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Abstract This work explores the effectiveness of the Intrinsic Mode Func-
tions (IMFs) of the speech signal, in estimating its Glottal Closure Instants
(GCIs). The IMFs of the speech signal, which are its AM-FM or oscillatory
components, are obtained from two similar non-linear and non-stationary sig-
nal analysis techniques - Improved Complete Ensemble Empirical Mode De-
composition with Adaptive Noise (ICEEMDAN), andModified Empirical Mode
Decomposition (MEMD). Both these techniques are advanced variants of the
original technique - Empirical Mode Decomposition (EMD). MEMD is much
faster than ICEEMDAN, whereas the latter curtails mode-mixing (a drawback
of EMD) more effectively. It is observed that the partial summation of a certain
subset of the IMFs results in a signal whose minima are aligned with the GCIs.
Based on this observation, two different methods are devised for estimating
the GCIs from the IMFs of ICEEMDAN and MEMD. The two methods are
captioned ICEEMDAN based GCIs Estimation (IGE) and MEMD based GCIs
Estimation (MGE). The results reveal that IGE and MGE provide consistent
and reliable estimates of the GCIs, compared to the state-of-the-art methods,
across different scenarios - clean, noisy, and telephone channel conditions.

Rajib Sharma (E-mail: s.rajib@iitg.ernet.in) · S.R.M. Prasanna (E-mail:
prasanna@iitg.ernet.in)
Signal Informatics Laboratory, Department of Electronics and Electrical Engineering,
Indian Institute of Technology Guwahati, Guwahati-781039, India.

Hugo Leonardo Rufiner (E-mail: lrufiner@sinc.unl.edu.ar)
Research Institute for Signals, Systems and Computational Intelligence – sinc(i ),
Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe
(3000), Argentina.

Gastón Schlotthauer (E-mail: gschlotthauer@conicet.gov.ar)
Laboratorio de Señales y Dinámicas no Lineales, CITER - CONICET,
Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde (3101), Entre Ríos,
Argentina.

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. S

ha
rm

a,
 S

. R
. M

. P
ra

sa
nn

a,
 H

. L
. R

uf
in

er
 &

 G
. S

ch
lo

tth
au

er
; "

D
et

ec
tio

n 
of

 th
e 

gl
ot

ta
l c

lo
su

re
 in

st
an

ts
 u

si
ng

 e
m

pi
ri

ca
l m

od
e 

de
co

m
po

si
tio

n"
C

ir
cu

its
, S

ys
te

m
s,

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g,
 2

01
7.



2 Rajib Sharma et al.

Keywords Glottal Closure Instants (GCIs) · Empirical Mode Decomposition
(EMD) · Improved Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (ICEEMDAN) · Modified Empirical Mode Decomposition
(MEMD) · Intrinsic Mode Functions (IMFs)

1 Introduction

The Glottal Closure Instants (GCIs), or the Epochs, are the instants at which
the speech production apparatus is significantly excited by an impulse-train
like signal, generated by the quasi-periodic and abrupt closure of the vocal
folds in the glottis, during the production of voiced speech [5,50,51,71]. Anal-
ysis of the speech signal around its GCIs saves processing time and leads to
more accurate analysis [71]. Accurate estimation of the GCIs helps in charac-
terizing voice-quality features, and enables extraction of important acoustic-
phonetic features such as glottal vibrations and formants [71]. As such, the
information regarding the GCIs is utilized in many practical applications like
prosodic speech modification [45], speech dereverberation [22], glottal flow es-
timation [67], speech synthesis [18,60], data-driven voice source modeling [62]
and causal-anticausal deconvolution of speech signals [7]. Henceforth, the de-
tection of the GCIs has assumed considerable importance in Speech Process-
ing [4, 15–17,32,46,48,49,58,59,63].

Based on the popular source-filter theory of speech production [5, 50, 51],
Linear Prediction (LP) analysis has been extensively used in the task of de-
tecting the GCIs [4, 16, 48, 49, 58, 59, 63]. The ideal expected output of LP
analysis is an LP filter with accurate estimation of the vocal tract resonances
and the spectral slope of voiced speech, and an LP residual or error signal,
which resembles a train of impulses separated by the time-varying pitch period
of the speech signal. However, in practicality, the LP residual turns out to be
a noisy signal, with relatively larger amplitudes in the vicinity of the GCIs.
The noisy characteristics of the LP residual may be attributed to three main
factors [4] :

(i) The inaccurate estimation of the coefficients of the poles, corresponding
to the resonances of the vocal tract system, which makes the LP residual to
have non-zero values at time-instants other than the GCIs.

(ii) The inaccurate estimation of the phase angles of the formants, which
results in large bipolar swings in the LP residual, around the GCIs.

(iii) The presence of strong anti-resonances in the speech production sys-
tem, which causes the large amplitudes in the LP residual to occur at time-
instants other than the GCIs.

These differences between the ideal excitation signal and the LP residual
reflect the mismatch between the true characteristics of the speech produc-
tion system, and that modeled by the source-filter theory using LP analy-
sis [5, 26, 27]. Nevertheless, due to lack of better alternatives, LP analysis,
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Detection of the Glottal Closure Instants using Empirical Mode Decomposition 3

and the LP residual, in particular, has remained the cornerstone in a mul-
titude of efforts for estimating the GCIs. One of the first methods to uti-
lize the LP residual in estimating the GCIs was the Epoch Filter (EF) [4].
In this method, the LP residual spectrum is whitened by multiplying with
a hanning window. The large swings around the GCIs, in the whitened LP
residual, are further reduced by taking its Hilbert envelope. Following this
method, algorithms like the Group Delay (GD) [58], Hilbert Envelope and
Group Delay (HEGD) [59], Dynamic Programing and Phase Slope Algorithm
(DYPSA) [48], Speech Event Detection using the Residual Excitation And a
Mean-based Signal (SEDREAMS) [16], Yet Another GCI detection Algorithm
(YAGA) [63], and Integrated Linear Prediction Residual using Plosion Index
(ILPR-PI) [49], all of which depend on LP analysis, have been developed.

The GD method evaluates the average slope of the phase spectrum, called
the phase slope function, at each time-instant of the LP residual, to construct
a sinusoid-like waveform, the positive-going zero-crossings of which coincides
with the GCIs. The HEGD and the DYPSA methods try to refine the GD
method by minimizing its computational cost, and the number of spurious
GCIs estimated from it, respectively. The YAGA is same as the DYPSA al-
gorithm but combines Wavelet Transform and LP analysis to derive a cleaner
signal than the LP residual as a representation of the excitation source. The
SEDREAMS algorithm uses a moving average filter to obtain a sinusoid-like
waveform from the speech signal, where prospective regions of the GCIs are
defined. Within these regions, the LP residual is used to estimate the GCIs.
The ILPR-PI combines LP analysis with a non-linear operator, called the Dy-
namic Plosion Index, for estimating the GCIs. The Zero Frequency Resonator
(ZFR) [46] is probably the first significant deviation from using LP analysis
for estimating the GCIs. By using a cascade of two marginally stable 0-Hz
resonators, on the pre-emphasized speech signal, the ZFR obtains an expo-
nentially increasing/decreasing output. When the trend of such an output is
removed in short segments of one to two pitch periods, the de-trended signal
resembles a sinusoidal signal, whose positive-going zero-crossings coincide with
the GCIs.

The above discussion reflects how useful a sinusoidal representation of the
source signal is for the purpose of detecting the GCIs. In many of the popular
methods, as discussed above, a sinusoid-like waveform is used directly or indi-
rectly for estimating the GCIs. As most of these methods rely on LP analysis,
they are prone to its limitations. The processing of the speech signal under the
arguable assumptions [5,26,27] of short-time stationarity and linearity simpli-
fies the analysis, but also induces errors. Such errors become significant in the
case of speech signals subjected to noise, and hence the performances of the
LP-analysis based techniques diminishes noticeably [49]. As an example, the
Identification Rate (IR) of DYPSA is reported to be around 95 % for speech
signals recorded in a clean noise-free environment, which falls to as low as 30
% when the same speech signals are corrupted by noise [49]. Similarly, when
the speech signals are subjected to telephone channel conditions, the perfor-
mances of the state-of-the-art methods are much worse. For example, the IR of

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. S

ha
rm

a,
 S

. R
. M

. P
ra

sa
nn

a,
 H

. L
. R

uf
in

er
 &

 G
. S

ch
lo

tth
au

er
; "

D
et

ec
tio

n 
of

 th
e 

gl
ot

ta
l c

lo
su

re
 in

st
an

ts
 u

si
ng

 e
m

pi
ri

ca
l m

od
e 

de
co

m
po

si
tio

n"
C

ir
cu

its
, S

ys
te

m
s,

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g,
 2

01
7.



4 Rajib Sharma et al.

ZFR is reported to be & 95 % even when the speech signals are corrupted by
noise, but drops to as low as 30 % for telephone-quality speech [49]. In other
words, while most of the popular techniques perform excellently under clean
and controlled data conditions, when the speech signal is subjected to external
influences they are not as effective [17, 49]. There are significant variations in
the performances of the techniques from one scenario to another [17, 49], as
we will observe in Section 6 of this work. To summarize :

• The state-of-the-art methods for detecting the GCIs are much less effec-
tive for speech signals which are not recorded in a clean and controlled
laboratory set-up. They are limited in adapting to changing conditions.

• Most of the popular methods utilize a sinusoid-like signal for detecting the
GCIs.

• Most of the popular methods rely on LP analysis, which forces the assump-
tions of short-time stationarity and linearity.

The above three observations shape the objective of this work - “to use some
non-linear and non-stationary signal analysis method, to obtain sinusoid-like
waveforms directly from the speech signal, and utilize them to develop a tech-
nique for detecting the GCIs which is robust to different scenarios”. The ob-
jective also signifies the novelty of this work.

