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Abstract

Precision livestock farming is a multidisciplinary science that aims to man-
age individual animals by continuous real-time monitoring their health and
welfare. Estimation of forage intake and monitoring the feeding behavior are
key activities to evaluate the health and welfare state of animals. Acous-
tic monitoring is a practical way of performing these tasks, however it is a
difficult task because masticatory events (bite, chew and chew-bite) must
be detected and classified in real-time from signals acquired in noisy envi-
ronments. Acoustic-based algorithms have shown promising results, however
they were limited by the effects of noises, the simplicity of classification rules,
or the computational cost. In this work, a new algorithm called Chew-Bite
Intelligent Algorithm (CBIA) is proposed using concepts and tools derived
from pattern recognition and machine learning areas. It includes i) a signal
conditioning stage to attenuate the effects of noises and trends, ii) a pre-
processing stage to reduce the overall computational cost, iii) an improved
set of features to characterize jaw-movements, and iv) a machine learning
model to improve the discrimination capabilities of the algorithm. Three
signal conditioning techniques and six machine learning models are evalu-
ated. The overall performance is assessed on two independent data sets,
using metrics like recognition rate, recall, precision and computational cost.
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The results demonstrate that CBIA achieves a 90% recognition rate with a
marginal increment of computational cost. Compared with state-of-the-art
algorithms, CBIA improves the recognition rate by 10%, even in difficult
scenarios.

Keywords: Dairy cows, precision livestock farming, acoustic monitoring,
signal processing, machine learning.

1. Introduction

Nowadays, the management of livestock grazing systems requires accurate
measurement of animal feeding behavior to monitor their health and welfare,
as well as to improve the efficiency of resource management. In this regard,
much effort has been put into finding suitable techniques for monitoring
the feeding behavior of ruminants. A long-term analysis of such behavior
distinguishes two major activities: rumination and grazing, which last from
few minutes to hours. On a short-time scale, these activities are composed
by a sequence of three jaw movements: bites, chews and chew-bites (Ungar
et al., 2006; Milone et al., 2012). A grazing bite includes the apprehension and
severance of forage, while a grazing or rumination chew includes the crushing,
grinding and processing of ingested pasture. The chew-bite is another grazing
event that results from the overlapping of chew and bite events in the same
jaw movement. While the number and characteristics of jaw movements
change according to animal and environmental factors, monitoring them can
provide useful indicators of animal health, welfare, nutritional status, and
feeding activities (grazing and rumination) (De Boever et al., 1990).

Early strategies for monitoring feeding behavior were based on direct ob-
servation and in recent times by visualization of video recordings. However,
both methodologies are costly and impractical for monitoring large herds
(Milone et al., 2009). In last decades, other methods based on pressure sen-
sors, accelerometers and microphones have been studied (Andriamandroso
et al., 2016). Most of them focus on recognizing long-term activities (rumi-
nation and grazing) rather than individual jaw movements. Detection of jaw
movements can be performed with nose-band pressure sensors (Nadin et al.,
2012; Zehner et al., 2017) and accelerometers (Tani et al., 2013; Oudshoorn
et al., 2013; Andriamandroso et al., 2016) but the available results indicate
that classification requires further development to be reliable and automatic.
In addition, a separate classification of chews, bites, and chew-bites cannot
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be done because the compound chew-bite cannot be identified by these meth-
ods. By contrast, several studies have shown that acoustic monitoring can
overcome these limitations.

An accurate tracking of animal diet can be accomplished by analyzing
the sounds related to jaw movements (Alkon and Cohen, 1986; Alkon et al.,
1989; Laca et al., 1992; Ungar et al., 2006). Biting and chewing sounds are
produced while plant structures are comminuted by jaw movements. The
sound is transmitted, filtered and modified by the bones, cavities and soft
tissues of the animal’s head. It can be recorded and collected in a non-
invasive way without affecting the natural behavior of animals (Laca et al.,
1992; Klein et al., 1994; Nelson et al., 2005). However, acoustic analysis
is a complex task, particularly in noisy environments like cattle barns, and
known applications usually show high computational-cost.

Among automatic recognition systems based on sound analysis, just few
of them deal with detection and classification of jaw movements problem.
Milone et al. (2012) developed an algorithm based on hidden Markov mod-
els, that hereafter will be referred as CBHMM (Chew-Bite Hidden Markov
Model), for detecting and classifying jaw movements. Using probabilistic
models and spectral-domain features it achieves up to 85% recognition rate,
but it shows a high computational cost. Navon et al. (2013) implemented
an algorithm for event detection that used a machine-learning technique to
analyze time-domain features of ingestive sounds. The algorithm achieved
up to 94% detection rate. However, the event classification (bite, chew and
chew-bite) was not performed in this work.

