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Abstract—Feature selection is an extremely important matter
in pattern recognition, particularly when a large set of features is
available without knowledge about the discriminative information
provided by each element. The key issue is to define a criterion
in order to rank the features, discarding those features that
are less relevant, redundant, or noisy. This depends on the
particular task, the classifier and the properties of the data.
A frequent approach consists on the use of genetic algorithms
guided by the classification accuracy. However they are often
not able to provide a solution with both a considerable reduction
of dimensionality and high accuracy rate. Here we propose a
modified version of a genetic algorithm, introducing a novel
local improvement approach based on evolution, which is able
to obtain better dimensionality-accuracy trade-off. Experimental
results on different well known datasets show the advantages of
our proposal.

Keywords—Evolutionary Algorithms; Feature Selection; Local
Improvement

I. INTRODUCTION

Many machine learning problems deal with datasets in
which every of the given examples consist of a large list of
features. In this scenario, feature selection (FS) is essential
to perform the classification task with reduced complexity
and acceptable performance, specially when prior knowledge
of the most discriminant features is not available. Given the
complete set of candidate features, FS methods attempt to
pick a subset based on one of three criteria: the subset with a
specified size that maximizes accuracy; the subset of smaller
size that satisfies an accuracy requirement; and the most
common case, which is the subset with the best commitment
between the dimensionality and the accuracy [1]. In any case,
the purpose is the improvement of a machine learning model,
either in terms of learning speed, computational complexity,
simplicity/interpretability of the representation or generaliza-
tion capability.

The existing FS techniques can be categorized according to
three aspects [2]: the search strategy; the evaluation criterion;
and the methodology for the assessment of the performance.
The first corresponds to the search strategy which is applied
to select candidate solutions among the possible feature com-
binations. The last two refer to the methods and measures
used to evaluate each feature subset, and based on this the FS
strategies can be divided in two categories: wrapper methods
and filter methods. Wrappers have the advantage that the
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predictive performance of the selected subset is correlated with
the relevance measure. The problem for wrapper methods is
that the predictive performance has to be assessed (a classifier
has to be trained) for each feature subset tested, being therefore
impossible to evaluate all the possible combinations of fea-
tures. This issue can be overcome using search heuristics like
genetic algorithms (GA), particle swarm (PSO) and ant colony
optimization (ACQO), which are able to find adequate solutions
without exploring the entire search space [3]. However, while
ACO and PSO typically use encoding based on real numbers,
GAs use binary codification, reason why these are more
suitable for feature selection problems.

GAs belong to the evolutionary algorithms (EA), a family of
biologically inspired techniques that use several mechanisms
to imitate natural evolution [4]. GAs and other evolution-based
strategies have been successfully used in feature subset opti-
mization problems [S]—[7], and for the searching of optimal
representations [8], [9]. Moreover, applications of GA-based
wrappers for feature selection include speech recognition
[10], face recognition [5] and image analysis [11]. However,
classical GA has limitations that are usually neglected in many
feature selection applications [12].

Solutions obtained with classical heuristic algorithms are
often superior or comparable to those provided by simple GAs.
In order to overcome this limitation, one common approach is
to hybridize the GA by incorporating domain-specific knowl-
edge. This is accomplished, for example, by using problem-
specific encoding or designing appropriate genetic operators
[12]. Following these ideas, hybrid GAs have been presented
for diverse tasks with advantageous performance [13], [14].
Even though this type of evolution strategies are usually able
to gain success, they have to be specially designed for the
problem at hand, which makes more difficult or impossible to
apply the same FS algorithm to another problem domain.

Other types of evolutionary algorithms with different mech-
anisms for locally improving the solutions have also been
proposed. For example, [15] presents a local improvement
procedure based on gradient descent, in order to refine the
parameters provided by the EA. This procedure, however, is
not appropriate for feature selection. A different approach is
presented in [16], where information about the correlation of
the features is exploited in order to improve the selection
provided by the GA. Even though their results shown improved
performances in different datasets, it is not clear how correla-
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tion and/or redundant information affects the performance of a
classifier, especially when dealing with noisy data. Moreover,
studies have shown that redundant features often allow to
produce improved results in complex tasks [8], [10].

