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Abstract—In the post-genome era, many problems in bioin-
formatics have arisen due to the generation of large amounts of
imbalanced data. In particular, the computational classification
of precursor microRNA (pre-miRNAs) involves a high imbalance
in the classes. For this task, a classifier is trained to identify RNA
sequences having the highest chance of being miRNA precursors.
The big issue is that well-known pre-miRNAs are usually just a
few in comparison to the hundreds of thousands of candidate
sequences in a genome, which results in highly imbalanced
data. This imbalance has a strong influence on most standard
classifiers and, if not properly addressed, the classifier is not able
to work properly in a real life scenario. This work provides a
comparative assessment of recent deep neural architectures for
dealing with the large imbalanced data issue in the classification
of pre-miRNAs. We present and analyze recent architectures in
a benchmark framework with genomes of animals and plants,
with increasing imbalance ratios up to 1:2,000. We also propose a
new graphical way for comparing classifiers performance in the
context of high class imbalance. The comparative results obtained
show that, at very high imbalance, deep belief neural networks
can provide the best performance.

Index Terms—bioinformatics, pre-miRNA classification, deep
neural architectures, high class imbalance.

I. INTRODUCTION

HE imbalanced data problem has been largely recognized

as an important issue in machine learning [1]-[3]. Most
machine learning algorithms work well with balanced datasets,
but with imbalanced datasets supervised classifiers tend to
be biased towards the majority class and have a very low
performance on the minority one. Classification algorithms
are designed to maximize the number of correct predictions.
When the class sizes differ considerably, the classifiers better
recognize the larger class obtaining a high accuracy, while
the minority class has a very low recall. The classification
task where one class is significantly underrepresented relative
to another still remains among the leading challenges in the
development of novel classification models nowadays [4]. This
is of particular importance in bioinformatics in the post-
genome era in studies that involve, for example, disease
diagnosis based on gene expression data, protein function
classification, activity prediction of drug molecules and recog-
nition of precursor microRNAs (pre-miRNAsS).
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MicroRNAs (miRNAs) are a special type of non-coding
RNA of 21 nucleotides in length, which can be critical regu-
lators in the post-transcriptional regulation of gene expression
[5]. Since their discovery, these molecules have revolution-
ized and reshaped the bases of gene regulation. They may
determine the genetic expression of cells and influence the
state of the tissues. MiRNAs play important regulatory roles
in many fundamental biological processes such as disease de-
velopment and progression. Very recent studies demonstrated
that miRNAs can serve as oncogene Or tumor suppressor
in various cancer types [6]; thus they can assist in a better
diagnosis, prognosis prediction, and therapeutic assessment of
such disease [7].

However, it is very hard to identify new miRNAs experi-
mentally [8], and this difficulty has led to the development of
several computational approaches for miRNAs classification
in the last ten years [9]-[11], mainly based on support vector
machines (SVM) [12]-[25]. The discovery of novel miRNAs
involves identifying small RNA sequences having the highest
chance of being real miRNA precursors, named candidates,
which can be later validated in wet experiments. In order to
do that, a binary classifier is trained with the well-known pre-
miRNAs of a genome. The big issue with this task is that
well-known pre-miRNAs are, usually, just a few in comparison
to the hundred of thousands sequences that can be found in a
genome. This results in a highly imbalanced dataset. In a real-
life scenario, the number of known pre-miRNAs is in the order
of hundreds for most genomes, and in the order of thousands
for the human genome (there are 1,982 human miRNAs up-
to-date in the release v19 of mirBase'). This represents an
imbalance ratio (IR) larger than 1:1,000 (1 positive class
sample and 1,000 negative class samples). Furthermore, in this
context, the minority class often contains very few instances
with a high degree of variability, making it difficult for a
classifier to generalize on unknown data [2]. A recent study has
shown that most existing machine learning classifiers, in this
context, cannot provide reliable performances on independent
testing data because of the imbalance [26]. Very recently,
deep learning and novel deep neural network architectures
have been proposed to deal with this imbalanced data issue in
bioinformatics. Deep learning models have shown to perform
very well because they can use the multi-layer architecture
to learn multiple internal levels of representation of the data

'The miRBase database (http://www.mirbase.org/) is the public database of
published miRNA sequences and annotations.


http://www.mirbase.org/
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features [27], [28], [29].

