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Abstract

Moving horizon estimation is an efficient technique to estimate states and parameters of constrained dynamical systems. It relies
on the solution of a finite horizon optimization problem to compute the estimates, providing a natural framework to handle bounds
and constraints on estimates, noises and parameters. However, the approximation of the arrival cost and its updating mechanism
are an active research topic. The arrival cost is very important because it provides a mean to incorporate information from previous
measurements to the current estimates and it is difficult to estimate its true value. In this work, we exploit the features of adaptive
estimation methods to update the parameters of the arrival cost. We show that, having a better approximation of the arrival cost, the
size of the optimization problem can be significantly reduced guaranteeing the stability and convergence of the estimates. These
properties are illustrated through simulation studies.

Keywords: Moving Horizon Estimation, Arrival cost, Adaptive estimation, Constrained state estimation, Variable forgetting.

1. Introduction

In control engineering, model–based control schemes as-
sume that the states and parameters of the system are avail-
able for control law implementation. In practice, noisy mea-
surements is the only information available from the system.
Thus, the states and parameters have to be determined from
these measurements using a dynamic model of the system. For
linear systems, this problem has been solved and several meth-
ods based on different statistical measures have been developed
[1, 2].

The physical limits of the system can be modeled through
bounds on its states and parameters. The omission of such in-
formation in the estimation algorithm may substantially hamper
its performance [3]. Unfortunately, Kalman filter can not han-
dle explicitly bounds on estimates (states and parameters) and
ad hoc methods have been developed to handle constraints [4].
The different approaches to enforce constraints in Kalman fil-
ter include model reduction [5], estimate projection [6], gain
projection [7], probability density function truncation [8] and
system projection [9]. These methods yield to suboptimal so-
lutions at the best and unrealistic estimates when the statistics
of unknown variables (initial states, measurement and process
noises, disturbances) are poorly chosen. On the other hand,
moving horizon estimation (MHE) solves an optimization prob-
lem to find the system estimates, providing a theoretical frame-
work for constrained estimation.

MHE solves at each sample a finite horizon state estimation
problem to determine the states and parameters of the system.
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Figure 1: MHE smoothing update

When new measurements become available the old ones are dis-
carded from the estimation window, and the estimation prob-
lem is solved to determine the new estimates (see Figure 1).
The information of measurements which are not included in
the estimation window is assimilated into the objective func-
tion through an extra term called arrival cost. It characterizes
the statistical distribution of states at the beginning of the esti-
mation window given the prior measurements information. In
this way, it allows MHE to approximate the full information
problem only considering a finite number of samples. A good
approximation of the arrival cost allows to reduce the size of
the estimation window and the size of the optimization prob-
lem, while it retains a good performance and robustness. The
most accepted way of approximating the arrival cost is using
a weighted 2-norm of the states at the beginning of the esti-
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mation window [10, 11, 12, 13]. For linear systems Rao et al.
[10] proposed to update the parameters of the arrival cost term
(the weight matrix and initial states) using a Kalman filter or
a Kalman smoother. The Gaussian distribution employed by
these methods to model the conditional probabilities densities
of initial states [10, 14] results in inadequate approximation of
the arrival cost when estimates are constrained, leading to poor
and unrealistic estimates. This problem arises from the fact that
the presence of bounds on estimates modifies the probability
distribution of noises and estimates, forcing to zero the proba-
bility of some values and eliminating the independence between
estimates and noises [15].

To tackle these problems, Chu et al. [13] derived an iterative
arrival cost update scheme that uses a quadratic approximation
and information of active/inactive constraints from previous it-
eration. These ideas allow to build a quadratic approximation in
the proximity of the optimal solution of the exact arrival cost.
This update scheme is based on the hypothesis that the set of
active constraints does not change after a particular time as the
estimation horizon grows. This hypothesis works well when
the estimation window is large, giving good results. However,
if the hypothesis is not verified, i.e. some constraints become
inactive after the state smoothing, the estimator may diverge.
Furthermore, this updating mechanism overweights past data
(by retaining active constraints) de-emphasizing the effect of in-
formation available in the new data on estimates. This fact can
also cause divergence of the estimator if estimates are strongly
correlated in time.