With the aforementined objective in mind, we investigate, in this work, the
effectiveness of the various AM-FM or oscillatory components of the speech
signal (utterance), as obtained from Empirical Mode Decomposition (EMD)
[30,31,57], for the purpose of estimating the GCIs of its voiced regions. In par-
ticular, in this work, we study the utility of the AM-FM components, called
Intrinsic Mode Functions (IMFs), obtained from two variants of EMD, which
effectively curtail a drawback of EMD called mode-mixing [19,29–31,52,57,70].
The first variant, called the Improved Complete Ensemble Empirical Mode De-
composition with Adaptive Noise (ICEEMDAN) [13], is very effective in re-
ducing mode-mixing, but at a large time-cost. The other variant, the Modified
Empirical Mode Decomposition (MEMD) [55], reducesmode-mixing less effec-
tively but provides a great time-advantage. As such, this work proposes two
methods, but based on the same principle, which utilize the IMFs obtained
from ICEEMDAN and MEMD respectively, for estimating the GCIs of the
speech signal. The important contributions of this work may be summarized
as :

• Experimentally demonstrate, using synthetic speech, the ability of a subset
of IMFs in capturing epochal information. Experimentally verify the same
on natural speech.

• Propose a framework/principle for estimating the GCIs of the speech signal
from its IMFs.

• Propose two methods - one for the IMFs obtained from ICEEMDAN, and
the other for the IMFs obtained from MEMD - for estimating the GCIs
based on the proposed principle. The two methods are similar, though not
the same.
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Detection of the Glottal Closure Instants using Empirical Mode Decomposition 5

• Evaluate the performances of the two proposed methods on two different
databases - the CMU-Arctic [43], and the APLAWDW [3] ; and under dif-
ferent scenarios - clean, flat-band (White) noise, high-frequency (HFchan-
nel) noise, low-frequency (Babble) noise, band-pass filtered telephone chan-
nel conditions, and ITU-standard telephone channel conditions. Show that
the proposed methods are more consistent than the state-of-the-art meth-
ods across the databases and various scenarios.
The rest of the paper is organized as follows : Section 2 discusses the EMD,

ICEEMDAN, and MEMD algorithms used for decomposing the speech signal.
Section 3 discusses the principle used for detecting the GCIs, using the IMFs
of ICEEMDAN and MEMD. Sections 4 and 5 describe the methods used for
detecting the GCIs using the IMFs of ICEEMDAN and MEMD respectively.
Section 6 presents the results and compares them to the standard algorithms.
Section 7 concludes this work.

2 EMD vs. ICEEMDAN vs. MEMD

EMD is a non-linear and non-stationary data analysis technique, which is
able to extract meaningful components of any time-series dataset, called its
Intrinsic Mode Functions (IMFs), in the time-domain itself [31]. Such a de-
composition has been of precious value to the varied fields of signal process-
ing [6, 9–12, 23–25, 28, 30, 33–41, 47, 53, 54, 68]. The EMD algorithm is based
on a core process, called sifting, which progressively breaks down the signal
into its IMFs. The sifting process employs cubic spline interpolation iteratively
on a signal, to segregate it into a high-frequency component (IMF), and a
low-frequency component (outer residue). At first, the signal is broken down
into its first IMF, and its first outer residue. The first outer residue is again
segregated by applying the sifting process. This results in the second IMF
and the second outer residue. The second outer residue is then segregated,
and so on and so forth. Finally, an outer residue is obtained which cannot be
decomposed further. This is called the final residue, and represents the trend
of the signal. The sifting process is completely self sufficient in decomposing
the signal, and does not utilize any a priori basis, or pre-knowledge about the
characteristics of the signal. This makes EMD a truly data adaptive signal
decomposition method. The IMFs generated resemble AM-FM or oscillatory
signals, which have been observed to represent useful latent information em-
bedded in the signal [30,31]. Theoretically, the IMFs are supposed to be locally
symmetric. To generate an IMF from an outer residue, the sifting process em-
ploys multiple sifting iterations on it. There is no standard rule to determine
the appropriate number of sifting iterations, and a number of sifting criteria
have been proposed in the literature [57].

While the advantages of EMD has been well appreciated, it exhibits two
phenomena which inhibit its true capabilities. These two phenomena are known
as end-effects and mode-mixing [30, 31, 57]. For speech signals, which have
silence-regions at its terminating ends, the end-effects are not significant [30,
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6 Rajib Sharma et al.

31, 57]. However, mode-mixing, which is the presence of oscillations of dis-
parate frequencies in the same IMF, or conversely, the presence of the same
frequency oscillation in multiple IMFs, is a bottleneck. While many efforts have
been made to reduce mode-mixing, the most promising results came through
the infusion of noise to the signal. This development was termed Ensemble
Empirical Mode Decomposition (EEMD) [70]. In the recent years, efforts to
efficiently cancel out the noise infused into the signal has led to a number of
EEMD variants [13,64,72]. It was observed that using white noise in pairs of op-
posite polarities substantially reduces the effect of the artificially added noise.
This development was termed Complementary Ensemble Empirical Mode De-
composition (CEEMD) [72]. However, the problem that the number of IMFs
produced could still be different for the different EMD processes of an EEMD
or CEEMD decomposition still existed. To circumvent this problem, an algo-
rithm was designed, which not only decomposes the signal but also the white
noise realizations parallely with it. The IMFs obtained from the white noise
realizations, which could be interpreted as correlated noise signals, are then
fused with the outer residue signal, at the beginning of each sifting process.
The signal IMFs are obtained progressively after averaging the results at each
stage. This algorithm was termed Complete Ensemble Empirical Mode De-
composition with Adaptive Noise (CEEMDAN) [64]. However, it was observed
that CEEMDAN sometimes produced some high-frequency spurious IMFs.
To overcome this problem, the Improved Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (ICEEMDAN) [13] was developed, which
makes some subtle but effective modifications to the CEEMDAN algorithm.

The biggest drawback of EEMD and its variants is their time-efficiency
- the algorithms need to process multiple copies of the signal independently,
to finally extract its IMFs. Henceforth, with the aim of extracting IMFs with
reduced mode-mixing, but with significantly lower time-cost, the Modified Em-
pirical Mode Decomposition (MEMD) [55] has been recently proposed. The
MEMD algorithm (denoted as M2-EMD (D2) in [55]) makes subtle changes
to the sifting process, resulting in reduced mode-mixing.

Thus, given a digital speech signal, s(n), EMD/ICEEMDAN/MEMD de-
composes it into a small number of IMFs, given by,

s(n) = rM (n) +
M∑
k=1

hk(n) =
M+1∑
k=1

hk(n) (1)

In the above equation, hk(n) represents the kth IMF of s(n), and M the total
number of IMFs generated. The signal rM (n) = hM+1(n) represents the final
residue or trend of the signal. Ideally, the decomposition is to be stopped when
the outer residue takes the form of a trend, i.e., the number of extrema in rM (n)
is two or less [29–31, 57]. Practically, however, the decomposition is stopped
when a user-defined maximum number of IMFs, M , has been extracted. This
is done in order to avoid unnecessary generation of low-frequency trend-like
IMFs [57].
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Detection of the Glottal Closure Instants using Empirical Mode Decomposition 7

It has been observed with experiments on fractional Gaussian noise (fGn)
that EMD (and hence ICEEMDAN and MEMD) behaves as a data dependent
dyadic filterbank [20,21,30,69]. And this characteristic is well adhered to when
the number of sifting iterations, N , is kept around ten [66, 70]. Henceforth,
in this work, N = 10, is used in every sifting process in the EMD/MEMD
algorithm. For the ICEEMDAN algorithm, however, N is determined by the
local-global stopping criterion. Nevertheless, the maximum number of itera-
tions per sifting process is not allowed to exceed 15, i.e., N ≤ 15. Again, the
initial ratio of the standard deviation of white noise to that of the signal is
taken as ε0 = 0.2 [1, 2, 13, 52, 57]. Further, in this work, L = 20 white noise
realizations are used for the ICEEMDAN algorithm.
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Fig. 1: The first five IMFs, obtained from a speech signal, using EMD (left column),
MEMD (middle column), and ICEEMDAN (right column). The second plot in each
column shows the EGG signal corresponding to the speech signal.

All experiments in this work are conducted on digital speech signals having
sampling frequency (Fs) of 8 kHz. Assuming that the three algorithms exhibit
an ideal filterbank nature, for an 8 kHz speech signal, the primary frequency
reflected in IMFk will have an upper-bound of 4000/(2k−1) Hz. Thus, beyond
IMF6, the IMFs represent very low-frequency trend-like signals, which are
below the lower-limit of human pitch frequency. Therefore, we restrict the
decomposition to ten components only (M = 9) for all the three algorithms,
which will take care of any strong deviation from the ideal nature. In this
work, for simplicity, we refer to the final residue as the last (tenth) IMF.
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8 Rajib Sharma et al.

Thus, equation (1) reduces to,

s(n) = r9(n) +
9∑
k=1

hk(n) =
10∑
k=1

hk(n) (2)

Table 1: Computational complexity of EMD, MEMD and ICEEMDAN. Time (in
seconds) taken in decomposing a speech signal, of ∼4 s duration, into ten components,
by EMD, MEMD, and ICEEMDAN.

Method EMD MEMD ICEEMDAN

Time (s) 0.82 0.90 62.76

Figure 1 shows the first five IMFs of a short segment of a speech signal taken
from the CMU-Arctic database [43] after decomposition by EMD, MEMD, and
ICEEMDAN. The presence of mode-mixing is easily observed in the case of
EMD, particularly in IMF1. MEMD exhibits substantially lesser mode-mixing
in its IMFs, but the best decomposition is provided by ICEEMDAN. One may
also observe the periodic nature of the glottal source, represented by IMF3
in the case of EMD; IMF5 in the case of MEMD; and IMF4 in the case of
ICEEMDAN [56]. This is reflected in the similarity of these IMFs with the
ElectroGlottoGraph (EGG) signal, which is a measure of the periodic vibra-
tions of the vocal folds, during the production of the speech signal. Figure
1 clearly demonstrates the superiority of MEMD and ICEEMDAN in repre-
senting the glottal source. Table 1 shows the time taken by each of the three
methods in decomposing the speech signal. The algorithms are run in MAT-
LAB, in desktop mode, in a machine with 8 GB RAM, using Intel quad-core i7
processor, of 2.9 GHz clock frequency. As the table indicates, MEMD provides
the best trade-off between reducing mode-mixing and simultaneously main-
taining a low time-cost. As such, in this work, only ICEEMDAN and MEMD
are utilized in the experiments for extracting the GCIs of the speech signal.