The development of a recognition system based on analysis of acoustic
signals should consider the following situations:

1. Input sound signals are affected by environmental noises, which can
degrade the signal-to-noise ratio (SNR) and diminish the overall system
performance. For instance, trends (low-frequency time-varying noises)
are more intense when cattle stay in barns, where there are more noise
sources (e.g. machinery and other animals) that are also intensified by
the room reverberation.

2. Recognition of ingestive events is a combination of detection and clas-
sification. Former methods showed that detection can be successfully
performed with high accuracy whereas classification typically requires
more powerful methods to achieve high recognition rates.

3. Precision livestock farming area aims at low-cost algorithms in order to
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embed and execute them in real-time within low-performance wearable
devices. In this way, the monitoring system could be scaled for its
application on large herds.

Recently, Chelotti et al. (2016) proposed an algorithm called Chew-Bite
Real-Time Algorithm (CBRTA) for detection and classification of ingestive
events. The algorithm used heuristic rules derived from expert knowledge,
reaching recognition rates up to 97.4% for detection and 84.0% for classifica-
tion of events at a low computational cost. However, trends in the input sig-
nals negatively affect the event detection because it is based on time-varying
thresholds. On the other hand, the simple set of rules proposed may not
exploit the whole potential of the features employed. For instance, the shape
and duration of a detected event are the only features used to differentiate
compound events (chew-bites) from simple events (chews or bites), which is
an oversimplified representation of the events, leading to poor recognition
rate. Thus, it is desirable to consider machine learning techniques that are
able to generate optimal decision regions, improving the classification per-
formance at the expense of reasonable increments of computational cost (up
to 50% of CBRTA cost), which will imply neglectable effects on the algo-
rithm’s computational requirements due to the extremely low computational
cost of the CBRTA.

In this paper, a new algorithm called Chew-Bite Intelligent Algorithm
(CBIA) is proposed, which seeks to improve the recognition of jaw move-
ments using acoustic signals, even in noisy environments (e.g. inside a barn).
This method is based on concepts and techniques derived from signal pro-
cessing and machine learning areas to analyze the sound signal derived from
ruminant feeding behavior. Two databases obtained in different experimen-
tal conditions are used to test the algorithm. The computational cost and
a cost-benefit analysis of its implementation are also evaluated for its future
real-time execution in a low-cost embedded system.

2. Material and methods

Two independent sound databases of ruminant feeding behaviors were
used to evaluate the performance of the proposed system. One of the databases
was obtained under controlled experimental conditions, showing a high SNR.
This database was previously used to evaluate other algorithms, which allows
a fair comparison with the algorithm introduced in this work. The second
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database was obtained in a barn environment, showing a poor SNR due to
the presence of noises and reverberations. This database was used to evaluate
the influence of the proposed methods under adverse acoustic environmental
conditions. During the experiments several signal processing and machine
learning techniques were evaluated.

2.1. Databases

The first database (referred as DB1) is the same used by Milone et al.
(2012) and Chelotti et al. (2016) for testing CBHMM and CBRTA algorithms,
respectively. DB1 was obtained at Campo Experimental J. Villarino, Facul-
tad de Ciencias Agrarias, Universidad Nacional de Rosario (Argentina) dur-
ing February 2004. The protocols were previously evaluated and approved
by the Committee on Ethical Use of Animals for Research of the Univer-
sidad Nacional de Rosario. Sound signals from dairy cows grazing either
pure alfalfa (Medicago sativa) or pure fescue (Festuca arundinacea) micro-
swards at two height levels (tall, 24.5 ± 3.8 cm, or short, 11.6 ± 1.9 cm)
were recorded individually in grazing sessions conducted over a 5-day period.
Forage species were selected because they differ in sward structure, water
content and neutral detergent fiber content (alfalfa, 360 ± 11 g/kg and fes-
cue, 631± 6 g/kg), which are factors that have a direct influence on chewing
sounds (Duizer, 2001). Two 4–6 year-old lactating Holstein cows weighing
608±24.9 kg, previously tamed and trained, were used. Three wireless micro-
phones (Nady 151 VR, Nady Systems, Oakland, CA, USA) were randomly
assigned to animals each day. The microphone was placed facing inwards
on the forehead and was protected by a rubber foam (Milone et al., 2009).
The distance between the wireless microphone and the receiver was 2-3 m.
Micro-swards were established using alfalfa or fescue sown in 4-liter plastic
pots, which were attached to a base-board placed inside a barn. Plants were
in a vegetative state, and were intentionally manipulated to generate micro-
swards that cows could eat with negligible displacement. The sounds were
recorded at 44.1 kHz sampling frequency, 16-bit resolution and WAV format.
A total of 50 grazing sessions were recorded: 15 from tall alfalfa, 11 from
short alfalfa, 12 from tall fescue and 12 from short fescue. Around 50 min of
acoustic signals were considered, which approximately corresponds to 3000
jaw movements (13% bites, 64% chews, and 23% chew-bites).