Finally, in a recent work Al-Matouq and Vincent [16] de-
veloped a MHE algorithm based on multiple estimation win-
dows. The algorithm takes advantage of constraint inactivity
to reduce the size of the optimization problem while it retains
the stability and performance properties of full–information es-
timator. These properties are preserved by approximating the
arrival cost with an unconstrained estimator that reformulates at
each sample the objective function in the regions of constraints
inactivity, allowing efficient long estimation windows.

In this work the weighting matrix is updated using adaptive
estimation algorithms in combination with the MHE filter solu-
tion in the previous sample, while the initial states are the MHE
filter solution in the previous sample. It should be noted that ap-
proximating the arrival in this way is consistent with constraints
and bound on estimates and noises, while at the same time it
introduces a feedback mechanism between measured data and
estimates, improving the overall performance of the estimator.
In this way, the weighting matrix is computed in a closed-loop
fashion rather than in an open-loop way, as it is done in standard
estimation techniques. The efficiency of the proposed approach
is evaluated by conducting simulations studies on a benchmark
problem available in the literature. The main contributions of
this paper are to show that i) it is important to take into ac-
count bounds on estimates when the arrival cost is updated, ii)
this idea can be implemented using adaptive estimation tech-
niques to construct an approximation of the arrival cost, iii)
the estimation resulting from a MHE with the proposed updat-
ing scheme is stable, and iv) the proposed updating scheme al-
lows to shorten the estimation window without sacrificing per-

formance, reducing the size of the optimization problem. The
paper is organized as follows: In Section 2 the MHE problem
is presented. In Section 3 two different ways of updating the
arrival cost are analysed. Simulation results are discussed in
Section 5 and the conclusions are outlined in Section 6.
Notation: In the sequel x ∈ Rn is a column vector and its trans-
pose is denoted as xT , xk denotes a sequence of vectors over a
given index up to k, for example xk = {x j : j = 0, 1, . . . , k},
A ∈ Rn×m is a n × m matrix and its transpose is denoted by AT .
If A ∈ Rn×n its inverse is denoted by A−1. Given a symmetric
real matrix P ∈ Rn×n, it is said to be positive definite if for all
z ∈ Rn, zT Pz > 0. In the following we will use the short nota-
tion P > 0 to denote that matrix P is positive definite. By || · ||
we denote the Euclidean vector or induced matrix norm. For
x ∈ Rn and P > 0 ∈ Rn×n, we let ||x||P =

√
xT Px.

2. Problem formulation

Consider the linear time invariant discrete system

xk+1 = Axk + Gwk,
yk = Cxk + vk,

(1)

where xk ∈ X ⊆ Rnx is the state vector, wk ∈ W ⊆ Rnw

is the state noise vector, yk ∈ Rny is the measurement vector,
vk ∈ V ⊆ Rny is the measurement noise vector and k ∈ I. In
the following, ŵk and v̂k are considered zero mean stationary
stochastic disturbances with finite moments and the restriction
sets X, W and V are considered closed with 0 ∈ X, 0 ∈ W
and 0 ∈ V.

The full information estimator1 (FIE) problem uses a se-
quence of measurements yk to find the state estimates x̂k that
solve the following optimization problem

min
x̂0|k ,ŵk

Φk = ||x̂0|k − x̄0||
2
P−1

0
+

∑k
j=0 ||ŵ j|k ||

2
Q−1 + ||v̂ j|k ||

2
R−1

s.t.


x̂ j+1|k = Ax̂ j|k + ŵ j|k,

y j = Cx̂ j|k + v̂ j|k,
x̂ j|k ∈ X, ŵ j|k ∈ W, v̂ j|k ∈ V,

(2)

where Q−1 and R−1 are symmetric positive definite matrices that
penalize the estimated noise vectors ŵ j|k and the output predic-
tion v̂ j|k error, respectively, and the pair (x̄0, P−1

0 ) summarizes
the prior information at time k = 0 where x̄0 is the current
knowledge of the initial estimate and P−1

0 is a symmetric pos-
itive definite weighting matrix. The solution of problem (2)
yields smoothed estimates {x̂ j|k : j = 0, 1, . . . , k−1}, the filtered
estimate x̂k|k and sequence of estimated noise vectors, denoted
as ŵk and v̂k.