3 Principle of estimating the GCIs

Let us consider a synthetic voiced speech signal, s(n) = eg(n) ∗ h(n), con-
structed using the source-filter theory, at a sampling frequency of Fs = 8 kHz.
The input excitation, eg(n), is modelled as a uniform train of impulses of unit
strength, having pitch or fundamental frequency (F0) equal to 100 Hz.

eg(n) = −
∑
m∈Z

δ(n−mFs
F0

) (3)

The impulse response of the vocal tract filter, h(n), is modelled as a cascade of
four resonators, simulating the four principal formants. The resonant peaks are
considered at 700, 1200, 2400 and 3600 Hz, their bandwiths being 70, 140, 210
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Detection of the Glottal Closure Instants using Empirical Mode Decomposition 9

and 280 Hz respectively. The low-pass filter nature of the glottis, and the high-
pass filter nature of the lips, are also included in h(n). Figure 2(a) shows the
speech signal so constructed, and Figure 2(b)-(h) the first seven IMFs derived
from it using ICEEMDAN. IMFs 8-10 are not shown in the figure. It is evident
from the figure that as the order of the IMF increases the frequency of the
dominant oscillation manifested in it decreases. The mean frequency (Fm) of
each IMF, which is a measure of the dominant frequency reflected in the IMF,
is mentioned above the plot of the IMF. The mean frequency of IMFk, denoted
as Fmk , is calculated from its power spectrum (squared magnitude spectrum),
Sk(f), as,

Fmk =
Fs/2∑
f=0

f × Sk(f)∑Fs/2
f=0 Sk(f)

, k = 1, 2, ..., 7 (4)

In the above equation, f represents the analog frequencies corresponding to
the discrete frequencies of the Discrete Fourier Transform (DFT) spectrum,
from which the power spectrum is evaluated.
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Fig. 2: (a) A segment of a synthesized vowel-like speech signal s(n) having F0 = 100
Hz ; (b)-(h) are IMFs 1-7 respectively obtained from ICEEMDAN of s(n). IMFs 8-10
are not shown ; (i) sum of IMFs 2-6 ; (j) sum of IMFs 3-6 ; (k) sum of IMFs 4-6 ; (l)
sum of IMFs 5-6 ; Dashed vertical lines indicate the impulse excitation, eg(n). Dotted
rectangles in (k) and (l) indicate regions of search for the GCIs.

It can be seen from Figure 2 that as the Fm of the IMF decreases, it
becomes more sinusoidal. The vertical dashed lines in Figure 2(b)-(l) indicate
the input impulse-excitation, eg(n). It can be observed that the IMFs intersect
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10 Rajib Sharma et al.

eg(n) at different points of their near-sinusoidal curves, i.e, the IMFs have a
different phase-shift with respect to the impulse locations. Out of these seven
IMFs, the higher-frequency IMFs, IMF1 and IMF2, seem to be aligned with the
impulse excitation instants at some of their minima locations. However, there
are other minima in the vicinity which could cause ambiguity. Similarly, IMF4
also intersects eg(n) at some of its minima locations. However, it has stronger
adjacent minima, which, as we will see later, might make the selection of the
target minima difficult. IMF3, Figure 2(d), as such, provides the best trade-off.
IMF3 intersects eg(n) at its prominent minima, with good accuracy, and with
much lesser ambiguity with adjacent minima, compared to IMFs 1, 2 and 4.
As such, IMF3 may be described as an oscillatory or an imperfect sinusoidal
signal, some of whose minima-locations coincide with the impulse locations of
the input excitation. Thus, given an impulse location, {lrefm = mFs

F0
, m ∈ Z},

IMF3 may be represented as,

h3(n) ≈ a3(n) cos[2π f3

Fs
(n− lrefm ) + π] , (5)

where a3(n) is the time-varying amplitude envelope of h3(n), and f3 the av-
erage frequency of the sinusoid over time. It is interesting to note that IMF5,
Figure 2(f), represents a near sinusoid with Fm5 = F0 = 100 Hz, which shows
the ability of ICEEMDAN to characterize glottal activity [56].

Figure 2(i)-(l) represent the sum of the IMFs 2−6, 3−6, 4−6 and 5−6, re-
spectively. From a different perspective, Figure 2(i)-(l) also represent the sum
of IMFs having different frequency content. Thus, Figure 2(l) represents the
sum of the IMFs having mean frequency 50 Hz ≤ Fm ≤ F0 = 100 Hz. Figure
2(k) represents the same for 50 Hz ≤ Fm ≤ 2× F0 = 200 Hz, Figure 2(j) for
50 Hz ≤ Fm ≤ 5× F0 = 500 Hz, and Figure 2(i) for 50 Hz ≤ Fm ≤ 8× F0 =
800 Hz. As normal human speech does not have pitch frequency below 50 Hz,
hence, the IMFs with Fm below 50 Hz, which are trend-like low amplitude
signals, are left out of the summation. It can be seen that just like IMF3, the
sum of IMFs starting from IMF3, Figure 2(j), manifests the impulse locations
at its prominent minima, but with potentially less spurious minima in the
neighbourhood. Thus, the signal represented by Figure 2(j) provides a better
candidate for estimating the impulse locations of eg(n), than that by IMF3,
Figure 2(d). The challenge now is to identify the minima which coincide with
the impulse train, amongst the multitude of minima in the auxiliary signal.
For this purpose, we need to look at Figure 2(k),(l). It can be observed that
in either of these two signals, the impulse locations lie within the regions de-
fined by their positive and negative zero-crossings, as represented by dotted
rectangles. Either of these signals, thus, represents a low-resolution signal for
identifying the excitation instants. Of course, in the case of Figure 2(k), some
spurious regions will also be detected. Such regions need to be eliminated by a
post processing mechanism, described later. However, in principle, once such
regions are identified, the signal represented by Figure 2(j) may be used for
high-resolution analysis. The location of the minimum value of the signal in
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Detection of the Glottal Closure Instants using Empirical Mode Decomposition 11

Figure 2(j), within the identified regions, gives the instants of impulse excita-
tion.

Having seen how ICEEMDAN can be used as a time-domain multi-resolution
tool for synthetic speech, we apply it to a real/natural speech signal. Figure
3 shows the same plots as that of Figure 2, but the IMFs here are extracted
from a randomly selected speech file (Fs = 8 kHz) from the CMU-Arctic
database [43]. Figure 3(a) shows the speech signal. Figure 3(b) shows the dif-
ference EGG (dEGG) signal, corresponding to the speech signal. The dEGG
signal is the first difference of the EGG signal, recorded simultaneously with
the speech signal. A peak detection algorithm is used to detect the large neg-
ative peaks of the dEGG signal, as shown in Figure 3(b), which indicate the
instants of significant excitation of the vocal tract [46]. These are taken as the
true or reference GCIs, and indicated by the vertical dashed lines in Figure
3(b)-(n). The average distance between a pair of consecutive reference GCIs
gives us the reference time-period, the inverse of which gives the reference
pitch frequency (F ref0 ). For the given speech signal, F ref0 = 116 Hz. Figure
3(c)-(j) represent the first eight IMFs of the speech signal. As in the synthetic
speech case, the Fms of the IMFs, listed above their plots, decrease monotoni-
cally with the IMF order. Correspondingly, the IMFs assume a more sinusoidal
shape.
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Fig. 3: (a) A natural speech signal s(n) having pitch frequency F ref
0 = 116 Hz ; (b)

dEGG corresponding to s(n). The negative peaks indicate the GCIs (c)-(j) are IMFs
1-8 respectively obtained from ICEEMDAN of s(n). IMFs 9 and 10 are not shown ;
(k) sum of IMFs 2-6 ; (l) sum of IMFs 3-6 ; (m) sum of IMFs 4-6 ; (n) sum of IMFs
5-6 ; Dashed vertical lines indicate the GCIs. Dotted rectangles in (k) and (l) indicate
regions of search for the GCIs.
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12 Rajib Sharma et al.

It can be seen from Figure 3 that the GCIs correspond to different points
in the near-sinusoidal IMFs. Amongst the IMFs, IMF3, Figure 3(e), manifest
the GCIs at some of its minima, with the least ambiguity - it seems the best
candidate for GCIs estimation amongst the IMFs. Figure 3(k)-(n) represent
the sum of IMFs 2−6, 3−6, 4−6 and 5−6, respectively. It may be observed that
like IMF3, the sum of IMFs 3-6, represented by Figure 3(l), also intersects the
GCIs at some of its minima locations. It, however, has less spurious minima
and is a better candidate for detecting the GCIs than IMF3 itself. From a
frequency domain perspective, Figure 3(l) represents the sum of IMFs having
50 Hz ≤ Fm ≤ 5 × F ref0 . Similarly, Figure 3(m) represents the sum of IMFs
having 50 Hz ≤ Fm ≤ 2 × F ref0 , and Figure 3(n) the sum of IMFs having 50
Hz ≤ Fm . F ref0 , F 5

m = 129 Hz ≈ F ref0 = 116 Hz. As in the synthetic case,
either of the signals represented by Figure 3(m),(n) can be used for estimating
the regions of search for the GCIs. Once such regions are identified, the signal
in Figure 3(l) can be used to estimate the exact locations of the GCIs.

Expectedly, the preceding observations pertaining to the IMFs obtained
from ICEEMDAN are also found to be true for the IMFs obtained from
MEMD. Hence, figures equivalent to Figures 2 and 3, but for the IMFs obtained
from MEMD are not included in this manuscript. However, while MEMD pro-
vides a significant time-advantage with respect to ICEEMDAN, it is compar-
atively less effective in reducing mode-mixing. As such, the sum of the lower-
frequency IMFs are not very effective in providing us the regions of search for
the GCIs, unlike in the case of ICEEMDAN. Therefore, we would require to
devise an alternate methodology for finding the regions of search of the GCIs,
in the case of MEMD.

Thus, in the case of both ICEEMDAN and MEMD, the partial sum of
the IMFs, having their mean frequencies in the range { 50 Hz ≤ Fm ≤ 5 ×
F ref0 }, provides us with a sinusoid-like signal, some of whose minima locations
manifest the GCIs. We may call this signal, resulting from the partial sum of
the IMFs, as the Source Enhanced and De-trended Speech (SEDS) signal.

4 Procedure for ICEEMDAN based GCIs Estimation (IGE)

Based on the principle described in the previous section, the following proce-
dure is employed to detect the GCIs from the speech signal.