The signals belonging to the second database (referred as DB2) were ob-
tained by another field experiment conducted at Campo Experimental J.
Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario
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(Argentina) during October of 2014. Project protocols were previously eval-
uated and approved by the Committee on Ethical Use of Animals for Re-
search of the Universidad Nacional de Rosario. The foraging behavior of five
3–5 year-old Holstein lactating cows, weighing 570 ± 40 kg, grazing alfalfa
and fescue mixed pastures, were continuously monitored using a commer-
cial recorder (Sony ICDPX312) to obtain 24 h sound recordings during six
days. Sounds of biting and chewing were recorded using a directional micro-
phone mounted over the forehead and covered by an elastic band fastened
to a halter, where a recorder was attached. The signals were recorded at
44.1 kHz sampling frequency, 16-bit resolution and WAV format. Five mi-
crophone/recorder devices were randomly assigned to the cows and rotated
over the six days. The signals were recorded under different environmental
conditions, some of which were adverse. Noise sources included machines,
noise from other animals and vehicles, among others. In addition, when the
cows were inside the milking barn, sounds were affected by acoustic room
reverberation.

All signals used in this study were aurally segmented and labeled by
two experts in animal behavior, in order to identify and classify individual
events (bite —B—, chew —C— and chew-bite —CB—) during grazing. The
labeling process was done by one expert, and the result was checked by the
other expert1. When there was disagreement, both experts worked together
to provide a final decision. Because DB2 is a very large database, only those
segments recorded inside the barn were selected. Twelve 5-min segments were
randomly selected to test the algorithm under these adverse conditions, as
hand labeling of a database of this size is unfeasible for a human expert. A
typical 5-min segment contains about 300 jaw movements, which results in
more than 3000 events available in 1-hour of recording. Thus, the number
of required events to train and test the proposed algorithm is acceptable for
the objective of testing the robustness of the algorithm on jaw movement
recognition.

2.2. Chew-Bite Intelligent Algorithm

A pattern recognition system is an automatic system that aims at clas-
sifying input data into a set of specific classes using its properties and fea-
tures (Duda et al., 2012). This system can be described by a series of generic

1Two experts decoded records of signals. Detections agreed in 100% for bites, 98.2%
for chews, and 99.1% for chew-bites.
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stages that allow i) the description of the input signal, which facilitate the ex-
traction of distinctive features, and (ii) its classification, which enables iden-
tification of patterns. A block diagram of the proposed algorithm CBIA is
shown in Figure 1. It shows the relationship between a typical pattern recog-
nition system and the different stages of the algorithm: signal conditioning,
preprocessing, event detection, feature extraction, and event classification.
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Figure 1: Complete block diagram of the proposed CBIA system.

The input of the system is the digitized sound (Figure 1) which can come
from a file or an analog-to-digital converter, depending on the implementa-
tion. Within the signal conditioning stage, the numerical representation of
the digitized audio is normalized and its range is matched with the range of
the computer where the system is running. Sound signals sometimes show
slow time-varying noises added to the target signal, especially in barn envi-
ronments. Therefore, for CBIA we proposed and evaluated some detrending
techniques to remove the non-stationary noises at the signal conditioning
stage.
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Within the pre-processing stage, the sound signal follows two paths (Fig-
ure 1):

• A maximum detector computes the maximum amplitude of the sound
signal over a sliding window whose length is half of the duration of a
typical chew-bite event; and

• An envelope detector that computes the sound envelope using a syn-
chronous demodulation and a linear time-invariant (LTI) low-pass filter.

Since the sound envelope is low frequency, the signals computed by both
detectors are downsampled to reduce the amount of data processed by the
remaining stages. The events (potential jaw movements) are detected by
comparing the sound envelope with a time-varying threshold (Chelotti et al.,
2016). Then, the sound envelope is segmented and it is used to compute the
features. Event features are extracted over a 1-second time-window centered
where the event was located. Finally, these features are the inputs of the
classifier that recognizes the event, which is the output of the system.