Since the full information estimator uses all measurements,
as new ones become available the problem size grows with time
making it intractable. MHE overcomes this problem by only
considering a fixed amount of data and dynamic updates by
sliding a window with time. The past measurements are taken

1Other authors use the term batch least squares
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into account through a penalty cost term Zk−N called “arrival
cost” [10]. Then, the MHE problem consists in finding the
states, state and measurement noises that solve the following
optimization problem

min
x̂k−N|k ,ŵk

ΨN
k = Zk−N(x̂k−N |k) +

∑k
j=k−N ||ŵ j|k ||

2
Q−1 + ||v̂ j|k ||

2
R−1

s.t.


x̂ j+1|k = Ax̂ j|k + ŵ j|k,

y j = Cx̂ j|k + v̂ j|k,
x̂ j|k ∈ X, ŵ j|k ∈ W, v̂ j|k ∈ V.

(3)

The minimization of the full information problem (2) is equiva-
lent to minimizing the fixed horizon problem (3) under the con-
dition that Zk−N is the exact arrival cost Z∗k−N

Z∗k−N = min
x̂0|k−N ,ŵk−N

||x̂0|k−N − x̄0||
2
P−1

0
+∑k−N−1

j=0 ||ŵ j|k−N ||
2
Q−1 + ||v̂ j|k−N ||

2
R−1

s.t.


x̂ j+1|k−N = Ax̂ j|k−N + ŵ j|k−N ,

y j = Cx̂ j|k−N + v̂ j|k−N ,
x̂ j|k−N ∈ X, ŵ j|k−N ∈ W, v̂ j|k−N ∈ V.

(4)

The exact arrival cost Z∗k−N is a complicated piecewise quadratic
function, whose transitions between segments are fixed upon
the state of the constraints (active/inactive) in problem (2).
Therefore, computing Z∗k−N involves the solution of a con-
strained quadratic problem (QP) which size grows with the
horizon k − N. Consequently, Z∗k−N can not longer be com-
puted solving the optimization problem (4) and an approxima-
tion Z̃k−N is used. In conventional MHE formulations, a long
estimation window is generally used to reduce the effect of the
errors introduced by an improper approximation of the arrival
cost [17]. In this way, MHE uses all the information available
for the system, discarding the one that has no effect in the esti-
mation due to the fading effect2 (finite memory) of the system.
On the other hand, if the estimation window is shortened, a bet-
ter approximation of the arrival cost is needed such that it incor-
porates this information into the problem. For linear systems,
it is generally assumed that the distribution is Gaussian and the
weighting matrix in the arrival cost is updated using a Kalman
filter [18]. Moreover, for unconstrained linear systems under
the Gaussian assumption MHE is equivalent to the Kalman fil-
ter. The penalty matrix is generally calculated using dynamic
programming techniques, and it turns out to be the covariance
of the state estimate at time k−N in the stochastic interpretation
[10].

3. Arrival cost update

The MHE update relies on representing the full information
problem (2) in the form (3), where N is fixed. Then, for each
k > N, the arrival cost Z∗k−N is computed using (4) and a new
solution for the MHE problem is obtained. To avoid the curse

2With fading effect we mean that if the system can be represented with a
FIR model of order N, then an horizon of size N is employed, thus the system
is fully described inside the horizon.

of dimensionality of problem (4), it can be updated recursively
by extending the partial minimization of (4) to the next decision
variable

Z∗k−N = min
ŵk

Z∗k−N−1 + ||ŵk−N−1|k ||
2
Q−1 + ||v̂k−N |k ||

2
R−1

s.t.


x̂k−N |k = Ax̂k−N−1|k−1 + ŵk−N−1|k,
yk−N = Cx̂k−N |k + v̂k−N |k,

x̂k−N |k ∈ X, ŵk−N−1|k ∈ W, v̂k−N |k ∈ V.