• (i) Decompose s(n) using ICEEMDAN. Construct the de-trended speech
signal, sd(n).

s(n) =
10∑
k=1

hk(n), sd(n) =
{ ∑

k

hk(n)|Fmk > 50 Hz
}

(6)

• (ii) Estimate the average pitch frequency, F est0 , from sd(n). In this work,
the Robust Algorithm for Pitch Tracking (RAPT) [61] method is used to
estimate the pitch frequencies of voiced frames of the de-trended speech
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Detection of the Glottal Closure Instants using Empirical Mode Decomposition 13

signal. Frames of 20 ms, with 50% overlap, are used. F est0 represents the
average pitch frequency over all the voiced frames.

• (iii) Sum up the components with 50 Hz ≤ Fm ≤ 2× F est0 .

sR(n) =
∑
k

hk(n) ∀
{
k | 50 Hz ≤ Fmk ≤ 2× F est0

}
(7)

• (iv) Detect the negative-going and positive-going zero-crossings of sR(n).
The region from a given negative-going zero-crossing to the closest positive-
going zero-crossing to its right, is a region of search. Let {Rr, r = 1, 2, ..., Iige}
represent the regions of search, Iige being the total number of regions.

• (v) Discard the first IMF, and sum up the rest of the components with 50
Hz ≤ Fm ≤ 5× F est0 . This provides us with the SEDS signal.

se(n) =
∑
k≥2

hk(n) ∀
{
k | 50 Hz ≤ Fmk ≤ 5× F est0

}
(8)

• (vi) In any rth region of search (Rr), find the location of minimum ampli-
tude in se(n). These locations provide the initial estimates of the GCIs,
{lir, r = 1, 2, ..., Iige}.

Figure 4 shows the GCIs estimated using the above process from an arbi-
trary speech file. The dashed stem lines indicate the GCIs estimates obtained
by the aforementioned process. However, as seen in Figure 4(d), along with the
actual GCIs, some spurious GCIs are also estimated. The reason for such spu-
rious estimates is the imperfect sinusoidal nature of the IMFs. The existence
of false estimates is a familiar problem in many GCI estimation methods, and
needs further refinement [48, 58, 59, 63]. To eradicate such false estimates, we
apply the following simple methodology.

• (i) For the rth estimated GCI, lir, consider a region,

lir −W/2 < Lr < lir +W/2, (9)

where W = ν
Fs
F est0

, ν ∈ R+ (10)

The size of the window, W , is determined by the factor ν, and the effect
of this parameter is discussed in the results section.

• (ii) Within any pth region, Lp, find the GCIs estimated within it, i.e, find
the set

{(lir, vir) | (lir, vir) ∈ Lp, r = 1, 2, ..., Iige}, (11)
where vir = se(lir) (12)

Compare the amplitudes, vir, of this set. If the amplitude vip is the minimum
amplitude in this set, then lip is considered as a legitimate GCI, otherwise
it is rejected as a spurious one. May the final estimated GCIs be denoted
by {lestr , r = 1, 2, ..., Fige ≤ Iige}.
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Fig. 4: (a) Segment of a speech signal from the CMU-Arctic database ; (b) dEGG
signal corresponding to the speech signal ; (c) sR(n) obtained from the IMFs of ICEEM-
DAN. The search regions are denoted by {Rr, r = 1, 2, ..., 5} ; (d) se(n). The estimated
GCIs within {Rr, r = 1, 2, .., 5} are denoted by dashed stem lines ; (e) se(n). Spuri-
ous and correct GCIs estimates are indicated by cross and ticks respectively. Dotted
rectangles indicate the Lr regions of estimated spurious GCIs. Dash-dotted rectangles
indicate the Lr regions of estimated correct GCIs.

Figure 4(e) shows how the above process works. Let us consider the first
(leftmost) GCI estimate, li1. It has a region L1 specified by the window W .
There are two GCIs estimates within L1. The amplitude, vi1, of se(n) at li1,
is lesser than that of the other GCI estimated within the region. Hence, li1 is
considered a correct GCI estimate. Now, let us consider the next GCI estimate,
li2. Clearly, it is a spurious one, and hence marked X. There are two other
GCIs apart from li2 within the region L2. Amongst these three GCIs locations,
since the amplitude, vi2, of se(n) at the spurious GCI location, li2, is not the
minimum, it is rejected. Next, consider the third GCI estimate, li3, which is
a correct estimate. There are two more GCIs estimated within the region L3.
In this case, the amplitude, vi3, of se(n) at li3, is the minimum amongst the
amplitudes at all the three GCIs estimates within L3. Hence, li3 is accepted as
a correct estimate. The last two estimates are verified in the same fashion.

The entire process may be termed as ICEEMDAN based GCIs Estimation
(IGE).
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Detection of the Glottal Closure Instants using Empirical Mode Decomposition 15

5 Procedure for MEMD based GCIs Estimation (MGE)

As MEMD is comparatively less effective than ICEEMDAN in reducing mode-
mixing, the sum of lower-frequency IMFs are not very effective in providing us
the regions of search for the GCIs. Therefore, we devise an alternate method-
ology for finding the regions of search of the GCIs, based on which the SEDS
will provide the high-resolution estimates of the GCIs.

• (i) Decompose the speech signal s(n) using MEMD. Construct the de-
trended speech signal, sd(n).

s(n) =
10∑
k=1

hk(n), sd(n) =
{ ∑

k

hk(n)|Fmk > 50 Hz
}

(13)

• (ii) Estimate the average pitch frequency, F est0 , from sd(n). In this work,
the RAPT algorithm is used to estimate the pitch frequencies of voiced
frames of the de-trended speech signal. Frames of 20 ms, with 50% overlap,
are used. F est0 represents the average pitch frequency over all the voiced
frames.

• (iii) Let sh(n) = ∆∆sd(n), where ∆ indicates a difference operation. Let
nd denote the minima locations of sh(n). Construct the envelope, ed(n), of
sd(n), by using cubic spline interpolation, with the points of interpolation
being {nd, sd(nd)}.

• (iv) Detect the negative-going and positive-going zero-crossings of ed(n).
The region from a given negative-going zero-crossing to the closest positive-
going zero-crossing to its right, provides a prospective initial region of
search. Let {Rir, r = 1, 2, ..., Imge} represent the initial regions, Imge being
the total number of regions.

• (v) In every {Rir, r = 1, 2, ..., Imge}, find the point of minimum amplitude
in ed(n), (nir, vir), where, vir = ed(nir).

• (vi) For a given (nir, vir), r = 1, 2, ..., Imge, consider a window, Lr, given by

nir −W/2 < Lr < nir +W/2, (14)

where W = ν
Fs
F est0

, ν ∈ R+ (15)

The size of the window, W , is determined by the factor ν, and the effect
of this parameter is discussed in the results section.

• (vii) Within any given pth window, Lp, find the set {(nir, vir) | (nir, vir) ∈
Lp, r = 1, 2, ..., Imge}. Compare the amplitudes, vir, of this set. If vip is
the minimum amplitude in this set, then the region, Rip, is considered as a
legitimate region of search, otherwise it is rejected as a spurious one. May
the final set of regions of search be denoted by {Rfr , r = 1, 2, ..., Fmge ≤
Imge}.
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Fig. 5: (a) Segment of a speech signal from the CMU-Arctic database ; (b) dEGG
signal corresponding to the speech signal. The dashed vertical lines indicate the ref-
erence GCIs ; (c) ed(n). The dashed vertical lines indicate the reference GCIs. The
dotted rectangles indicate the initial regions of search, {Ri

r, r = 1, 2, ..., 5} ; (d) ed(n). The
vertical arrows indicate the points of minimimum amplitude, {(ni

r, v
i
r), r = 1, 2, ..., 5}, cor-

responding to the initial regions. The dashed rectangles indicate the windows, Li
1, L

i
3,

and Li
5. The dotted rectangles indicate the windows, Li

2, and L
i
4 ; (e) ed(n). The dotted

rectangles indicate the final regions of search, {Rf
r , r = 1, 2, 3}.

Figure 5 demonstrates the working of the above process. As may be ob-
served from Figure 5(c), ed(n), represents a symmetric smooth envelope of
the given speech signal, Figure 5(a). There are five initial regions of search
in ed(n), out of which three regions contain the GCIs (indicated by the ver-
tical dashed lines), and the other two are spurious. The five minimum value
points corresponding to these five regions are indicated by arrows in Figure
4(d). Centered around each minimum value point, a symmetric window of
width W is considered. For the first (leftmost) point, (ni1, vi1), the window
contains the points {(ni1, vi1), (ni2, vi2)}. As vi1 = min{vi1, vi2}, Ri1 is consid-
ered as a legitimate region. For the second point, (ni2, vi2), the window con-
tains the points {(ni1, vi1), (ni2, vi2), (ni3, vi3)}. As vi2 6= min{vi1, vi2, vi3}, Ri2
is considered as a spurious region. In the same manner, the legitimacy of
the remaining regions, are evaluated. Finally, three legitimate regions remain,
{Rf1 , R

f
2 , R

f
3} = {Ri1, Ri3, Ri5}.

Having derived the regions, {Rfr , r = 1, 2, ..., Fmge}, where the GCIs are
ought to be contained, the following procedure is applied :
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Fig. 6: (a) Segment of a speech signal from the CMU-Arctic database ; (b) dEGG
signal corresponding to the speech signal. The dashed vertical lines indicate the ref-
erence GCIs ; (c) ed(n). The dashed vertical lines indicate the reference GCIs. The
dotted rectangles indicate the final regions of search ; (d) se(n). The dotted rectangles
indicate the final regions of search. The circles indicate the minimum amplitude points,
within the final regions of search, which give the estimates of the GCIs.

• (i) Discard the first IMF, and sum up the rest of the components with 50
Hz ≤ Fm ≤ 5× F est0 . This results in the SEDS signal, se(n).

se(n) =
∑
k≥2

hk(n) ∀
{
k | 50 Hz ≤ Fmk ≤ 5× F est0

}
(16)

• (ii) In the regions of search, {Rfr , r = 1, 2, ..., Fmge}, find the correspond-
ing locations of minimum amplitude in se(n). These locations, {lestr , r =
1, 2, ..., Fmge}, are the estimates of the GCIs.