Here we propose a novel approach to perform local im-
provement within a GA, applied to feature selection. The
strategy is based on the evolution of subordinate populations,
which are built every generation based on the chromosomes
of the current best individuals in the main population. The
subordinate populations are then evolved in a classical GA
procedure, and the chromosomes in the main population are
replaced if they are improved. Despite that each complete
generation in our algorithm requires more evaluations than
in a classical GA, it is able to produce better solutions with
high accuracy together with lower dimensionality in a reduced
number of generations.

The rest of this work is organized as follows. In Section
IT the classical GA algorithm is first described and then
our evolutionary local improvement procedure is explained in
detail. The experiments and results are discussed in Section
III, and the conclusions together with the future work are
commented in Section TV.

II. MATERIALS AND METHODS
A. Genetic Algorithms

The GAs are the best known meta-heuristic optimization
methods. They provide a flexible and robust framework for
finding solutions in complex search spaces [17]. The search
procedure of GAs is motivated by the laws of natural evolution
and it evolves a population of individuals [4]. These individu-
als consist in chromosomes that carry the information of feasi-
ble solutions. The individuals in the population compete with
each other in order to produce offspring, and this competition
is based on a measure of their aptitude or fitness. This fitness
is assessed by evaluating a problem-specific objective function
on the information decoded from their chromosomes. This
function imitates the selective pressure of the environment.

In a classical GA, the population is subjected to three types
of operators: selection, variation (i.e. mutation and crossover)
and replacement [18]. The selection operator play as the
survival-of-the-fittest mechanism in nature, so that the chance
of an individual to survive is proportional to its fitness. On
every generation parents are selected from the population,
in order to generate the offspring by means of the variation
operators. The purpose of the variation operators is to combine
information from different individuals (crossover) and also to
maintain population diversity, by randomly modifying chro-
mosomes (mutation). A replacement scheme is then applied
in order to substitute, completely or partially, the current
population by the offspring. These steps are repeated until
a desired termination criterion is reached (e.g. a predefined
number of generations or a desired fitness value), and then
the best individual obtained is taken as the solution for the
problem [4]. Another feature of GAs it that they are inherently
parallel, and it is relatively straightforward to exploit this in
order to increase the computational speed [19]. Algorithm

Algorithm 1: GA with evolutionary local improvement

1 Initialize the GA population

2 Evaluate population (Algorithm 2)

3 repeat

4 Parent selection

5 Mate selected parents (crossover)

6 Mutate offspring

7 Replace population

8 Evaluate population (Algorithm 2)

9 foreach of the N best individuals do

10 Create template chromosome based on selected genes
11 Create subordinate population based on template

12 Evolve subordinate population by classical GA (1 to 8)
13 end

14 Replace chromosomes in the main population

15 until stopping criteria is met

Algorithm 2: Evaluate population

1 for each individual in the population do

2 Determine feature subset based on chromosome

3 Re-parametrize training patterns using the feature subset

4 Re-parametrize validation patterns using the feature subset
5 Train the classifier on the training set

6 Test the classifier on the validation set

7 Compute fitness using Eq. (1)
s end

1, except for steps 9 to 15, represents the pseudocode of a
classical GA.

B. Fitness calculation

In this work, the evaluation of the population fitness is
performed by a function defined as:

fle)=aRe+ (10 |1 2] M

lc|

where R, is the unweighted average recall (UAR) [20] calcu-
lated over the dataset, considering only the features selected
in the chromosome c; |c| is the total number of features; |c4 |
is the number of features selected in the chromosome c; and
« is a weight parameter in [0, 1] which specifies the relative
importance of each term in the function. The UAR measure
is used in (1) instead of classical recall because the former is
insensitive to skewed datasets, meaning that it is not affected
by the imbalance between the number of examples in each
class. The first term of Eq. (1) is in [0, 1] range and evaluates
the fraction of the data classified correctly. The second term,
also in [0, 1], evaluates the proportion of the features which
are used to perform the classification. The fitness function will
increase as the UAR increases and the number of selected
features decreases. The steps involved in the computation
of the fitness value for each individual are summarized in
Algorithm 2.