(5)

Starting with
Z∗0 = ||x̂0 − x̄0||

2
P−1

0
, (6)

since it is hard to find an analytic expression for the exact arrival
cost of the constrained MHE problem, we will follow Rao et al.
[10] approach and use an approximate arrival cost based on the
arrival cost for the unconstrained problem. Therefore, the ex-
act arrival cost will be approximated by the following quadratic
approximation

Z̃k−N = ||x̂k−N − x̄k−N ||
2
P−1

k−N
, (7)

where Pk−N and x̄k−N fully define the approximate arrival cost.
The update of the approximate arrival cost Z̃k−N can be formu-
lated as an update of Pk−N and x̄k−N . Considering the partial
minimization problem for the approximate iteration (5), where
Z̃k−N−1 is given by (7), the result is a constrained sequential es-
timation problem.

For unconstrained problems, the solution of (5) using (7)
leads to an unconstrained sequential estimation problem that
can be solved using a Kalman filter [18]. Under this approach,
the prior information is transferred to the current estimated win-
dow by conditioning the estimates of time k using the optimal
estimate x̂∗k−N−1|k−N−1. For constrained problems this idea can
still be employed, replacing the unconstrained Kalman filter by
any of the ad-hoc methods described in [4]. However, the con-
straints are only applied to estimates and the weighting matrices
remain unaffected. The major argument in favour of this kind
of update lays in the fact that no input information y j is over
weighted during the estimation process, which guarantees that
no measurement information is used twice. One disadvantage
of using the filtering update lays in the fact that a periodic be-
havior associated with relying on estimates based on few data
points occurs. This phenomenon is known as estimation cy-
cling and can be avoided using the smoothing update [19]. The
smoothing formulation takes advantage of more information by
including more data in the x̄k−N update. Another problem is
the inaccurate approximation of the arrival cost when inequal-
ity constraints switch between being active and inactive at the
optimal solution. Constraints modify the probability distribu-
tion and noises in a way that analytical updates can not properly
approximate. In this work, the approximate arrival cost update
(5) is formulated as an update of Pk−N and x̄k−N in (7) in two
steps: i) update x̄k−N and then ii) update Pk−N .

3.1. Computing x̄k−N

One of the components of Z̃k−N is the initial state x̄k−N . Since
the MHE problem yields smoothed estimates {x̂ j|k : j = k −
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N, . . . , k − 1} and the filtered estimate x̂k|k, we can use the one
time-step before optimal smoothed state estimate x̂∗k−N |k−1,

x̄k−N = x̂∗k−N |k−1.

The use of the smoothed update implies the use of similar
approximation hypothesis like Chu et al. [13]: the state of
constraints (active/inactive) does not change once the estimate
leaves the estimation window.

3.2. Computing Pk−N

The weighting matrix Pk−N can be seen as the covariance of
xk−N in the stochastic interpretation of the MHE problem [10].
Analytical solutions for computing Pk−N only exists for linear
unconstrained problems. For linear constrained problems (and
nonlinear problems) approximate solutions have been derived.
They are based on a recursive update that employs the informa-
tion of the system available at time k (system model, previous
covariance matrix, active constraints, covariance of the noises).
These equations evolve in an open-loop fashion, based on the
system model and the assumed statistics of the noises, without
incorporating any information from measurements or estimates.

In signal processing and adaptive estimation a recursive up-
date based on measurements and/or estimates is often used [20]

P−1
k−N = αkP−1

k−N−1 + βk x̂k−N |k−1 x̂T
k−N |k−1 P0 > 0, (8)

where 0 < αk < 1 and 0 < βk ≤ 2 ∀k ≥ 0 are time-varying
weighting sequences. Equation (8) generates recursively a real-
time estimation of the weighting matrix Pk−N by updating the
previous estimates Pk−N−1 with an exponential time averaging
of x̂k−N |k−1 x̂T

k−N |k−1. This updating mechanism can be under-
stood as a time-varying filter whose input is x̂k−N |k−1 x̂T

k−N |k−1 and
the initial condition is P0.