2.2.1. Signal conditioning

Recorded sound signals can show slow varying patterns that are added
to the target signal, specially in barn environments. These trends must be
removed because they can hamper the detection and classification of the
events. In CBRTA no signal processing was performed over the sound signal
to remove noises and trends (Chelotti et al., 2016). Hence, CBRTA left
low frequency and time-varying noises unaffected when the envelope was
computed. These time-varying noises modify the base level of the sound
envelope, which is used to complete: i) the event detection and ii) the event
classification. During the event detection, adaptive thresholds are used to
detect the occurrence of a possible jaw movement by identifying peaks in the
sound envelope. Regarding classification, the maximum sound amplitude
could be modified by a trend. Thus, the presence of trends can modify
the base level of the sound envelope, causing detection and classification
problems.

In this study, three techniques were considered for the signal conditioning
stage: high pass filter, least mean square filter, and empirical mode decom-
position. The main objective of this stage is to attenuate the effects of trends
and any other noise that can deteriorate the performance of the algorithm.
The simplest signal conditioning technique is a LTI high-pass filter (HPF).
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A second-order Butterworth filter was selected for the HPF and its cut-off
frequency was fixed at 0.05 Hz. On the other hand, an adaptive filter has
spectral characteristics controlled by time-varying parameters and a means
to adjust those parameters according to an optimization algorithm. The
Least Mean Squares (LMS) filter (Widrow et al., 1975) is the most popular
for noise cancellation and detrending. The coefficients W (k) of the filter are
updated as

W (k + 1) = W (k) + 2µǫ(k)X(k), (1)

where X(k) is the input vector at time k, µ is a factor that controls the
updating rate of W (k), and ǫ(k) is the error defined as the difference between
the desired response d(k) and the actual response y(k), computed as follows

ǫ(k) = d(k)− y(k) = d(k)−W TX(k). (2)

The parameter µ of the LMS filter was fixed at 0.01 such that a quick and
stable response of the filter is obtained for all operational conditions.

Empirical Mode Decomposition (EMD) was introduced by Huang et al.
(1998) for non-stationary and nonlinear signal processing, which can be used
as a detrending filter. It represents signals as sums of zero-mean AM-FM
components called Intrinsic Mode Functions (IMFs). An iterative algorithm
called sifting process extracts locally the highest frequency oscillations out of
original signal x(k) for each mode (see Flandrin et al. (2004) for a detailed
description). A fine to coarse reconstruction discarding the last modes of
the decomposition (lowest frequency modes) can be performed to implement
adaptive detrending filtering. Thus, the filtered signal x̂(k) can be expressed
as follows (Moghtaderi et al., 2013)

x̂(k) =
Nm∑

j=1

yj(k), (3)

where Nm is the number of IMFs yj(k) considered in reconstruction. It was
observed that only the first seven modes contributed significantly to recognize
the targeted events.

2.2.2. Feature extraction

Once the candidate events are detected, their features are extracted over
a time window centered at the sample where the event was detected. Several
features could be extracted (e.g. spectral, temporal or statistically derived
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ones), however in CBIA we propose to use a set of four temporal features
that are low-cost and with discriminative power for this problem:

• Shape index: is computed as the number of zero-crossings in the sign
of the derivative signal obtained from the envelope signal (third row
in Figure 2). This calculation is performed only if envelope amplitude
exceeds a noise threshold. This feature provides useful information
to differentiate simple events (chew and bite) from combined events
(chew-bite).

• Maximum intensity: provides information to differentiate low-amplitude
events (chews) from high-amplitude ones (bites and chew-bites). This
feature is computed directly from the sound signal over a sliding win-
dow with length equal to the period of a chew-bite event (fourth row
in Figure 2).

• Duration: is computed as the time period in which amplitude of the
envelope is greater than a given threshold. In general, the duration
of compound events (chew-bite) is larger than simple events (chew or
bite), which are similar (fifth row in Figure 2).

• Symmetry: is computed as the ratio between the left area and the
total area of the event. Left and right event areas are divided at the first
peak of the event (last row in Figure 2). It can provide discriminative
information because events have different symmetries.

2.2.3. Classification

Classification of ingestive events using sounds is a well-defined problem.
For this stage, six classifiers were considered: i) decision tree, ii) random
forest, iii) multilayer perceptron, iv) radial basis function network, v) sup-
port vector machine, and vi) extreme learning machine. The most relevant
parameters of classifiers were optimized using the grid search method.

Decision Trees (DTs) have the ability of learning simple decision rules and
systematizing them in order to arrive at complex decisions. They were built
using the C4.5 algorithm and pruning confidence was optimized (Breiman
et al., 1984; Ross Quinlan, 2014).