Figure 6(d) shows the SEDS signal, se(n), corresponding to the given
speech signal. The final regions of search, as estimated from the speech enve-
lope signal, ed(n), shown in Figure 6(c), provide the time intervals where the
GCIs are contained. Then, within these intervals (shown by dotted rectangles),
the points of minimum value (shown by circles) of the SEDS signal may be
associated with the GCIs.

This complete process of estimating the GCIs is termed as MEMD based
GCIs Estimation (MGE).
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Table 2: Description of the databases used. The CMU-Arctic database consists of five
speakers, and the APLAWDW database consists of ten speakers.

Database
CMU-Arctic
(5 speakers)

APLAWDW
(10 speakers)

Speakers
BDL

(male)
JMK
(male)

SLT
(female)

EDX
(male)

KDT
(male)

All
(5 male , 5 female)

Number of
Utterances

∼1100 ∼1100 ∼1100 ∼1900 ∼500
∼50

per speaker
Average
Duration

∼3 s ∼3 s ∼3 s ∼1 s ∼2 s ∼3 s

6 Results and Discussion

Two databases, the CMU-Arctic database [43], and the APLAWDW database
[3], are considered for this work. The CMU-Arctic database consists of 5 speak-
ers and the APLAWDW database consists of 10 speakers. The databases are
described in Table 2. All utterances (from both the databases) considered in
this work are of Fs = 8 kHz.

In order to evaluate the performances of the proposed IGE and MGE al-
gorithms five objective metrics have been used [16, 17, 46, 48, 49, 59, 63]. They
are described below :
• Identification rate (IR) : The percentage of glottal or larynx cycles in

which only one GCI is estimated.
• Miss rate (MR) : The percentage of glottal cycles in which only no GCI

is estimated.
• False alarm rate (FAR) : The percentage of glottal cycles in which more

than one GCI is estimated.
• Identification accuracy (IA) : The standard deviation of the timing or

identification error, ζ.
• Accuracy to ± 0.25 ms (IA′) : The percentage of GCIs which are within

a timing error bound of ± 0.25 ms.
Figure 7 aids in understanding the metrics used for evaluation. Out of

the five metrics, IR, MR, and FAR reflect the reliability of the estimation
technique, whereas IA and IA′ represent the accuracy of the technique. Higher
values of IR and IA′, and lower values of MR, FAR, and IA are desirable. Using
these five metrics, the proposed algorithms are compared with five competitive
state-of-the-art algorithms : DYPSA, YAGA, SEDREAMS, ZFR, and ILPR-
PI.

The performances of the various algorithms are evaluated not only for clean
speech, but speech degraded by White, Babble and HFchannel noise [65], with
the signal to noise ratio (SNR) being varied from 0 to 20 dB, in steps of 5
dB. Apart from this, the performances for speech signals affected by telephone
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Fig. 7: Characterization of the estimates of the GCIs showing three larynx or glottal
cycles, with examples of each possible outcome from the estimates [16, 17, 46, 48, 49,
59,63]. The solid arrows indicate the reference GCIs, obtained from the dEGG signal.
The dotted arrows indicate the GCIs estimated. ζ is the identification error.

channel effects are also evaluated. Two types of telephone-quality speech are
considered in this work :
• T-1 : The T-1 type of telephone-quality speech has been derived by band-

pass filtering the speech signal between 300 - 3400 Hz, using the VOICE-
BOX toolbox [8]. The magnitude response of the filter is given by a raised
cosine function in the range of 0-300 Hz and 3400-4000 Hz, and unity be-
tween 300 - 3400 Hz [8, 49].

• T-2 : The T-2 type of telephone-quality speech has been derived by band-
pass filtering the speech signal in accordance with ITU standards [42].

6.1 Effect of ν in the GCIs estimation performance

As discussed in the previous section, the existence of false alarms, i.e., false
estimates of the GCIs, is almost inevitable in most of the GCIs estimation
methods. In the case of IGE (MGE) too, such estimates (regions in the case
of MGE) are obtained initially along with correct estimates (regions in the
case of MGE). For eliminating such estimates (regions in the case of MGE),
we employ a shifting window of size W , which is dependent on an adjustable
parameter, ν. Hence, the effect of ν on the overall performance of the IGE
and MGE algorithms needs to be studied, and its optimum range needs to be
found out. It also needs to be investigated if the optimum range of ν varies
for the two databases. For this purpose, the IR, MR, and FAR for the two
methods are obtained for different values of ν ∈ [0.5, 2], for the two databases
separately. Only clean speech signals are used for this study.

Figure 8 shows the plots of the three metrics for IGE, and Figure 9 shows
the same for MGE. Separate plots are shown for the CMU-Arctic and APLAWDW
databases. As can be observed from Figure 8, the IRs for both the databases
obtain saturation somewhere between ν = 1.1 to ν = 1.5. The same is ob-
served for MGE, as shown in Figure 9. In this range, for both the algorithms,
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Fig. 8: Effect of the window size parameter, ν, in estimating the GCIs using the IGE
algorithm. Clean speech signals from the CMU-Arctic and APLAWDW databases are
used.
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Fig. 9: Effect of the window size parameter, ν, in estimating the GCIs using the MGE
algorithm. Clean speech signals from the CMU-Arctic and APLAWDW databases are
used.

and both the databases, the FAR drops sharply, with little increase in MR.
This means that, assuming F est0 is a reasonably accurate estimate of the ac-
tual F0, the window size should be slightly larger than the pitch period (the
inverse of F0), to eliminate the false estimates/regions, without adversely ef-
fecting the overall performance of the algorithm. Larger values of ν results in
a large window, which not only eliminates false estimates/regions, but also
the correct ones. Smaller values of ν, on the contrary, are not very efficient in
eliminating the false estimates. It is also important to notice that the optimal
range of ν is nearly the same for both the databases. Hence, the window size
may be considered independent both in terms of the methodology employed
to estimate the GCIs, and the change in dataset.

As such, using ν ∈ [1.1, 1.5] should give us results which is close to the
best possible performance of the algorithm. Henceforth, ν = 1.4 is used for
estimating the GCIs by both IGE and MGE in this work, under all conditions.
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6.2 Performances under clean and telephone channel conditions

Table 3: Robustness of the GCIs estimation methods, according to the five perfor-
mance metrics, for clean speech signals.

Database Metric IGE MGE DYPSA YAGA SEDREAMS ZFR ILPR-PI

BDL (CMU)

IR(%) 97.59 97.63 94.96 97.82 97.51 97.12 98.52
MR(%) 0.68 1.49 2.7 0.71 1.12 1.41 0.62
FAR(%) 1.73 0.89 2.34 1.47 1.37 1.47 0.86
IA(ms) 0.33 0.44 0.52 0.41 0.4 0.41 0.31
IA’(%) 71.34 63.34 78.6 84.5 83.8 82.62 87.3

JMK (CMU)

IR(%) 98.93 98.9 97.5 98.76 98.56 95.83 98.7
MR(%) 0.35 0.4 1.4 0.55 0.48 3.81 0.59
FAR(%) 0.72 0.71 1.1 0.69 0.96 0.36 0.71
IA(ms) 0.53 0.53 0.57 0.51 0.54 0.72 0.35
IA’(%) 58.67 57.61 73.56 74.52 73.6 36.76 83.7

SLT (CMU)

IR(%) 99.39 99.28 97.15 98.15 98.45 98.96 98.83
MR(%) 0.1 0.23 1.75 0.47 0.31 0.49 0.56
FAR(%) 0.52 0.49 1.1 1.38 1.24 0.55 0.61
IA(ms) 0.23 0.24 0.56 0.39 0.41 0.32 0.34
IA’(%) 77.63 75.79 67.16 81.23 74.9 78.8 80.78

EDX (CMU)

IR(%) 96.74 94.19 80.03 95 98.16 91.5 97.85
MR(%) 0.93 3.63 2.5 0.9 0.8 7.1 0.9
FAR(%) 2.33 2.18 17.47 4.1 1.04 1.4 1.25
IA(ms) 0.79 0.97 0.66 0.7 0.53 0.8 0.53
IA’(%) 36.87 34.07 82.1 83.32 85.2 50.58 85.6

KDT (CMU)

IR(%) 94.49 91.7 95.1 96.51 96.9 84.67 97.12
MR(%) 4.65 7.73 2.1 0.91 1.12 8.86 0.21
FAR(%) 0.86 0.56 2.8 2.58 1.98 6.47 2.67
IA(ms) 0.93 1.05 0.56 0.58 0.53 0.83 0.37
IA’(%) 50.92 33.23 82.66 88.15 84.12 38.12 90.15

APLAWDW

IR(%) 95.05 94.46 94.5 96.9 96.8 96.75 95.5
MR(%) 1.72 1.35 2.5 1.1 1.8 1.7 1.9
FAR(%) 3.23 4.18 3 2 1.4 1.55 2.6
IA(ms) 0.39 0.42 0.8 0.69 0.62 0.75 0.6
IA’(%) 64.86 59.28 68.15 77.5 78.12 49.21 80.15

The performances of IGE, MGE, and the five state-of-the-art algorithms
are first evaluated for clean speech signals of the the CMU-Arctic and APLAWDW
databases. Table 3 shows the five performance metrics for the algorithms. The
five speakers of the CMU-Arctic database are shown individually, for bet-
ter analysis. The best performances are highlighted in bold-font. As can be
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observed from the table, among the state-of-the art algorithms YAGA, SE-
DREAMS and ILPR-PI provide consistent performance across the different
speakers of the CMU-Arctic database. DYPSA and ZFR, on the other hand,
show some fluctuations in performance with respect to the change in speakers.
The performance of DYPSA drops starkly for EDX, and that of ZFR drops
for KDT. The performances of IGE are relatively invariant to speaker change,
similar to that of YAGA, SEDREAMS and ILPR-PI. The performances of
MGE are worse for the KDT and EDX speakers, compared to that of the
other speakers, even though the variation in performance is not as alarming
as that of DYPSA and ZFR. The low FAR values, in the case of both IGE
and MGE, prove how well the methods for eliminating spurious GCIs work.

Overall, the performances of IGE and MGE are competitive with the state-
of-the-art algorithms, for every speaker case. The performances of IGE and
MGE for the APLAWDW database are similar to the state-of-the art algo-
rithms. The only parameter, one may argue, in which the IGE and MGE lag
behind with respect to the other algorithms is IA′. This is a direct result of
the effect of mode-mixing, as it cannot be completely eliminated. Thus, while
some GCIs estimates are extremely accurate, certain others are not exactly
aligned with the reference GCIs. However, it must be noted that the IA′ val-
ues of IGE and MGE are still competitive with respect to the state-of-the-art
algorithms.