Lemma 3.1. Let {Ai : i = 1, . . . , n} be positive definite and let
{γi : i = 1, . . . , n} be nonnegative real numbers. Then

∑n
i=1 γiAi

is positive semidefinite.

Proof. Let x ∈ Rn be nonzero and observe that
xT (

∑n
i=1 γiAi)x =

∑n
i=1 γi(xT Aix) ≥ 0. Since each γi ≥ 0

and each xT Ax > 0. The latter sum results in a positive definite
matrix if any of the summands is positive.

Lemma 3.2. If P0 > 0 and α0 > 0, then the matrix Pk obtained
using Eq. (8) is positive definite for all k ≥ 0.

Proof. Since xxT is positive semidefinite and from Lemma 3.1
it follows that Pk is positive definite for all k ≥ 0.

Lemma 3.3. If P > 0, then there exists an invertible matrix Z
such that ZT PZ = I and ZZT = P−1.

Proof. See Lemma 7, page 261 from Johnson [21].

Note that αk and βk in (8) have opposite effects. When
αk � 1 the adaptation algorithm tends to discard the old in-
formation summarized in Pk−N−1, estimating Pk−N using the re-
cent data x̂k−N |k−1 . This fact allows to avoid the overweight-
ing of past data (by retaining data with active constraints) that

can deteriorate the estimator performance, improving the esti-
mation of x̂k−N |k. From an optimization point of view, when
the algorithm discards the data without useful information, the
matrix P−1

k−N increases and the initial information available in
the arrival cost tends to be more relevant. On the contrary,
when αk ≈ 1 the adaptation algorithm tends to retain the old
data summarized in Pk−N−1. This fact allows to include all the
past information that is relevant for the estimation problem, im-
proving the estimation of x̂k−N |k by including more information
and forgetting only initial data, facts that decrease P−1

k−N . When
βk � 0 the adaptation algorithm tends to increase P−1

k−N by in-
corporating information from estimates x̂k−N |k−1. This fact al-
lows to include more information from recent data into P−1

k−N ,
increasing its value. When βk ≈ 0 the adaptation algorithm dis-
cards the information available in x̂k−N |k−1 and only applies a
forgetting mechanism on P−1

k−N , which depends on the value of
αk. In general, αk and βk allow the estimation algorithm to dis-
card and/or incorporate information into P−1

k−N according to the
information available in the measurements {y j}

k
j=k−N , estimates

x̂k−N |k and process noises {w j}
k
j=k−N .

Since the existence of the inverse is guaranteed by Lemma
3.3, we can use the matrix inversion lemma to rewrite Eq. (8)
as follows

Pk−N =
1
αk

Pk−N−1 −
Pk−N−1 x̂k−N |k−1 x̂T

k−N |k−1Pk−N−1

αk
βk

+ x̂T
k−N |k−1Pk−N−1 x̂k−N |k−1

 . (9)

This way of computing Pk−N introduces a feedback loop into
the MHE problem. This fact allows the MHE problem to ad-
just P−1

k−N according to the information available in the measure-
ments {y j}

k
j=k−N and to guarantee the convergence of estimates

x̂k−N |k and {ŵ j}
k
j=k−N . We must be careful in the choice of the

arrival cost update mechanism, since poor approximations can
lead to instability [22, 23] in the estimator. In the following
Sections the conditions that sequences αk and βk must satisfy to
guarantee convergence will be studied. If the current sequence
of process noise {w j}

k
j=k−N is large, P−1

k−N will grow emphasizing
Z̃k−N over the other terms. This fact will lead to Z̃k−N → 0 and
improving the overall estimation. Then, P−1

k−N will decrease un-
til Z̃k−N achieves its stationary value or the feedback starts again
(see Fig 3b).