C. Evolutionary local improvement

The modifications proposed in our approach, called ELIGA
(Evolutionary Locally Improved Genetic Algorithm), to the
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classical GA are as follows. Additional steps (9-15) in Al-
gorithm 1 aims to improve best individuals in the current
population after the evaluation of the stop criteria. For each
selected individual, the improvement steps begin by creating
a template chromosome containing only the active features
of this individual (line 10). A subordinate population is then
created based on this template, and new chromosomes are built
as random combinations of these features (line 11). Taking
these individuals as the initial population, a classical GA is run
and the fitness is evaluated in the same way that in the main
population (line 12). Here, the fitness evaluation also involves
the classification of a dataset, but taking into account only
the features selected in the chromosome (see Algorithm 2).
Thus, subordinate populations are evolved in a similar way to
the main population, and the number of generations in which
these are evolved is additional to the number of generations
for the main population. Once the stop criteria is met, a
replacement strategy is applied in order to update the main
population (line 14). We propose two replacement strategies:
parent replacement (ELIGA-PR) and complete replacement
(ELIGA-CR). In the parent replacement strategy, the fittest
individual for each subordinate population is compared with
the parent template, which is replaced in the main population
if its performance is improved. In the complete replacement
strategy, all the individuals from the main population and
from all the subordinate populations are gathered together
and sorted according to their fitness. From these, the best
N, individuals are kept to compose the new main population,
being N, the size of the original main population.

Fig. 1 shows an example of a classical GA with the
modification proposed. As it can be seen, the main GA runs
over the full feature space, and a subordinate GA perform the
local optimization of the best individuals (purple area in the
figure). In this example, the dataset contain 10 features (p;
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Outline of the proposed approach for the evolutionary local improvement in genetic algorithms (ELIGA).

to p1p), and chromosomes represent different combinations of
them. Once the main GA start, the local optimization step takes
the current best individual of the main population and creates a
subordinate population to explore the corresponding subset of
features (i.e. 5 selected features). Thus, the subordinate popu-
lation will contain chromosomes with different combinations
of those features. Then, a subordinate GA is run on this new
features space, evaluating the population with the same fitness
function and dataset as in the main GA (cyan color area of
the figure). After the subordinate population is evolved, its
best individual (2 features or black boxes) is compared with
the parent chromosome of the subordinate GA. The later is
replaced in the main population if its fitness is improved.
When the stop criteria is met, the best set of features found by
the algorithm (3 features or black boxes) is evaluated over a
separate partition of the dataset, containing only unseen data,
to assess the quality of the selected feature set (pink color area
of the figure).

D. Decreasing mutation rate

Previous works have shown that the adaptation of the
mutation rate within the GA during the evolution promotes
the convergence [21]. Particularly, the use of deterministic
functions to decrease the mutation rate over time contributes
positively in the search [21]. Then we proposed an exponential
decay function to update the mutation rate pG on every

generation as:
G
" (2
P = C|< ) : @

where |c| is the size of the chromosomes, G is the current
generation, G is the maximum number of generations, and
v1 and 7, are the number of genes to randomly mutate
at the beginning and the end of the search for a given
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TABLE T
SUMMARY OF THE DATASETS USED IN THE EXPERIMENTS.

Attributes  Train ~ Validation ~ Test  Categories
Madelon 500 1400 600 600 2
Leukemia 7129 28 18 34 2
Dexter 20000 300 300 2000 2
GCM 16063 72 72 46 14

a chromosome, respectively. This mutation rate is used to
evaluate the application of the mutation operator for each gene
in the chromosome. For example, specifying v; = 10 and
72 = 1 would make that 10 genes should be randomly mutated
on each chromosome when G =~ 1, while only 1 gene should
be mutated when G = (Gjs. Thus, the function proposed in Eq.
(2) allows us to control the mutation rate in order to favor the
exploration in the first generations (high mutation rate) and to
allow a fine tuning (low mutation rate) in the promising areas
of the search space during the last generations.

III. EXPERIMENTS AND RESULTS

A. Datasets

Experiments were performed using four datasets with high
dimensionality and different characteristics, including diverse
number of features/attributes, examples and classes/categories.
The most relevant information of the datasets is summarized
in Table 1.

1) Madelon: This is an artificial dataset with 500 features,
where the target is a multidimensional XOR with five relevant
features [22]. It was created for the NIPS 2003 FS challenge1 .
and is available at the UCI Repository? [2]. Among the 495
remaining characteristics, 15 correspond to linear combina-
tions of the five relevant ones, and the other 480 are noise
features. Madelon is a two-class classification problem with
sparse binary input variables. The two classes are balanced,
and the data is split into training, validation, and test sets with
1400, 600 and 600 examples, respectively. Validation and test
sets are stratified, preserving the classes balance.