In [30] a deep belief neural network (deepBN) for identify-
ing pre-miRNA sequences was proposed. This model has an
unsupervised stage with hidden layers pre-trained as restricted
Boltzmann machines, followed by a supervised tuning of the
network. In [31] a deep architecture of self-organizing maps
(SOMs) was proposed to overcome the problem of having very
few positive class samples and a very large negative class. This
model named deepSOM has several layers of hidden SOMs,
where each inner SOM discards less probable candidates to
pre-miRNAs. The well-known pre-miRNAs samples are used
in every deep level as positive class while less likely pre-
miRNA sequences are filtered level after level. The deepSOM
model, however, in spite of having very good specificity and
recall, has low precision because a very large number of false
positive sequences remain at the last level. Although it has a
heuristic rule to automatically change the map size according
to data size, layer after layer, this change is static and limited.
We present here two variants to the deepSOM model: the deep
elastic SOM (deSOM) and the deep ensemble elastic SOM
(deeSOM), which overcome the mentioned issues. In deSOM
the number of deep levels not only grows automatically, but
also the size of each layer changes adaptively, becoming larger
or smaller as necessary according to the data at each level. The
deeSOM uses an ensemble strategy to mitigate the high class
imbalance, mainly at the initial levels.

In this work, we analyze and compare these very recent
deep neural network approaches to deal with the imbalanced
data problem in the context of pre-miRNAs classification. We
provide a comprehensive study and comparative assessment,
including many animal and plant genomes and increasing IR
much larger than commonly published, with fair comparisons
of the classifiers with the same features and datasets.

This manuscript is organized as follows. Section II presents
and explains in detail the deep neural network approaches that
are compared in this study. Section III presents the datasets
used, the experimental setup, and performance measures. Sec-
tion IV shows the results obtained and their discussion. Finally,
the conclusions of this work can be found in Section V.

II. DEEP NEURAL NETWORK APPROACHES FOR
PRE-MIRNAS CLASSIFICATION

A. The deep belief neural network

A deepBN can be built from several layers of nonlinear
feedforward networks. Each layer can be pre-trained as a
restricted Boltzmann machine (RBM) [32]. Each single RBM
consists of a layer that receives the input vectors x, and has a
set of connection weights w;; in a hidden layer of neurons with
activation outputs h = [hq, ..., hp|. The joint distribution of
hidden variables h and observation samples & can be written
as p(x, h) occ e P@h) where E(x,h) = KT Wax+b"x+c"h
is the energy function, W is the weight matrix, and b and c are
bias vectors for the input and the hidden layer. The parameters
{W, b, ¢} can be learnt by an unsupervised algorithm based on
Gibbs sampling [32]. Then, a final supervised stage of training
is applied. It has been shown that RBMs have the universal
approximation property [33].

Fig. 1. The deepSOM topology. Example of an architecture with 5 levels.
Dark blue neurons are pre-miRNA neurons, which provide the input to the
next SOM (black lines). Levels are sequentially generated until no change is
observed in the map sizes.

DeepBN models precisely based on RBMs are beginning to
appear for pre-miRNA classification, with very good results
[30]. These models can capture the properties of the data,
learning the low-dimensional hidden features. However, the
architecture of the network has to be optimized according to
the task. The most relevant hyperparameters for this model
are the number of deep layers, number of hidden neurons,
dropout, and number of training epochs.

B. The deep self-organizing map

The first SOM-based model proposed for pre-miRNA classi-
fication has appeared very recently in [31]. It is an architecture
with several levels of hidden SOMs, named deepSOM, that
can be seen in Figure 1. It is based on the SOMs capability
of identifying similar input patterns in the feature space and
assigning them to the same neuron or a group of adjacent
neurons on the map, in an unsupervised way [34]. A hierarchy
of SOMs in deep nested levels refines the previous map by
discarding samples that are distant to neurons with positive
class samples, level after level.

The training process of deepSOM starts with a root SOM on
the first layer (h = 1). This SOM undergoes standard training
with the complete set of input data, using an initial large map
size. During training, each input data point is assigned to a map
unit, according to the minimum Euclidean distance between
the feature vector representing each sequence and each neuron
centroid. When this first SOM becomes stable, that is to say,
no further adaptation of the weight vectors occurs, only the
data in the neurons having at least one positive class sample
are chosen for training the next map. This neuron labeling
occurs by taking into account the positive class data only
if there is at least one positive sample in a neuron, it is
labeled as a pre-miRNA neuron, no matter how many other
data points are grouped there as well. In fact, there are much
more candidates than true positive class samples due to the
existing high class imbalance. During training, only sequences
assigned to pre-miRNA neurons remain for training the next
level of deepSOM. To set the size of the next deepSOM level
h, the number of neurons n; is determined according to an
heuristic suggested by Kohonen [35], which states that the
total number of neurons in a map is related to the number of
data points to train it. This is repeated until consecutive maps
do not change. After training, the best pre-miRNAs candidates
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Fig. 2. The deep elastic SOM (deSOM) topology consists of several layers
of SOMs, where map size in each level is adapted according to the filtering
process, level after level.