Depending on the values of αk and βk, different forgetting
factor profiles, suitable for different adaptation problems, are
obtained [20]. For example, if the estimates are varying slowly
and constraints does not change their state after leaving the es-
timation window, the most appropriate selection is

0 < αk = α < 1, βk = 1, (10)

which leads to a constant forgetting factor. In this case, equa-
tion (9) will estimate Pk−N using the available MHE estimates,
de-emphasizing past observations at a constant rate. When a
constant forgetting factor is used, the choice of αk and βk given
by Eq (10) leads to a decreasing adaptation gain, where old in-
formation is continually forgotten. If the forgetting factor α is
not carefully chosen in this schema, this may lead to an ex-
ponential growth of the matrix Pk−N and it can turn the MHE
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algorithm extremely sensitive to disturbances and susceptible
to numerical difficulties [24].

This is why several researchers [25, 26, 27] suggest to use a
variable forgetting factor, which enables the algorithm to fol-
low slow and suddent changes in the system, while it can pre-
vent matrix Pk−N from blowing-up. This choice is appropiate
when the estimates are stationary and constraints can change
their state after leaving the estimation window [20], since some
forgetting must be done in order to mantain the information of
the relevant constrained states. In this work we review some
of the many mechanisms available to update the parameters αk

and βk. For example, if the evolution of αk is given by

αk = 1 −
x̂T

k−N |k−1Pk−N−1 x̂k−N|k−1

1+x̂T
k−N |k−1Pk−N−1 x̂k−N|k−1

,

βk = 1.
(11)

We can see that the forgetting factor in Eq (11) depends on es-
timates, leading to a variable forgetting factor. It automati-
cally takes the value 1 if the norm of the states becomes null,
leading to the standard Recursive Least Squares (RLS) algo-
rithm. In the cases where the states sequence is such that the
term x̂T

k−N |k−1Pk−N−1 x̂k−N |k−1 is significative with respect to one,
the forgetting factor takes a lower value assuring good adapta-
tion capabilities. The algorithm will provide a quick adaptation
and will prevent the exponential growth of Pk−N , stabilizing the
estimates (controlling the amount of information employed to
compute Pk−N) and the MHE problem (3).

If the estimates are time–varying and constraints can change
after leaving the estimation window, the forgetting factor has to
guarantee a constant trace of the weighting matrix, which can
be obtained by

αk = 1
Ξ

trace
(
Pk−N−1 −

x̂T
k−N|k−1Pk−N−1 x̂k−N|k−1

η+x̂T
k−N |k−1Pk−N x̂k−N |k−1

)
,

βk = η−1αk,
(12)

where Ξ > 0 is the desired trace of the weighting matrix and
η > 0 is constant.

Fortescue et al. [24] proposed a variable forgetting algorithm
that tries to keep the amount of information constant and shows
that a reasonable choice of information measure can prevent the
weighting matrix from blowing-up, while retaining the adapt-
ability. Later, Osorio Cordero and Mayne [26] modified that
algorithm in order to ensure global convergence. The modifica-
tions ensure that trace Pk (and, hence ||Pk ||) is always less than
a given constant c. The algorithm yields the standard least-
squares estimate if αk = 1, and the weighted least-squares es-
timate if αk ∈ (0, 1). The memory length Nk is related to the
forgetting factor αk through αk = 1 − 1/Nk; forgetting factors
of 0, 0.99 and 1 correspond to memory lengths of 1, 100 and
∞, respectively. The various constant required by the algorithm
may be chosen as follows: σ is chosen so that σ/σw is large,
where σw denotes the process noise variance; P0 = δI, where
δ is large (106, for example), c > δ is large. The variable for-
getting factor and the information matrix can be calculated as

follows

εk = yk−N − ŷk−N

Nk = [1 + x̂T
k−N |k−1Pk−N−1 x̂k−N |k−1] σ

||εk−N ||
2
2

αk = 1 − 1/Nk

Wk = [I −
Pk−N−1 x̂k−N|k−1 x̂T

k−N|k−1

1+x̂T
k−N |k−1Pk−N−1 x̂k−N |k−1

]Pk−N−1

Pk−N = 1
αk

Wk, if 1/αk trace(Wk) ≤ c

Pk−N = Wk, otherwise.