2) Leukemia: The analysis of gene expression data obtained
from DNA micro-arrays is studied in [23] for classification
of types of cancer. They constructed a dataset with 7129
gene-expression measurements in classes ALL (acute lym-
phocytic leukemia) and AML (acute myelogenous leukemia).
The problem is to distinguish between these two variants of
leukemia (ALL and AML). The data is originally split into
two subsets: a training set and an independent test set. The
training set consists of 38 samples (27 ALL and 11 AML)
from bone marrow specimens. The test set has 34 samples
(20 ALL and 14 AML), prepared under different experimental
conditions and including 24 bone marrow and 10 blood sample
specimens. In our experiments, from the original training set
(38 samples), 18 samples (13 ALL and 5 AML) were separated
to compose a validation set to be used during the search. From
the remaining data (14 ALL and 6 AML), AML samples were
repeated until balancing both classes, obtaining 28 training
examples at the end.

3) Dexter: The Dexter dataset was created for the NIPS
2003 FS challenge! [2] and is hosted by the UCI Repository?.
It is a subset of the well-known Reuters text categorization
benchmark, which was formatted in the “bag-of-words” rep-
resentation. There are a total of 20000 attributes, from which
9947 are the original features and other 10053 were drawn at
random [2]. The original features are normalized and represent
frequencies of occurrence of word stems in text. The data was
split into training (300), validation (300), and test (2000) sets,
all with the classes balanced.

4) GCM: The GCM dataset was complied in [24] and con-
tains the expression profiles of 198 tumor samples representing
14 common human cancer classes®. Here the focus was on 190
tumor samples after excluding 8 metastasis samples, and the
preprocessing was done according to [24]. Finally, each array
was standardized to mean O and variance 1 according to [25].
The data set consists of a total of 190 instances, with 16063
attributes (biomarkers) each, and distributed in 14 imbalanced
classes. In our experiments, the data was separated in three
data sets: training (72 samples), validation (72 samples) and
test (42 samples). In order to balance the classes in the training
set, preventing the overfitting of the classifier because the
majority class, samples were repeated to obtain the same
number for each class. At the end, a total of 168 samples
were used for training. Conversely, validation and test sets are
stratified, maintaining class imbalance.

B. General parameter settings

Aside from the size of the chromosomes, which has to be
set according to the number of features in each dataset, all
the other parameters of the algorithms were kept fixed in
order to allow the comparison. Adequate values for all the
parameters were determined by carrying out some preliminary
experiments. Appropriate kernel parameters for the SVM
classifier were identified performing a grid search on the GCM
dataset. For GA and ELIGA, parameters were determined
by comparing evolution performance and computation time
under different settings. The size of the main population
was set to 50 individuals, which were randomly initialized.
Chromosomes encode solutions (features subsets) using binary
codification, where 1 indicates an active feature. Since we
prefer small features subsets, we only allow 3% of the genes in
the population to be active in the initialization. For replacing
the population we considered an elitist strategy in which the
current best individual was maintained, plus a generational gap
of 10 individuals which are selected and maintained as well.
For the selection of individuals to create the offspring and the
generational gap we used the well-known tournament method
[17]. The crossover rate was set to 0.9, and the mutation
rate was updated as described in Eq. (2) using 7y, = 10
and 72 = 0.1 for both, our approach and the classical GA.
As finalization criteria, we considered a maximum of 500
generations for all the experiments in both GA and ELIGA.

Lhttp://clopinet.com/isabelle/Projects/NIPS2003/
2http://archive.ics.uci.edu/ml/datasets.html
3Data available online: http://swww-genome.wi.mit.edu/MPR/GCM.html
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TABLE 11
SUMMARY OF THE RESULTS OBTAINED FOR EACH DATASET WITH GA AND ELIGA (MEAN VALUES AND CONFIDENCE INTERVALS OF 95%).