Multilayer Perceptron (MLP) is a conventional feed-forward artificial neu-
ral network design that can deal with non-linearly separable data (Bishop,
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Figure 2: Typical acoustic events produced by jaw movements and derived signals from
where the features are extracted. From top to bottom: i) acoustic signal, ii) sound enve-
lope, iii) shape index, iv) maximum intensity, v) duration and vi) symmetry.

2006). They were configured with four inputs neurons (number of input fea-
tures) and three outputs neurons (number of output labels). Features were
normalized and output labels binarized to match MLP output. MLPs with
one and two hidden layers were tested. The number of neurons in each hidden
layer and the learning rate were optimized. Typically, four hidden neurons
were chosen.

Radial Basis Function (RBF) network is another type of artificial neural
network (Bishop, 2006). The number of RBF hidden-layer units was opti-
mized. Random Forest (RF) is an ensemble of decision trees which generally
results in an overall better model. The number of trees was optimized during
training.

For the support vector machine (SVM), a radial basis function was chosen
as a kernel and a soft margin penalty for misclassifications was considered
(Steinwart and Christmann, 2008; Hastie et al., 2009). Penalty coefficient
C and parameter γ of SVMs were optimized. The one-against-one approach
was followed for the multiclass classification task with SVMs (Hall et al.,
2009; Chang and Lin, 2011).
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Extreme learning machine (ELM) is a new type of neural network (Huang
et al., 2006), which has shown good generalization performance and short
training times. The number of hidden neurons and regularization parameter
γ of ELM were optimized (Deng et al., 2009). Finally, the optimization
was performed using the training set of each fold in order to preserve cross-
validation (Hall et al., 2009).

2.3. Experimental setup

In this study, leave-one-signal-out cross-validation was used to conduct
the experiments. In the first fold of this scheme, one signal was taken for
testing, while the remaining signals were used for selecting the best parame-
ters of the classifier and for training the models. The following folds switch
the test signal to another one until all signals are considered in the test. Re-
ported performance metrics were obtained averaging across folds. They are
recognition rate (RR), recall (R), and precision (P ),

RR =

∑
i tpi + tni∑

i tpi + tni + fpi + fni

,

R =

∑
i tpi∑

i tpi + fni

,

P =

∑
i tpi∑

i tpi + fpi
,

(4)

where tpi are true positives, tni true negatives, fpi false positives, and fni

false negatives counts for class i, respectively (Sokolova and Lapalme, 2009).
Models were pasture-specific, thus classification was performed with the cor-
responding specific model and reported accordingly, like CBHMM (Milone
et al., 2012). Required computational load was also compared.

3. Results

The following subsections present a detailed analysis of results obtained.
First, a graphical analysis of proposed features is presented. Second, variants
of the proposed algorithm are analyzed based on their discriminative power.
Finally, the proposed algorithm is compared with state-of-the-art techniques
based on their performance metrics and computational costs.
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3.1. Analysis of proposed features

Figure 3 shows the data and the decision regions generated by the rules
employed in the CBRTA (Chelotti et al., 2016). The data of chews and chew-
bites is organized in dense clusters (highlighted by ellipses), while the data
of bites is scattered in the plane (Figure 3.a). The majority of chews reach a
shape index of one or two, while bites and chew-bites can have indices greater
than one (Figure 3.b). A simple analysis shows that chews can be clearly
classified, while the classification of bites and chew-bites is more difficult
due to the lack of discriminative information (Figure 3.a). This analysis
is consistent with the results from Chelotti et al. (2016), where chews are
classified with an accuracy over 90% while chew-bites and bites are classified
with an accuracy of 67% and 84%, respectively. The need for the introduction
of an additional feature that allows to clearly separate bites from chew-bites
is evident.

Figure 4 shows the data distribution of amplitude and duration against
symmetry (a new feature not previously used in CBRTA). In this case, the
data exhibits a highly clustered organization with minimal overlapping be-
tween classes. A symmetry around 0.5 will indicate a symmetric event in
terms of this feature. In the case of chew-bites this relation is lower than 0.5
since the area is divided at the first peak (last row in Figure 2), while for
bites this feature takes values greater than 0.5 (Figure 4). This new discrim-
inative information, combined with shape index and duration, should allow
to differentiate between bites and chew-bites.

3.2. CBIA recognition results

The proposed system can combine different detrending and classification
techniques. A summary of average recognition rates for all combinations is
presented in Figure 5. The rates were obtained averaging across all signals
in DB1. In addition to the evaluated detrending techniques (HPF, LMS,
and EMD), features were extracted from raw signals (RS), i.e. signals to
which no detrending method was applied. Most combinations exceeded 80%
recognition rate. ELM combinations achieved the poorest results compared
to other classifiers. Application of a detrending stage resulted in clear im-
provements over the raw signals, where adaptive variants (LMS or EMD)
reached recognition rates above 90%.