(13)

Remark 1. The weighting matrix estimation algorithm can
be recasted like a Kalman filter with the smoothed estimate
x̂k−N |k−1 as estimated states, v̂k as the estimation residual and
Pk−N the covariance matrix [20]. In case of unconstrained esti-
mation, the weighting matrix estimation algorithm is equivalent
to a filter update [18]. The relationship between RLS and the
Kalman filter is well known [1], where in the case of the Kalman
filter, the weighting matrix update formula is a special case of
Eq. (8) under specific assumptions and a certain choice of αk

and βk. For a detailed description the reader can see Section
3.2.4 of Landau et al. [20].

3.3. MHE update summary
The MHE approach solves problem (3), providing a solution

{x̂ j|k}
k
j=k−N that approximates the optimal solution of problem

(2). For k ≤ N, the full information problem (2) is solved.
Then, for k > N the MHE problem (4) is solved with the ap-
proximate arrival cost

Z̃k−N = ||x̂k−N |k − x̂∗k−N |k−1||
2
P−1

k−N
, (14)

whose solution can be obtained using any suitable QP solver.
Then, Pk−N and x̄k−N are updated and the horizon is receded,
updating the measurements vector {y j}

k
j=k−N . Algorithm 1 sum-

marizes the proposed moving horizon estimator. The method
used for the adaptive weighting matrix update defines the al-
gorithm behaviour. If we wish to use a constant trace approach
(MHEAD−CT), Eq. (12) is used. On the other hand, if we wish to
use a variable forgetting factor (MHEAD−VF), Eq. (13) is used.

4. Stability analysis

Stability of the estimator implies that the reconstruction error
converges to zero for the nominal system

xk+1 = Axk,
yk = Cxk,

(15)

with no state or measurement noise. However, for the con-
strained case, a poor choice of constraints may prevent con-
vergence to the true state of the system. Rao et al. [10] added
the requirement that the evolution of the system respects the
constraints, which need to satisfy only the following weaker as-
sumption to prove stability.
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Algorithm 1: MHEAD Algorithm
x̄0, P0 > 0, Q,R > 0 and N ≥ 1
Initialization:
x̄k−N ← x̄0
Pk−N ← P0
for samples k = 0, 1, 2, . . . do

Obtain measurement yk

if k < N then
Prepare data vector:

Y ← [y0, . . . , yk]T

Solve Φk with x̄0, P0 and Y
else

Prepare data vector:
Y ← [yk−N , . . . , yk]T

Solve ΨN
k with x̄k−N , Pk−N and Y

x̄k−N ← x̂k−N+1|k
Update Pk−N using Eq. (12) or (13)

end if
Obtain current estimates x̂ j|k for j = k − N, . . . , k

end for

Assumption 1. Suppose the system (15) with initial condition
x0 generates the data. We assume there exists x0|∞, {wk|∞}

∞
k=0

and σ > 0 such that
∞∑

k=0

||vk|∞||R−1 + ||wk|∞||Q−1 + ||x0|∞ − x̂0||P−1
0
≤ σ||x0 − x̂0||

2

and xk|∞ ∈ X, wk|∞ ∈ W, vk|∞ ∈ V.

Assumption 1 states the existence of a feasible state and dis-
turbance trajectory that yields bounded cost. Next we state the
stability results for the FIE.

Remark 2. Suppose the matrices Q, R, and P0 are positive
definite, (C, A) is observable, and assumption 1 holds. Then,
the constrained full information estimator is an asymptotically
stable observer for the system given by Eq. (15).

Proof. See Muske et al. [18].

Remark 3. The matrix Pk satisfies ||Pk || ≤ c, ∀k. The bounded-
ness of Pk guarantees that the optimization problem for MHE
with adaptive arrival cost update is convex and that under As-
sumption 1, a solution exists.

Proof. From Lemma 3.2, for all k, Pk is symmetric and posi-
tive definite. Its norm ||Pk || is equal to λmax(Pk), the maximum
eigenvalue of Pk. Its trace satisfies ||Pk || ≤ trace(Pk).