GA ELIGA-PR ELIGA-CR
1 subpop 3 subpop 5 subpop 10 subpop 1 subpop 3 subpop 5 subpop 10 subpop
Mean CI Mean CI Mean CI Mean CI Mean CI Mean CI Mean CI Mean CI Mean CI
N° Gen.  309.4 +44.6 3443 £61.1  293.1 £71.3 343.1 £81.6 299.3 £76.0 340.8 £86.1 263.9 £78.7 227.0 £37.5 206.1 +73.0
Madelon N° Feat. 61.1 8.6 34.0 +8.9 272 6.8 253 #42 220 +40 20.0 +6.8 16.2 3.0 189 +43 18.8 #5.1
Time [s] 1583 +645.7 2131 #7154 4264 +2143.3 6843 +2719.3 7383 +2477.3 1755 £858.2 2154 +1148.6 2433 =809.6 3965 +1216.7
UAR 0.60 +0.007 0.60 +0.013  0.61 +0.004 0.61 +0.009 0.61 +0.006 0.61 +0.008 0.61 =0.007 0.61 +0.007 0.61 +0.005
N° Gen.  488.6 5.9 80.9 9.4 81.8 £12.5 84.5 £18.7 86.8 +19.4 30.2 £9.7 28.2 +12.8 26.6 +8.7 614 *21.5
Leukemia N° Feat. 1309 #5.0 3.8 0.7 3.0 0.6 3.0 0.6 2.2 0.3 5.3 #1.0 3.4 +0.7 2.8 0.5 1.8 0.3
Time [s] 12.3 +0.5 2.4 0.4 6.3 +1.2 10.4 +4.8 14.5 +54 1.3 0.6 2.3 x1.9 34 %15 13.3 +4.1
UAR 0.83 +0.033 0.63 £0.079  0.66 +0.058 0.70 +0.062 0.64 +0.076 0.65 +0.086 0.63 +0.098 0.68 +0.049 0.62 +0.107
N° Gen.  487.7 #3.7 488.7 +8.8  489.7 £12.0 487.3 £7.6 484.7 +6.9 4833 9.9 4855 £7.7 481.0 =14.2 487.0 +8.6
Dexter N° Feat.  772.4 +16.0 185.1 +13.1 166.8 +12.0 145.6 7.4 138.1 £14.1 151.6 £22.3 151.8 +17.8 1354 £10.0 136.0 £12.6
Time |[s] 1476 +74.6 2591 +392.8 4251 +694.8 5798 +471.7 11455 £1236.9 1692 +283.9 4150 £632.7 5552 £1040.6 10475 +2048.9
UAR 0.50 +0.010 0.51 £0.014 0.51 +0.016 0.48 +0.029 0.51 +0.025 0.52 0,018 0.46 +£0.052  0.49 +0.025 0.51 +0.026
N° Gen.  486.6 +6.5 484.1 7.3 468.8 +18.6 465.1 £33.1 485.1 154 448.5 +30.4 4624 £31.4 4503 +38.2 415.9 +70.3
GCM N° Feal.  586.8 +18.8 119.4 £30.4 1004 *16.5 93.8 £11.9 97.8 +10.6 106.5 £13.9  98.7 8.4 93.3 %15.6 91.6 +15.2
Time [s] 183.9 +438 325.7 #60.2 702.8 +130.2 1136.8 +145.6 2274.3 +363.8 318.0 £50.5 596.7 +171.7 817.5 £238.6 14527 +495.1
UAR 0.45 +0.026 0.38 £0.043  0.39 £0.039 0.39 +0.043 0.43 +0.034 042 +0.036  0.39 £0.029 043 +0.035 0.42 +0.049

Also, for both algorithms, we set o« = 0.8 in Eq. (1) to
control the importance of accuracy and dimensionality in the
fitness function. In the ELIGA, the subordinate populations
were of size 30 and they were evolved for 70 generations.
It must be noted that the evolution of the main population
is stopped until the subordinate population has completed 70
generations. In order to maintain computational complexity as
low as possible, subordinate populations were evolved once
every five generations of the main population.