Having observed the performances of IGE and MGE over clean speech sig-
nals, we now investigate whether they could perform credibly when the speech
signals are affected by telephone channel conditions. Under telephone channel
conditions, the low-frequency spectrum of the speech signal, which contains
the glottal source information, is suppressed. This affects the waveform-shape
of the speech signal, but the intelligibility of the speech signal is still intact.
Thus, the performances of the algorithms for telephone-quality speech depicts
their ability to extract critical information when the information source (the
glottal characteristics) itself is significantly obscured or hidden. Further, the
performances of the algorithms for telephone-quality speech is important as
mobile communication is the cheapest and easiest means of acquiring speech
data.

Table 4 shows the five performance metrics for the two types of telephone-
quality speech, T-1 and T-2, for the CMU-Arctic and APLAWDW databases,
for the seven algorithms. As the table shows, the performances of all the al-
gorithms (particularly in terms of IR) degrade under telephone channel con-
ditions. YAGA, SEDREAMS and ZFR, all of which performed credibly un-
der clean speech conditions, show significant degradation for both types of
telephone-quality speech. For T-1 type of telephone-quality speech, only IGE,
MGE, DYPSA and ILPR-PI provide credible performances (IR & 80%). When
the IR is itself low, the metrics related to accuracy (IA and IA′) become less
relevant. In the case of T-2 type of telephone-quality speech, the performances
of all the algorithms are worse than that of T-1 type. This is expected, as ITU
telephone channel codecs suppress the lower-frequency spectrum of speech
much more than simple band-pass filtering. For T-2 type, only IGE, MGE
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Table 4: Robustness of the GCIs estimation methods, according to the five perfor-
mance metrics, for two types of telephone-quality speech (T-1 and T-2).

Type Database Metric IGE MGE DYPSA YAGA SEDREAMS ZFR ILPR-PI

T-1

CMU-Arctic

IR(%) 91.1 89.77 88.29 45.81 72.05 54.36 79.21
MR(%) 5.39 7.14 0.8 0.9 0.12 0.01 1.05
FAR(%) 3.5 3.09 10.91 53.29 27.83 45.63 19.74
IA(ms) 1.03 1.1 0.4 1.28 0.34 0.25 1.07
IA’(%) 33.76 32.98 81.35 27.26 80.98 75.68 42.62

APLAWDW

IR(%) 86.04 84.59 91.35 75.33 70.67 72.26 85.52
MR(%) 2.32 5.27 0.77 0.96 1.42 0.13 0.96
FAR(%) 11.64 10.14 7.88 23.71 27.91 27.61 13.51
IA(ms) 0.9 1.12 0.44 1.46 0.92 0.76 0.76
IA’(%) 29.69 25.97 79.79 10.99 44.41 45 59.49

T-2

CMU-Arctic

IR(%) 85.36 86.74 80.62 36.3 18.23 17.65 65.82
MR(%) 9.83 9.98 1.76 1.17 0.49 0.08 1.45
FAR(%) 4.81 3.28 17.62 62.53 81.28 82.27 32.73
IA(ms) 1.49 1.27 0.69 1.05 1.08 0.58 0.96
IA’(%) 20.28 24.88 49.97 34.54 33.05 55.46 53.03

APLAWDW

IR(%) 85.22 84.85 86.18 67.18 27.14 35.86 83.6
MR(%) 6.68 8.55 2.22 0.78 2.43 0.62 1.89
FAR(%) 8.1 6.6 11.6 32.04 70.43 63.51 14.51
IA(ms) 1.13 1.08 0.62 0.74 1.57 1.69 0.56
IA’(%) 17.64 19.2 48.34 53.3 15.55 16.83 71.36

and DYPSA provide credible performances, compared to the other algorithms.
The performance of ILPR-PI degrades starkly for the CMU-Arctic database
for T-2 type, compared to that of T-1 type.

Thus, out of the five state-of-the-art algorithms, only DYPSA, which did
not perform as well as the other algorithms for clean speech, works credibly
in the case of telephone-quality speech. Noticeably, IGE and MGE provide
credible performance for telephone-quality speech, just like for clean speech.

6.3 Performance under noisy conditions

Having evaluated the performances of the algorithms on telephone-quality
speech, we now proceed towards investigating their performances on speech
signals corrupted by noise. Noisy speech signals represent the acquisition of
speech data under practical or imperfect recording conditions. Evaluation of
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the performances of the algorithms for noisy speech signals would depict the
resistance of the algorithms to external sources (any other signal source not
corresponding to the speaker) which try to mask or subdue the spectrum of
the speech signal. Depending on both the level and type of noise, the addition
of noise to the speech signal not only changes its waveform-shape but also its
intelligibility. Therefore, three types of noise are considered [65] :
– Babble : Which masks the low-frequency speech spectrum.
– White : Which masks the entire speech spectrum.
– HFchannel : Which masks the high-frequency speech spectrum.

1.4

1.6

1.8

2

IR (%)

0

0.5

1

MR (%)

0

1

2

FAR (%)

−0.4

−0.2

0

0.2

IA (ms)

1.5

1.6

1.7

1.8

1.9

IA’ (%)

W
h

ite

1.4

1.6

1.8

2

lo
g

1
0
 v

a
lu

e

0

0.5

1

0

1

2

−0.2

0

0.2

1.5

1.6

1.7

1.8

1.9

B
a
b

b
le

0 5 10 15 20
1.4

1.6

1.8

2

0 5 10 15 20

0

0.5

1

0 5 10 15 20
0

1

2

SNR (dB)

0 5 10 15 20

−0.4

−0.2

0

0.2

0 5 10 15 20

1.5

1.6

1.7

1.8

1.9 H
F

c
h

a
n

n
e
l

 

 

IGE MGE DYPSA YAGA SEDREAMS ZFR ILPR−PI

Fig. 10: Robustness of the GCIs estimation methods, according to the five perfor-
mance metrics, for speech signals corrupted by White, Babble, and HFchannel noise.
The performance metrics are averaged over all the speech signals of the CMU-Arctic
and APLAWDW databases combined. The SNR is varied from 0 dB to 20 dB for each
type of noise.

Figure 10 shows the performances of the seven algorithms for White, Bab-
ble and HFchannel noise, averaged over the two databases. For visual clarity,
the plots are shown in logarithmic scale. First, let us consider the case of
speech signals corrupted by White noise. As can be observed from the plots,
all the algorithms perform similarly for all the metrics, particularly when the
level of noise is low (SNR ≥ 15 dB). As the level of noise increases, the IRs of
DYPSA and YAGA worsen substantially with respect to the other algorithms.
ZFR, which performed poorly under telephone channel conditions, remarkably
shows very little fluctuation with respect to the level of noise, for all the five
metrics. The converse is true for DYPSA. This shows the limited adaptability
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of the popular techniques with respect to changing conditions. For IGE, one
may notice the consistently high values of IR (low MR and FAR) even at high
noise levels. The same is true for MGE. Compared to IGE, however, the MR
of MGE is higher at high noise levels. Again, as in the case of clean speech, the
only metric that IGE and MGE might be considered lagging is IA′. As men-
tioned earlier, this is a result of mode-mixing. However, the values of IA′ for
the two algorithms are still close to the state-of-the-art methods, particularly
ZFR.

Next, let us consider the case of HFchannel noise. As the plots in Figure
10 show, the performances for HFchannel noise are similar to that of White
noise for all the seven algorithms, and the five metrics. As such, the same
observations made for White noise are applicable for HFchannel noise. In both
these types of noise, IGE and MGE show limited fluctuations in their perfor-
mances as the level of noise increases. This may be because the SEDS signal
is constructed leaving out the first IMF (and other high-frequency IMFs). The
high-frequency IMFs, thus, capture most of the White/HFchannel noise, mak-
ing IGE and MGE immune to its influence.

Lastly, let us consider the case of Babble noise. As can be observed in Figure
10, the performances of the algorithms are worse for Babble noise, than that
for White and HFchannel noise. DYPSA, which performed remarkably for
telephone-quality speech, is also not immune to external low-frequency noise.
Apart from DYPSA and YAGA, the rest of the algorithms almost converge
to the same performance levels, and there is hardly any difference amongst
their performances. The IRs of IGE and MGE are competitive with the best
performing algorithms for different levels of noise. The MRs, FARs and IAs
are similarly competitive. The IA′ values are now even closer to the best cases,
and almost identical to that of ZFR.

Thus, considering various conditions - clean, telephone channel, and noise -
both IGE and MGE perform not only competitively, but also consistently, with
respect to the popular algorithms. Contrary to the state-of-the-art techniques,
IGE and MGE may be deemed as “all weather techniques”.

6.4 Computational complexity

Having evaluated the performances of the algorithms, their time-costs also
need to be considered for practical applicability. For this purpose, the same
speech signal considered in Table 1 is again utilized. Table 5 lists the time
taken by the seven methods in estimating the GCIs from the speech signal.
The algorithms are run in MATLAB, in desktop mode, in a machine with 8
GB RAM, using Intel quad-core i7 processor, of 2.9 GHz clock frequency.

As is evident in Table 5, IGE is costly compared to the other algorithms.
The efficiency of MGE is much better, and comparable to the state-of-the-art
methods. The fact that the performance of MGE is not vastly different from
that of IGE, while costing only a fraction of the time-cost of the IGE, makes
it more suitable for practical applications. However, it is to be noted that
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Table 5: Computational complexity of the seven different methods for detecting the
GCIs. Time (in seconds) taken by the seven algorithms for detecting the GCIs from
a speech signal, of ∼4 s duration.

Algorithm IGE MGE DYPSA YAGA SEDREAMS ZFR ILPR-PI

Time (s) 63.17 1.62 0.76 1.19 0.74 2.28 0.54

the two proposed algorithms for estimating the GCIs from the IMFs do not
account principally for their overall time-costs. It is the time taken to extract
the IMFs that is the main reason (particularly for ICEEMDAN), as illustrated
in Table 1. It is to be expected that with efficient programming, using parallel
processing, the time-cost of extracting the IMFs using ICEEMDAN could be
significantly reduced. Further, as the mathematical framework of EMD [14,
44] develops, better and efficient methods of curbing mode-mixing may be
expected, and the IMFs could provide even more accurate estimates of the
GCIs, with the same proposed methodologies. Thus, even though currently
the large time-cost seems a bottleneck for practical applications, that may not
be so in the near future, or even now with efficient programming.