Average recognition rates for each pasture are detailed in Table 1. In
general, recognition rates were above 80% except for short alfalfa, which was
the most difficult pasture for event recognition. Between the two pastures
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Figure 3: Data distribution for tall alfalfa (DB1) and decision regions of CBRTA: (a)
amplitude vs duration and (b) shape index.
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Figure 4: Data distribution for tall alfalfa (DB1): (a) amplitude and (b) duration against
new CBIA symmetry feature.
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Figure 5: Average recognition rates (%) of CBIA across all signals in DB1 for different
combinations of detrending and classification techniques.

evaluated (alfalfa and fescue) the best results were obtained for fescue, in
some cases exceeding a 90% recognition rate. Among detrending techniques,
LMS and EMD produced the largest improvements, whereas HPF showed
small improvements. Among the evaluated classifiers, MLP, SVM and RF
achieved the best results, while ELM generated the poorest results.

In order to confirm the advantages of a detrending stage, a more chal-
lenging scenario was developed using signals from DB2. Cattle barn is a
known noisy environment. Hence, a random selection of 5-min segments
from grazing signals recorded in this environment was performed. Because
these signals were continuously recorded from mixed pastures in different
experimental conditions, the classifiers were retrained. The average recogni-
tion rates obtained on these segments are summarized in Table 2. Only the
techniques that achieved the best results on DB1 were considered for exper-
iments on DB2. In this sense, the adaptive methods (LMS and EMD) were
evaluated for the signal conditioning stage and three classifiers (MLP, SVM
and DT) were considered for the classification stage, based on recognition
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Table 1: Average recognition rates (%) of CBIA obtained for each pasture of DB1 for
different combinations of detrending and classification techniques. Bold numbers indicate
the best results.

Pasture MLP SVM DT RF ELM RBF

RS

Tall alfalfa 84.58 85.04 84.74 85.57 81.81 83.60
Short alfalfa 76.55 77.27 76.20 77.92 72.86 73.88
Tall fescue 88.34 88.47 87.47 86.70 78.99 86.52
Short fescue 86.42 88.00 84.12 86.22 80.40 85.19

HPF

Tall alfalfa 84.39 86.14 85.42 86.46 82.18 85.72
Short alfalfa 76.47 78.50 75.93 78.54 73.46 75.00
Tall fescue 89.34 89.71 88.55 87.03 76.67 87.74
Short fescue 88.98 90.12 85.04 86.93 80.95 86.11

LMS

Tall alfalfa 87.13 87.06 86.11 87.41 83.63 85.46
Short alfalfa 79.13 80.83 78.50 80.46 76.29 78.17
Tall fescue 89.85 90.18 87.97 89.30 80.28 86.52
Short fescue 90.14 90.05 85.79 86.54 83.06 86.05

EMD

Tall alfalfa 88.01 87.52 85.00 85.97 84.12 86.76
Short alfalfa 79.71 82.00 79.09 81.23 75.97 78.36
Tall fescue 90.29 89.99 87.84 89.46 76.83 88.46
Short fescue 93.17 92.04 86.61 89.59 84.45 86.81

rates presented in Table 1 and the simplicity of their implementation.

Table 2: Average recognition rates (%) of CBIA for adaptive detrending methods and
selected classifiers on 5-min segments from DB2. Bold numbers indicate the best results.

MLP SVM DT

RS 74.79 74.52 73.56
LMS 80.72 81.61 79.21
EMD 82.27 80.91 80.23

Baseline results in Table 2 were obtained on raw signals (RS) and the
use of adaptive detrending showed an improvement of 5.65% or greater. The
combination EMD+MLP achieved the best result (82.27%) on these signals,
surpassing MLP baseline results by 7.48%. The second best combination
was LMS+SVM (81.61%), with an improvement of 7.09% over RS for SVM
classifier. The combinations LMS+DT and EMD+DT also achieved very
good recognition rates.
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Table 3: Comparison of performance measures (%) for different algorithms (including
state-of-the-art methods) applied on DB1 and averaged over all pastures. Bold numbers
indicate the best results.

CBHMM CBRTA
CBIA

LMS+DT LMS+MLP LMS+SVM EMD+SVM

Recognition rate 79.50 77.00 87.85 89.76 90.23 90.74

Recall 83.27 70.76 88.16 91.63 90.88 92.57

Precision 85.09 83.85 86.35 89.75 89.51 92.21

Table 4: Comparison of computational costs for different algorithms given in terms of
operations per second of recorded audio signal.