are those sequences in the pre-miRNA neurons at the last level
of the deepSOM. The most relevant hyperparameter for this
model could be the maximum number of levels, but the last
level is defined automatically when no changes are observed
in the output of two consecutive SOMs.

C. The deep elastic SOM

The deep elastic SOM (deSOM) is a set of SOMs organized
into a sequence of deep levels (see Figure 2), where the size
of each layer is determined automatically like in deepSOM,
according to the data distribution in that layer. However, in
the deSOM the size of a layer can be increased if, at a
certain level of depth, the map is no longer able to reduce the
number of sequences. That is, the worst pre-miRNA candidates
were removed and the remaining candidates are very close to
the well-known pre-miRNAs. On this case, these sequences
are very difficult to split with a small SOM. To do it, the
adaptive algorithm of deSOM expands the map size, thus
pre-miRNA neurons can be re-organized in a larger space.
Therefore, several deep layers are added with this self size-
adjusting method, which is triggered automatically with data
reduction until only known pre-miRNA samples remain at the
last layer. After training, analogously to deepSOM, the best
pre-miRNAs candidates can be identified as the ones closer to
the prototypes of the pre-miRNA neurons in the last levels.
The high class-imbalance is being naturally tackled by this
model during training, since the worst candidates (farthest to
pre-miRNAs) are filtered in the initial levels and do not pass to
the next ones. Another particular feature of this model is that
a ranked set of candidates (for example, for further wet-lab
experiments) can be obtained by checking the neurons of the
next-to-last map and going back to each previous map, until a
desired number of candidates is obtained. This model has not
relevant hyperparameters to tune because the most important
architectural configuration is self adaptive according to the
training data.

D. The deep ensemble elastic SOM

As an additional way to address the high class imbalance
in the initial levels, an ensemble scheme is proposed for
the deSOM architecture, named deeSOM (see Figure 3). It
consists of generating an ensemble of (), SOMs at each level
¢ of the deSOM. Several parallel SOMs are used at each level

Fig. 3. The deep ensemble elastic SOM (deeSOM) architecture. It has layers
of SOM-based ensembles.

and data is split among them, preserving the positive class
samples and dividing the remaining ones, thus reducing the
imbalance at each SOM of the ensemble. For example, let us
suppose ()1 SOMs at the initial level. These maps are trained
in parallel, where all positive samples are presented to every
SOM and all other samples are randomly split. This way, each
SOM models just a fraction of the unlabeled space. At each
map, pre-miRNA neurons are identified as those having, at
least, one well-known positive sample. The sequences that are
in pre-miRNA neurons are selected to pass to the next level.
In the next level of deeSOM, there will be ()2 maps. Each
one receives all the positive class samples and a fraction of
the unlabeled samples of the previous level.

The size and number of members in each ensemble are
determined from the training data at each layer. Thus, Qg
is adjusted automatically depending on data distribution. The
hypothesis is that ensembles can lead to better classification
performance by reducing the layer imbalance, distributing the
majority-class samples among the members. This way, (), can
be automatically set to reach an appropriate imbalance in each
ensemble member according to the size of the data feeding
the layer. Reducing the imbalance also reduces the training
data size for each ensemble member. However, there should
be enough data to train each map. Thus, when the input has
a high imbalance, the number (), is set to approximate an
optimal imbalance at each SOM. After a number of ensemble
layers, when the IR of the output is lower than optimal, the
model takes (), = 1 and the following layers behave as in
deSOM. The most important hyperparameter of this model is
the optimal imbalance for SOMs, to set each Q.

III. DATASETS, PERFORMANCE MEASURES AND
EXPERIMENTAL SETUP

For the comparisons we have created a number of datasets
of varying IRs using already available public data from a
benchmark dataset [35]. This provides a positive set with
all well-known pre-miRNAs in miRBase v19 [36] and a
negative set including random sequences from the genomes
of a set of animals and plants?, with the same sequence

2Source code and datasets are freely available at:
https://sourceforge.net/projects/sourcesinc/files/miRimbal
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