7 Conclusion

This work focussed on detecting the GCIs of the speech signal using non-
linear and non-stationary signal analysis, as an alternative to the source-filter
theory or LP-analysis based methodologies of doing the same. The motiva-
tion behind using non-linear and non-stationary analysis comes from the fact
that state-of-the-art techniques, mainly based on short-time LP analysis, pro-
vide inconsistent performances when the speech signal is subjected to exter-
nal influences. With this motivation, this work investigated the capability of
two non-linear and non-stationary signal analysis methods - ICEEMDAN and
MEMD - for reliably extracting GCIs under varied conditions - clean, noisy
and under telephone channel effects. It was observed that both ICEEMDAN
and MEMD could extract sinusoid-like components, called the IMFs, from the
speech signal, which could be utilized to detect the GCIs. Henceforth, two
uncomplicated processes were developed, called IGE and MGE, for detecting
the GCIs from the IMFs derived from ICEEMDAN and MEMD respectively.
IGE and MGE are observed to provide comparable performances, under var-
ied conditions, with the state-of-the-art algorithms. More importantly, IGE
and MGE are more consistent with (adaptive to) changing conditions. The
principal drawback of IGE is that it is time-costly. MGE, of course, is a much
faster algorithm, but its performance is marginally inferior to that of IGE.
For clean speech and telephone-quality speech, the difference between the two
algorithms is marginal. On an average, IR of MGE is within 1 % of that of the
IGE, whereas IA differs by < 0.2 ms between the two algorithms. Again, one
may argue that the time-cost of IGE could be drastically reduced by parallel
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programming and efficient coding. Nevertheless, as EMD improves as a non-
linear and non-stationary data analysis method, the proposed principle and
methodologies for detecting the GCIs could be expected to provide even more
accurate estimates of the GCIs.

References

1. http://perso.ens-lyon.fr/patrick.flandrin/emd.html. URL http://perso.ens-lyon.fr/
patrick.flandrin/emd.html

2. http://www.bioingenieria.edu.ar/grupos/ldnlys/index.htm. URL http://www.
bioingenieria.edu.ar/grupos/ldnlys/index.htm

3. http://www.commsp.ee.ic.ac.uk/ sap/resources/aplawdw/. URL http://www.commsp.
ee.ic.ac.uk/~sap/resources/aplawdw/

4. Ananthapadmanabha, T., Yegnanarayana, B.: Epoch extraction from linear prediction
residual for identification of closed glottis interval. Acoustics, Speech and Signal Pro-
cessing, IEEE Transactions on 27(4), 309–319 (1979)

5. Benesty, J., Sondhi, M.M., Huang, Y.: Springer handbook of speech processing. Springer
Science & Business Media (2008)

6. Bouchikhi, A., Boudraa, A.O.: Multicomponent am–fm signals analysis based on emd–
b-splines esa. Signal Processing 92(9), 2214–2228 (2012)

7. Bozkurt, B., Dutoit, T.: Mixed-phase speech modeling and formant estimation, using
differential phase spectrums. In: ISCA Tutorial and Research Workshop on Voice Qual-
ity: Functions, Analysis and Synthesis (2003)

8. Brookes, M.: Voicebox. Speech Processing Toolbox for Matlab, Department of Electrical
& Electronic Engineering, Imperial College (2009)

9. Cexus, J.C., Boudraa, A.O.: Nonstationary signals analysis by teager-huang transform
(tht). In: Signal Processing Conference, 2006 14th European, pp. 1–5. IEEE (2006)

10. Chatlani, N., Soraghan, J.J.: Emd-based filtering (emdf) of low-frequency noise for
speech enhancement. Audio, Speech, and Language Processing, IEEE Transactions on
20(4), 1158–1166 (2012)

11. Chen, K., Zhou, X.C., Fang, J.Q., Zheng, P.f., Wang, J.: Fault feature extraction and
diagnosis of gearbox based on eemd and deep briefs network. International Journal of
Rotating Machinery 2017 (2017). DOI https://doi.org/10.1155/2017/9602650

12. Chen, Y., Wu, C.t., Liu, H.l.: Emd self-adaptive selecting relevant modes algorithm for
fbg spectrum signal. Optical Fiber Technology 36, 63–67 (2017)

13. Colominas, M.A., Schlotthauer, G., Torres, M.E.: Improved complete ensemble emd: A
suitable tool for biomedical signal processing. Biomedical Signal Processing and Control
14, 19–29 (2014)

14. Colominas, M.A., Schlotthauer, G., Torres, M.E.: An unconstrained optimization ap-
proach to empirical mode decomposition. Digital Signal Processing 40, 164–175 (2015)

15. Deepak, K., Prasanna, S.: Epoch extraction using zero band filtering from speech signal.
Circuits, Systems, and Signal Processing 34(7), 2309–2333 (2015)

16. Drugman, T., Dutoit, T.: Glottal closure and opening instant detection from speech
signals. In: Interspeech - Tenth Annual Conference of the International Speech Com-
munication Association, pp. 2891–2894 (2009)

17. Drugman, T., Thomas, M., Gudnason, J., Naylor, P., Dutoit, T.: Detection of glottal
closure instants from speech signals: a quantitative review. Audio, Speech, and Language
Processing, IEEE Transactions on 20(3), 994–1006 (2012)

18. Drugman, T., Wilfart, G., Dutoit, T.: A deterministic plus stochastic model of the
residual signal for improved parametric speech synthesis. In: Tenth Annual Conference
of the International Speech Communication Association (2009)

19. Flandrin, P.: Some aspects of huang’s empirical mode decomposition, from interpreta-
tion to applications. In: Int. Conf. Computat. Harmonic Anal. CHA, vol. 4 (2004)

20. Flandrin, P., Goncalves, P.: Empirical mode decompositions as data-driven wavelet-
like expansions. International Journal of Wavelets, Multiresolution and Information
Processing 2(04), 477–496 (2004)

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. S

ha
rm

a,
 S

. R
. M

. P
ra

sa
nn

a,
 H

. L
. R

uf
in

er
 &

 G
. S

ch
lo

tth
au

er
; "

D
et

ec
tio

n 
of

 th
e 

gl
ot

ta
l c

lo
su

re
 in

st
an

ts
 u

si
ng

 e
m

pi
ri

ca
l m

od
e 

de
co

m
po

si
tio

n"
C

ir
cu

its
, S

ys
te

m
s,

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g,
 2

01
7.

http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://www.bioingenieria.edu.ar/grupos/ldnlys/index.htm
http://www.bioingenieria.edu.ar/grupos/ldnlys/index.htm
http://www.commsp.ee.ic.ac.uk/~sap/resources/aplawdw/
http://www.commsp.ee.ic.ac.uk/~sap/resources/aplawdw/


28 Rajib Sharma et al.

21. Flandrin, P., Rilling, G., Goncalves, P.: Empirical mode decomposition as a filter bank.
Signal Processing Letters, IEEE 11(2), 112–114 (2004)

22. Gaubitch, N.D., Naylor, P.A.: Spatiotemporal averagingmethod for enhancement of re-
verberant speech. In: Digital Signal Processing, 2007 15th International Conference on,
pp. 607–610. IEEE (2007)

23. Guo, Y., Huang, S., Li, Y., Naik, G.R.: Edge effect elimination in single-mixture blind
source separation. Circuits, Systems, and Signal Processing 32(5), 2317–2334 (2013)

24. Guo, Y., Naik, G.R., Nguyen, H.: Single channel blind source separation based local
mean decomposition for biomedical applications. In: Engineering in Medicine and Bi-
ology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp.
6812–6815. IEEE (2013)

25. Hao, H., Wang, H., Rehman, N.: A joint framework for multivariate signal denoising us-
ing multivariate empirical mode decomposition. Signal Processing 135, 263–273 (2017)

26. Hardcastle, W.J., Marchal, A.: Speech production and speech modelling. 55. Springer
Science & Business Media (1990)

27. Holambe, R.S., Deshpande, M.S.: Advances in Non-Linear Modeling for Speech Pro-
cessing. Springer Science & Business Media (2012)

28. Huang, H., Pan, J.: Speech pitch determination based on hilbert-huang transform. Signal
Processing 86(4), 792–803 (2006)

29. Huang, N.E.: Empirical mode decomposition and hilbert spectral analysis. Shock and
Vibration, 69th„ Minneapolis, MN, United States (1998). URL https://ntrs.nasa.
gov/search.jsp?R=19990078602

30. Huang, N.E., Shen, S.S.: Hilbert-Huang transform and its applications, vol. 5. World
Scientific (2005)

31. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung,
C.C., Liu, H.H.: The empirical mode decomposition and the hilbert spectrum for nonlin-
ear and non-stationary time series analysis. Proceedings of the Royal Society of London.
Series A: Mathematical, Physical and Engineering Sciences 454(1971), 903–995 (1998)

32. Jain, P., Pachori, R.B.: Event-based method for instantaneous fundamental frequency
estimation from voiced speech based on eigenvalue decomposition of the hankel matrix.
IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) 22(10),
1467–1482 (2014)

33. Khaldi, K., Alouane, M.T.H., Boudraa, A.O.: A new emd denoising approach dedi-
cated to voiced speech signals. In: Signals, Circuits and Systems, 2008. SCS 2008. 2nd
International Conference on, pp. 1–5. IEEE (2008)

34. Khaldi, K., Boudraa, A.: Audio watermarking via emd. Audio, Speech, and Language
Processing, IEEE Transactions on 21(3), 675–680 (2013)

35. Khaldi, K., Boudraa, A.O.: On signals compression by emd. Electronics letters 48(21),
1329–1331 (2012)

36. Khaldi, K., Boudraa, A.O., Bouchikhi, A., Alouane, M.T.H.: Speech enhancement via
emd. EURASIP Journal on Advances in Signal Processing 2008(1), 873,204 (2008)