Algorithm stage CBHMM† CBRTA
CBIA

LMS+DT LMS+MLP LMS+SVM EMD+SVM

Signal conditioning

and pre-processing
NA NA 10,000 10,000 10,000 8,991,943

Detection and

feature extraction
2,122,857 27,700 28,800 28,800 28,800 28,800

Classification 53,557,392 30 20 160 1600 1600

Global cost 55,680,249 27,730 38,820 38,960 40,400 9,022,343

† CBHMM does not perform event detection, features are extracted continuously.

3.3. Comparison with existing methods

A comparison between proposed (CBIA) and former methods (CBHMM
and CBRTA) is presented in Table 3. The results obtained on DB1 are
averaged over all pastures and summarized by recognition rate, recall and
precision. Adaptive detrending methods and classifiers of CBIA greatly im-
proved the recognition rate over former algorithms. Recall and precision were
above 85% for all variants of the proposed method.

Table 4 shows a detailed analysis of the computational costs for each
stage of the algorithms (former and proposed). The assumptions to estimate
these costs are detailed in Appendix A. With the exception of CBHMM,
the classification stage has a relatively low computational cost compared to
preceding stages. Signal detrending performed with EMD requires 900 times
more computations than LMS. Regarding classification, SVM cost is several
times higher than heuristic rules, MLP, or DT costs. CBIA global cost using
LMS has the same order of magnitude as CBRTA. By contrast, CBHMM
and CBIA with EMD are several orders of magnitude more costly than other
CBIA variants.
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Figure 6: Recognition rate vs computational cost for different algorithms.

Figure 6 illustrate the trade-off between recognition rate and computa-
tional cost for the methods presented in Tables 3 and 4. CBHMM is the most
computationally expensive algorithm and achieved almost 80% recognition
rate. By contrast, CBRTA has the lowest computational cost and recogni-
tion rate. Among the proposed methods, the one that used EMD produced
very good recognition rates, but its computational cost is very high. CBIA
variants with LMS achieved very good recognition rates and have relatively
low computational cost.

4. Discussion

CBIA achieved good recognition rates for several variants of the algo-
rithm. Better performance rates were obtained for DB1 than for DB2, due
to the higher SNR of DB1 signals. However, the benefit of a detrending stage
was more evident on DB2 (Table 2). A comparison of the CBIA variants with
previous algorithms shows that better performance rates are achieved with
a minor increment in computational cost (Figure 6).

Regarding the detrending stage of the proposed algorithm, the adaptive
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techniques (EMD and LMS) outperformed the fixed high-pass filter (HPF),
probably due to the fact that many of the noise sources seem to be non-
stationary. In this sense, EMD achieved the best results, reaching up to 93%
recognition rate, but its computational cost was extremely high. Related
algorithms such as ensemble empirical mode decomposition (Wu and Huang,
2009) were not taken into account in this work because they usually have
even higher computational cost. In contrast, LMS showed a performance al-
most as good as EMD for several of the combinations evaluated (LMS+MLP,
LMS+SVM), with a lower computational cost. This establishes LMS as the
most appropriate technique for real-time execution of the algorithm.

Six classifiers were evaluated for the classification stage. From the stand-
point of recognition, the best results correspond to SVM, RF and MLP, with
a recognition rate of about 90% in some cases. From the computational
cost point of view, the best classifiers were DT, MLP and SVM. While SVM
generally achieves the best classification results, DT and MLP are easily im-
plemented in an embedded system. DT has the additional advantage that its
rules allows an easy interpretion and understanding on how the classification
process is performed. MLP can define arbitrary decision boundaries (e.g.
non-linear boundaries) and thus obtain higher recognition rates at the ex-
pense of a computational cost slightly higher. For this reason, the cost-benefit
analysis presents LMS+MLP as the best combination for CBIA implemen-
tation.