To evaluate the accuracy of candidate solutions, we used
a classifier based on support vector machines (SVM) [26]. In
particular, the C-SVC implementation was chosen, setting cost
C = 10 and a linear kernel with slope @ = 10 and intercept
b = 0.1. This classifier was trained using a fraining data
set, and tested on a validation set for the assessment of the
accuracy of candidate solutions. Once the search for the best
feature subset was finished, the generalization performance
was evaluated with the same classifier and a separate fest set.
C. Results and discussion

The performances of GA and ELIGA were compared based
on time (as a measure of computational cost), number and
percentage of selected features, and accuracy. Statistics over
these measures were computed for each dataset as an average
of ten runs of each algorithm. In particular, the performance
of ELIGA was evaluated using one, three, five and ten sub-
ordinate populations (subpops), and both strategies for the
replacement of individuals in the main population (ELIGA-
PR and ELIGA-CR), as explained in Section II-C.

Table II summarizes the results obtained for each exper-
iment, showing the mean and confidence interval (CI) for
each of the analyzed measures. The CIs were calculated
according to [27], specifying a significance level o = 0,05
and 9 degrees of freedom. The number of generations and
time measures in the table correspond to the moment in
which the algorithm converged (the best solution remained
unchanged until the 500th generation was reached). As it
can be seen, in most cases the time needed to perform the
feature selection using ELIGA is increased compared to the

classical GA. However, investing more time in this step is
preferable in most problems, in order to significantly reduce
the computational complexity of the subsequent classification
step. Furthermore, it could have been expected that ELIGA
would take longer than classical GA, since the evolution of
subpops add considerable computational load to the algorithm.
However, meeting the goal of finding a reduced set of features
while maintaining high accuracy worth overlooking the time
performance. Since, once the reduced feature set is obtained,
all the following computations for the task at hand would be
optimized in time and performance. Regarding dimensionality,
the percent of selected features is much lower for both versions
of ELIGA in all the datasets, being ELIGA-CR the approach
that provides the smallest subsets. Moreover, in the case of
Madelon dataset, ELIGA-CR maintained approximately only a
quarter of the features kept by the GA. For the Dexter dataset,
from 20000 features the GA selected in average 772.40, while
the ELIGA-CR kept only 135.40. Clearly, a reduced number
of final features allows to focus in the important information,
favoring the interpretability and understanding of the problem.
Comparing both replacement approaches in our proposal, it
can be seen that ELIGA-CR is able to provide smaller feature
subsets in a shorter time than ELIGA-PR, without disregarding
the classification accuracy. This means that the proposed
complete replacement strategy improves the convergence of
the algorithm towards promising areas of the search space.
Furthermore, except for the Leukemia dataset, the UARs
obtained with the algorithms are very close, showing that
the ELIGA is able to perform better dimensionality reduction
without deteriorating the classification task. It is important
to note that confidence intervals support the conclusion that
improvements obtained are certainly important.

Another interesting point to discuss is the number of
subordinate populations to be used in ELIGA. Experiments
show that computational cost is significantly increased with
the growth of the number of subordinate populations, though
the quality of the solutions obtained is also notably increased.
Then, as usual, a trade-off arises regarding the computational
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Fig. 2. Evolution of the number of selected features during the optimization for each dataset: Madelon (top left), Leukemia (top right), Dexter (bottom left)

and GCM (bottom right).

cost of the search and the quality of the solutions expected.

Fig. 2 shows, for each dataset, the evolution of the number
of selected features during the optimization process, com-
paring classical GA (solid black line), ELIGA-PR (dashed
line) and ELIGA-CR (dotted line). Evolutions corresponding
to different number of subordinate populations for ELIGA-
PR and ELIGA-CR are plotted in different colors, and the
corresponding number is indicated as subindex in the plot
legends. From left to right and top to bottom, the figures
correspond to Madelon, Leukemia, Dexter and GCM datasets,
respectively. In the case of Dexter dataset (higher number of
features), it can be seen that all algorithms tend to increase
the number of features in the first 200 generations, when they
are supposed to explore the search space and the mutation
rate is high. After that point, they begin to reduce the number
of features, being this process considerably faster for ELIGA-
PR and ELIGA-CR than for GA. In the last generations, the
plot for the GA is slightly flat, showing that it is markedly
slower for reducing the number of features. Conversely, the
plot for both versions of ELIGA show a notably fast trend
reducing the number of features. The bottom left plot of Fig.
2, corresponding to the experiments with the GCM dataset,
shows a similar situation. The GA seems to reach a point
where no more reduction is possible, whereas the ELIGA
continues with an important reduction of the number of
features. These analysis suggest that even if the GA is executed
with a greater number of generations than ELIGA, the later
would still be providing a smaller but useful feature set.

