energy (NMFE) by the sequence length. The following rules have been applied
to achieve this:

1. Each  sequence  extracted  not  having  a  specified  minimum  length,  according  to  the
miRNAs of the genome under analysis, was discarded. This was done in order to ensure
that the secondary structure had sufficient length to be a pre-miRNA.

2 https://cran.r-project.org/web/packages/HextractoR/index.html
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2. The cuts were made in the first unpaired nucleotide of an internal loop or bulge of the
secondary  structure  (starting  from  the  main  loop)  that  passes  the  minimum  length
specified.  That  is,  from all  unpaired nucleotides,  only the ones that  are at  a certain
distance from the main loop are candidates to be a cutting point. It is likely that cutting
the sequence at those points will result in a structure with lower NMFE. Moreover, the
smaller the length of the sequence (independently of the pairing), the higher the NMFE.
Therefore, a loop/bulge closer to the main loop is preferred. 

Repeated sequences were eliminated to avoid extra computational cost and because they might
also disturb the results of the prediction algorithms, since each repeated sequence increases its
relevance for the predictor. Repetitions may appear due to the overlapping in windowing. These
repeated sequences appear consecutively and they can be almost identical. To eliminate them,
a comparison between each sequence and the last extracted sequence is made. If one of the
sequences  contains  the  other  one,  the  shortest  one  is  discarded.  Finally,  for  labeling  the
sequences obtained, BLAST matching is done against miRBase. The sequences that match,
are labeled as positive class (pre-miRNAs).

A characterization of the features of each dataset has been done. A t-SNE projection is shown in
Figure  1.  The  well-known  pre-miRNAs  sequences  are  highlighted  in  orange,  and  plotted
together with the unlabeled samples in blue. It can be seen that there are some known miRNAs
that are close in the projected space. However, there are also many positive samples scattered
all over the feature space, showing that accurate prediction is, indeed, a challenging task. This
is especially notorious in the H. sapiens and D. melanogaster genomes, which have a very large
number of sequences and several well-known miRNAs.
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Figure 1: t-SNE projection with the well-known pre-miRNAs (in orange) and a random set of
unlabeled sequences (in blue) for each genome. Sequences that are closer in the projected

feature space have more similar features.    

A further insight of the relevance of each feature was done ranking the features according to its
importance for classification. Training a random forest [7] with 10 trees, it  is possible to see
which features are the best ones to separate positive versus unlabeled samples. Taking the
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average rank across all the genomes, the top-5 most informative features are shown in Table 3.
It  can be seen that  the normalized ensemble free energy (EFE),  the minimum free energy
(MFE) and its value normalized by length (dG) are the most important features, since those
features reflect the stability of the hairpin secondary structure. 

Table 3: Feature relevance 

Feature Average rank

MFE 0.40

EFE 4.20

dG 6.60

triplets0 9.60

MFEI4 9.80

Figures 2-6 show the histograms of the normalized features, but now analyzed with the top-3
most interesting features of Table 3. They show that features distribution is, indeed, different
among positive and unlabeled classes. However, there is a significant overlapping among them,
which makes the prediction a challenging task for simple classifiers. This is one of the main
motivation for making available to the research community these benchmark datasets: helping
and giving support to the proposal of novel and more advanced prediction methods, which could
be now fairly compared on the same experimental conditions, such as in [16].

Figure 2: Histograms of the top 3 features distributions in H. sapiens: minimum free energy,
normalized ensemble free energy (RNAfold) and minimum free energy normalized by length.
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Well known miRNAs, in orange, have a slightly different distribution but highly overlapped when
compared with other sequences (in blue).   

Figure 3: Histograms of the top 3 features distributions in A. thaliana. 

Figure 4: Histograms of the top 3 features distributions in A. gambiae. 

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

L
. A

. B
ug

no
n,

 C
. Y

on
es

, J
. R

aa
d,

 D
. H

. M
ilo

ne
 &

 G
. S

te
gm

ay
er

; "
G

en
om

e-
w

id
e 

ha
ir

pi
ns

 d
at

as
et

s 
of

 a
ni

m
al

s 
an

d 
pl

an
ts

 f
or

 n
ov

el
 m

iR
N

A
 p

re
di

ct
io

n"
D

at
a 

in
 B

ri
ef

 (
in

 p
re

ss
),

 2
01

9.



Figure 5: Histograms of the top 3 features distributions in C. elegans. 
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Figure 6: Histograms of the top 3 features distributions in D. melanogaster. 
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