37. Khaldi, K., Boudraa, A.O., Komaty, A.: Speech enhancement using empirical mode
decomposition and the teager–kaiser energy operator. The Journal of the Acoustical
Society of America 135(1), 451–459 (2014)

38. Khaldi, K., Boudraa, A.O., Torresani, B., Chonavel, T.: Hht-based audio coding. Signal,
image and video processing 9(1), 107–115 (2015)

39. Khaldi, K., Boudraa, A.O., Torresani, B., Chonavel, T., Turki, M.: Audio encoding
using huang and hilbert transforms. In: Communications, Control and Signal Processing
(ISCCSP), 2010 4th International Symposium on, pp. 1–5. IEEE (2010)

40. Khaldi, K., Boudraa, A.O., Turki, M.: Voiced/unvoiced speech classification-based adap-
tive filtering of decomposed empirical modes for speech enhancement. IET Signal Pro-
cessing 10(1), 69–80 (2016)

41. Khaldi, K., Boudraa, A.O., Turki, M., Chonavel, T., Samaali, I.: Audio encoding based
on the empirical mode decomposition. In: Signal Processing Conference, 2009 17th
European, pp. 924–928. IEEE (2009)

42. King, S., Karaiskos, V.: The Blizzard Challenge 2009. Centre for Speech Tech-
nology Research (CSTR) at the University of Edinburgh, UK (2009). URL http:
//www.festvox.org/blizzard/bc2009/summary_Blizzard2009.pdf

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. S

ha
rm

a,
 S

. R
. M

. P
ra

sa
nn

a,
 H

. L
. R

uf
in

er
 &

 G
. S

ch
lo

tth
au

er
; "

D
et

ec
tio

n 
of

 th
e 

gl
ot

ta
l c

lo
su

re
 in

st
an

ts
 u

si
ng

 e
m

pi
ri

ca
l m

od
e 

de
co

m
po

si
tio

n"
C

ir
cu

its
, S

ys
te

m
s,

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g,
 2

01
7.

https://ntrs.nasa.gov/search.jsp?R=19990078602
https://ntrs.nasa.gov/search.jsp?R=19990078602
http://www.festvox.org/blizzard/bc2009/summary_Blizzard2009.pdf
http://www.festvox.org/blizzard/bc2009/summary_Blizzard2009.pdf


Detection of the Glottal Closure Instants using Empirical Mode Decomposition 29

43. Kominek, J., Black, A.W.: The cmu arctic speech databases. In: Fifth ISCA Workshop
on Speech Synthesis (2004)

44. Lin, C.D., Anderson-Cook, C.M., Hamada, M.S., Moore, L.M., Sitter, R.R.: Using ge-
netic algorithms to design experiments: A review. Quality and Reliability Engineering
International 31(2), 155–167 (2015). DOI 10.1002/qre.1591

45. Moulines, E., Charpentier, F.: Pitch-synchronous waveform processing techniques for
text-to-speech synthesis using diphones. Speech communication 9(5-6), 453–467 (1990)

46. Murty, K.S.R., Yegnanarayana, B.: Epoch extraction from speech signals. Audio,
Speech, and Language Processing, IEEE Transactions on 16(8), 1602–1613 (2008)

47. Naik, G.R., Selvan, S.E., Nguyen, H.T.: Single-channel emg classification with ensemble-
empirical-mode-decomposition-based ica for diagnosing neuromuscular disorders. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 24(7), 734–743 (2016)

48. Naylor, P.A., Kounoudes, A., Gudnason, J., Brookes, M.: Estimation of glottal closure
instants in voiced speech using the dypsa algorithm. Audio, Speech, and Language
Processing, IEEE Transactions on 15(1), 34–43 (2007)

49. Prathosh, A., Ananthapadmanabha, T., Ramakrishnan, A.: Epoch extraction based on
integrated linear prediction residual using plosion index. Audio, Speech, and Language
Processing, IEEE Transactions on 21(12), 2471–2480 (2013)

50. Rabiner, L.R., Schafer, R.W.: Digital processing of speech signals, vol. 100. Prentice-hall
Englewood Cliffs (1978)

51. Rabiner, L.R., Schafer, R.W.: Introduction to digital speech processing. Foundations
and trends in signal processing 1(1), 1–194 (2007)

52. Rilling, G., Flandrin, P., Goncalves, P., et al.: On empirical mode decomposition and
its algorithms. In: IEEE-EURASIP workshop on nonlinear signal and image processing,
vol. 3, pp. 8–11. NSIP-03, Grado (I) (2003)

53. Schlotthauer, G., Torres, M., Rufiner, H.: Voice fundamental frequency extraction al-
gorithm based on ensemble empirical mode decomposition and entropies. In: World
Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Mu-
nich, Germany, pp. 984–987. Springer (2010)

54. Schlotthauer, G., Torres, M.E., Rufiner, H.L.: Pathological voice analysis and classifica-
tion based on empirical mode decomposition. In: A. Esposito, N. Campbell, C. Vogel,
A. Hussain, A. Nijholt (eds.) Development of multimodal interfaces: active listening and
synchrony, pp. 364–381. Springer (2010)

55. Sharma, R., Prasanna, S.M.: A better decomposition of speech obtained using mod-
ified empirical mode decomposition. Digital Signal Processing 58, 26 – 39 (2016).
DOI http://dx.doi.org/10.1016/j.dsp.2016.07.012. URL http://www.sciencedirect.
com/science/article/pii/S1051200416300975

56. Sharma, R., Prasanna, S.R.M.: Characterizing glottal activity from speech using empiri-
cal mode decomposition. In: National Conference on Communications 2015 (NCC-2015).
Mumbai, India (2015)

57. Sharma, R., Vignolo, L., Schlotthauer, G., Colominas, M., Rufiner, H.L., Prasanna, S.:
Empirical mode decomposition for adaptive am-fm analysis of speech: A review. Speech
Communication 88, 39 – 64 (2017). DOI http://dx.doi.org/10.1016/j.specom.2016.12.
004. URL //www.sciencedirect.com/science/article/pii/S0167639316302370

58. Smits, R., Yegnanarayana, B.: Determination of instants of significant excitation in
speech using group delay function. Speech and Audio Processing, IEEE Transactions
on 3(5), 325–333 (1995)

59. Sreenivasa Rao, K., Prasanna, S., Yegnanarayana, B.: Determination of instants of sig-
nificant excitation in speech using hilbert envelope and group delay function. Signal
Processing Letters, IEEE 14(10), 762–765 (2007)

60. Stylianou, Y.: Applying the harmonic plus noise model in concatenative speech synthe-
sis. IEEE Transactions on speech and audio processing 9(1), 21–29 (2001)

61. Talkin, D.: A robust algorithm for pitch tracking (rapt). Speech coding and synthesis
495, 518 (1995)

62. Thomas, M.R., Gudnason, J., Naylor, P.A.: Data-driven voice soruce waveform mod-
elling. In: Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE Interna-
tional Conference on, pp. 3965–3968. IEEE (2009)

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. S

ha
rm

a,
 S

. R
. M

. P
ra

sa
nn

a,
 H

. L
. R

uf
in

er
 &

 G
. S

ch
lo

tth
au

er
; "

D
et

ec
tio

n 
of

 th
e 

gl
ot

ta
l c

lo
su

re
 in

st
an

ts
 u

si
ng

 e
m

pi
ri

ca
l m

od
e 

de
co

m
po

si
tio

n"
C

ir
cu

its
, S

ys
te

m
s,

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g,
 2

01
7.

http://www.sciencedirect.com/science/article/pii/S1051200416300975
http://www.sciencedirect.com/science/article/pii/S1051200416300975
//www.sciencedirect.com/science/article/pii/S0167639316302370


30 Rajib Sharma et al.

63. Thomas, M.R., Gudnason, J., Naylor, P.A.: Estimation of glottal closing and opening
instants in voiced speech using the yaga algorithm. Audio, Speech, and Language
Processing, IEEE Transactions on 20(1), 82–91 (2012)

64. Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P.: A complete ensemble
empirical mode decomposition with adaptive noise. In: Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, pp. 4144–4147. IEEE
(2011)

65. Varga, A., Steeneken, H.J.: Assessment for automatic speech recognition: Ii. noisex-92:
A database and an experiment to study the effect of additive noise on speech recognition
systems. Speech communication 12(3), 247–251 (1993)

66. Wang, G., CHEN, X.Y., Qiao, F.L., Wu, Z., Huang, N.E.: On intrinsic mode function.
Advances in Adaptive Data Analysis 2(03), 277–293 (2010)

67. Wong, D., Markel, J., Gray, A.: Least squares glottal inverse filtering from the acoustic
speech waveform. IEEE Transactions on Acoustics, Speech, and Signal Processing 27(4),
350–355 (1979)

68. Wu, J.D., Tsai, Y.J.: Speaker identification system using empirical mode decomposition
and an artificial neural network. Expert Systems with Applications 38(5), 6112–6117
(2011)

69. Wu, Z., Huang, N.E.: A study of the characteristics of white noise using the empirical
mode decomposition method. Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences 460(2046), 1597–1611 (2004)

70. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data
analysis method. Advances in adaptive data analysis 1(01), 1–41 (2009)

71. Yegnanarayana, B., Gangashetty, S.V.: Epoch-based analysis of speech signals. Sadhana
36(5), 651–697 (2011)

72. Yeh, J.R., Shieh, J.S., Huang, N.E.: Complementary ensemble empirical mode decom-
position: A novel noise enhanced data analysis method. Advances in Adaptive Data
Analysis 2(02), 135–156 (2010)

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

R
. S

ha
rm

a,
 S

. R
. M

. P
ra

sa
nn

a,
 H

. L
. R

uf
in

er
 &

 G
. S

ch
lo

tth
au

er
; "

D
et

ec
tio

n 
of

 th
e 

gl
ot

ta
l c

lo
su

re
 in

st
an

ts
 u

si
ng

 e
m

pi
ri

ca
l m

od
e 

de
co

m
po

si
tio

n"
C

ir
cu

its
, S

ys
te

m
s,

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g,
 2

01
7.


	 Introduction  
	 EMD vs. ICEEMDAN vs. MEMD  
	 Principle of estimating the GCIs  
	 Procedure for ICEEMDAN based GCIs Estimation (IGE)  
	 Procedure for MEMD based GCIs Estimation (MGE)  
	 Results and Discussion  
	 Conclusion  