The comparison of both replacement methods shown that
dimensionality reduction is faster for ELIGA-PR than ELIGA-

CR, as seen in the evolution of the number of features. This
could be expected since more individuals are moved from the
subordinate populations into the main population in ELIGA-
CR. This is also reflected in Table II, since ELIGA-CR provide
reduced feature sets for most cases, without impact on the
classification accuracy. As a consequence, ELIGA-CR also
shows lower convergence time than ELIGA-PR for the same
number of subordinate populations (Table II), since the SVM
classifier used in the fitness function runs faster with lower
dimensionalities. In regard to the number of subordinate pop-
ulations, it clearly has an important impact on the evolution.
However, from these experiments, it is not possible to identify
an adequate number of subordinate populations that would be
the best in general.

The performance of ELIGA was also compared against
three well-known filter methods for feature selection.
Correlation-based feature selection (CFS) method sorts fea-
tures according to pairwise correlations [28]. Laplacian Score
(LS) is an unsupervised method that ranks features according
to the power of each one for preserving locality [29]. This
method constructs a nearest neighbor graph in order to model
the local geometric structure, and seeks those features that fit
in this graph. Fisher filter is another effective and fast method
which computes, for each feature, a score calculated as the
ratio of interclass separation and intraclass variance [30]. In
order to test these three methods with the datasets considered
in this study, we used the implementations provided in the
Feature Selection Library (FSLib 2016) [31], [32].

Table III presents the classification performance achieved
with the feature sets provided by filter methods and ELIGA.
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TABLE TIT
PERFORMANCE COMPARISON BETWEEN ELIGA-CR, USING 10 SPs, AND
DIFFERENT FEATURE RANKING METHODS (UAR).

Selected o picher LS  ELIGA-CRj
features
Madelon 19 0.52 0.56 0.55 0.61
Leukemia 2 0.50 0.50 0.50 0.62
GCM 92 0.38 0.42 0.39 0.42

Since CFS, Fisher and LS methods do not provide a feature
subset, but they rank all the original features, they require an
additional step to choose an appropriate number of top-ranked
features. In order to make a fair comparison, we selected as
many features from the top of the ranking for every filter-
based method, as those selected by ELIGA-CR. This variant
of ELIGA was chosen since it provides the best balance
between the number of features and accuracy. As it can be
seen, ELIGA-CR (where the subscript indicates the number
of subordinate populations) is able to provide a significantly
improved classification performance in most cases, when the
same number of features are selected. Then, our algorithm
is also competitive when comparing with more classical, yet
effective, feature ranking methods. These ranking methods,
because they are not based on evolutionary computing, are
significantly faster than ELIGA and we considered it is not
necessary to include the time performance in this comparison.
However, we consider that investing time in the feature se-
lection step is worthwhile in many situations. Particularly, it
takes relevance when the goal is to improve the performance
while reducing the computational complexity of the machine
learning algorithm that would take the selected features as
input.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel local improvement ap-
proach based on the evolution of subordinate populations, that
improves the performance of several well-known algorithms
in feature selection tasks. We proposed and compared two
different strategies for the replacement of individuals from
the subordinate populations into the main population, and
the performance of the approach was evaluated considering
different numbers of subordinate populations. Our proposal
was compared against a classical GA and different feature
ranking methods on several well-known datasets. Results show
that the ELIGA has the ability of performing a deeper search in
the solution space, exploiting promising areas by means of the
local search. This allows the ELIGA to provide significantly
smaller feature subsets, specially for datasets with a large
number of attributes, without deteriorating the classification
performance. Furthermore, the aggregative fitness function
proposed has the flexibility of allowing the use of any type of
classifier, and takes into account both accuracy and dimension-
ality for guiding the search towards the solutions of interest.

In future work we would evaluate and compare the per-
formance of ELIGA taking into account different parameters
settings, specially those regarding the subordinate populations.

Also, we would consider the use of a different and less
complex fitness function for the evaluation of the individuals
in the subordinate populations, in order to avoid the increase
of computational time. Further, we would be interested in
considering different and bigger datasets in the experiments,
performing comparisons with other algorithms in the state-of-
the-art.
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