Some interesting similarities were observed in the comparison between
CBRTA heuristically derived rules (RR: ∼77%) and CBIA-DT automatically
learned rules (RR: ∼88%). Both strategies share a low computational cost
and easy interpretation. CBRTA rules are simpler and require a small set
of comparisons for classifying an event. In contrast, CBIA-DT rules require
two to four times more comparisons in order to perform the same classifica-
tion. Regarding rule definition, in a multiclass problem, the selection of a
CBIA-DT split takes all classes into account. By contrast, the strategy to
obtain heuristic rules concentrates on one class at a time, disregarding what
happens to the other classes. CBRTA uses its rules separately for each type
of event, whereas CBIA-DT share some rules among classes. Regarding se-
lected features and their split values, CBRTA divided the feature space into
rough regions, while CBIA-DT performed a sharper division using similar
split values in combination with new ones. For instance, event duration was
selected as the most important feature and its split values were around 0.3 s,
like it was defined for the CBRTA (see Figure 3.a).
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Probably, changes in forage characteristics such as water content, anatomy
of tissues, and fiber content, and animal characteristics such as dentition,
head size and anatomy will tend to affect the sound produced by the inges-
tion of forage (Galli et al., 2017). In this sense, short alfalfa was the pasture
with the worst results in recognition (see Table 1), which is consistent with
the results obtained by Milone et al. (2012) and Chelotti et al. (2016). A
possible explanation for this is that short alfalfa plants have a higher ratio of
stems to leaves than tall alfalfa and fescue. This could produce bite sounds
with lower amplitude, increasing confusion between events and thus affecting
the classification stage. Some of these problems could be solved by designing
specific electronic circuits of acquisition and analog signal conditioning as
part of the system. However, the commercial recorders used in this work do
not allow such attempt. A first approach considering this idea has been pre-
sented in Deniz et al. (2017). On the other hand, the results in the present
study show that for animals of similar size, age and breed, CBIA was able
to detect and classify jaw movements in grazing cattle with high accuracy.

5. Conclusions

In this study an algorithm for detection and classification of masticatory
events from acoustic signals was presented. The proposed CBIA consists
of five stages: i) signal conditioning, ii) pre-processing, iii) event detection,
iv) feature extraction, and v) event classification. Within the conditioning
stage, three detrending methods were evaluated. Adaptive thresholding was
used for event detection and an improved set of discriminative features was
extracted. Classical and advanced machine learning techniques were used for
classification of three types of masticatory events (chew, bite and chew-bite).
The best trade-off between recognition rate and computational cost was ob-
tained with LMS+MLP variant. The high recognition rates achieved (up
to 90% and over 80%) for databases recorded in different experimental con-
ditions, demonstrate the robustness of this approach. CBIA outperformed
previous methods (CBHMM and CBRTA) by at least 10% in terms of the
recognition rate. Many of the evaluated variants have the additional advan-
tage of a low computational cost, which allows real-time execution.

In this study, models were trained and evaluated in a pasture-specific
fashion. Most of the time the type of pasture can be known in advance, thus
this is not a real limitation for the system. Future research will focus on
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recognizing masticatory events without this assumption, in a pasture inde-
pendent way, which may require different system architecture or strategies.
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Appendix A. Computational costs

Computational costs of different algorithms were presented in Table 4 for
each stage. Practical and typical values were considered in order to get a
straightforward comparison. Computations required are estimated for pro-
cessing one second of audio signal, which sampling frequency was fixed at
2 kHz (n = 2000 samples). Event detection, feature extraction and classi-
fication for CBHMM and CBRTA were analyzed in Chelotti et al. (2016).
The CBHMM requires:

24(21 + 26 · 1.5n+ 1.5n log(1.5n)) + 53, 557, 392 = 55, 680, 249 ops. (A.1)

It is the most computationally expensive algorithm of those analyzed in
this study. In fact, CBHMM does not perform event detection, features
are extracted with a sliding window, and then classification is accomplished.
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By contrast, CBRTA and CBIA perform event detection prior to feature
extraction, and then the corresponding classification of detected events. The
event detection typically yields 1 or 2 events for each second of signal2, and
in the following it is assumed the worst case, 2 events per second. Detection
and feature extraction cost of CBRTA is:

13n+ 1, 700 = 27, 700 ops. (A.2)

To this cost it is necessary to add the cost of the evaluation of classifica-
tion rules for the three events (30 operations). CBIA has a similar cost for
detection and feature extraction (27,800 operations) compared to CBRTA,
but it requires extra symmetry computation (100 operations).

The cost of CBIA detrending techniques was estimated for LMS and
EMD. LMS requires 5 operations per signal sample, thus, it requires 10,000
operations to process one second of audio signal, while EMD requires at least:

41NS n log
2
(n) (A.3)

operations for extracting all IMFs (Wang et al., 2014), where the typical
number of siftings NS = 10 was chosen, which gives a total of 8,991,943
operations per second of signal.

Classification cost of CBIA was evaluated for DT, MLP, and SVM. The
number of features (4) and the number of classes (3) were considered. DT
is the simplest one requiring 10 operations per event (typical depth of 10).
MLP has a cost of 80 operations per event, which is directly related to the
number of input nodes (4), the number of hidden layers (1), the number
of hidden neurons (4 typically), and the number of outputs (3). Regarding
SVM, an average of 200 support vectors were selected to build classifiers.
Then, as prediction complexity of SVM is proportional to the number of
support vectors and the number of features, it requires 800 operations per
event, at least.

2This is derived from the frequency of typical events of cattle feeding behavior.
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