By choice ||P0|| ≤ trace(P0) < c. Suppose ||Pk || ≤ c. From
Eq. (13), if (1/αk) trace(Wk) ≤ c, then ||Pk || = (1/αk)||Wk || ≤

(1/αk) trace(Wk) ≤ c. If, on the other hand, (1/αk) trace(Wk) >
c, then αk = 1 and P−1

k = P−1
k−1 + x̂k−N |k−1 x̂T

k−N |k−1, i.e. Pk is less
positive definite than Pk−1, so that ||Pk || ≤ ||Pk−1|| ≤ c. Hence,
||Pk || ≤ c.

Remark 4. The matrix Pk has a steady state-solution,

lim
k→∞

Pk = P∞

Proof. The update formula for Pk−N given by Eq. (13) can be
seen as a special case of a Ricatti equation as follows

αkPk−N =Pk−N−1 −
Pk−N−1 x̂k−N |k−1 x̂T

k−N |k−1Pk−N−1

1 + x̂T
k−N |k−1Pk−N−1 x̂k−N |k−1

=Pk−N−1−

Pk−N−1 x̂k−N |k−1(1 + x̂T
k−N |k−1Pk−N−1 x̂k−N |k−1)−1 x̂T

k−N|k−1Pk−N−1

which is stable if and only if all of the eigenvalues of the closed
loop state transfer matrix

I −
x̂k−N |k−1 x̂T

k−N |k−1Pk−N−1

1 + x̂T
k−N |k−1Pk−N−1 x̂k−N |k−1

(16)

are strictly inside the unit circle of the complex plane. The
eigenvalues of the right hand side of the previous expression lie
inside the unit circle, since

||x̂k−N |k−1 x̂T
k−N |k−1Pk−N−1|| ≤ ||x̂k−N |k−1|| ||x̂T

k−N |k−1|| ||Pk−N−1||

and

||x̂T
k−N |k−1Pk−N−1 x̂k−N |k−1|| ≤ ||x̂T

k−N |k−1|| ||Pk−N−1|| ||x̂k−N|k−1||

hence ∥∥∥∥∥∥∥∥
x̂k−N |k−1 x̂T

k−N |k−1Pk−N−1

1 + x̂T
k−N |k−1Pk−N−1 x̂k−N |k−1

∥∥∥∥∥∥∥∥ ≤ 1. (17)

Since the product of symmetric positive semidefinite matrixes
is another symmetric positive semidefinite matrix, the eigenval-
ues of (17) are all greater than 0 and bounded by 1. Then, the
eigenvalues of (16) satisfy that are greater than 0 and bounded
by 1. Hence, the matrix Pk has a steady-state solution P∞.

Theorem 4.1. Vk = x̃T
k P−1

k x̃k is a Lyapunov function for MHE
with adaptive arrival cost update, where x̃k = xk − x̂k and
the matrix P−1

k is given by Eq. (13), i.e. P−1
k = αk(P−1

k−1 +

x̂k−N |k−1 x̂T
k−N |k−1).

Proof. Since αkVk−1 ≤ Vk−1, we can subtract αkVk−1 to Vk

Vk − αkVk−1 = x̃T
k P−1

k x̃k − αk x̃T
k−1P−1

k−1 x̃k−1

= (Ax̃k−1)T P−1
k (Ax̃k−1) − αk x̃T

k−1P−1
k−1 x̃k−1

= x̃T
k−1AT P−1

k Ax̃k−1 − αk x̃T
k−1P−1

k−1 x̃k−1

= x̃T
k−1AT [αk(P−1

k−1 + x̂k−N |k−1 x̂T
k−N |k−1)]Ax̃k−1−

αk x̃T
k−1P−1

k−1 x̃k−1

= αk x̃T
k−1[AT P−1

k−1A+

AT x̂k−N |k−1 x̂T
k−N |k−1A − P−1

k−1]x̃k−1

Since Pk is symmetric positive definite for all k and
AT x̂k−N |k−1 x̂T

k−N |k−1A is symmetric positive semidefinite for all
k, it follows that if the system given by Eq. (15) is observable,
then MHE with adaptive arrival cost update is an asymptotically
stable observer.

6

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

an
ch

ez
, M

. M
ur

ill
o 

&
 L

. G
io

va
ni

ni
; "

A
da

pt
iv

e 
ar

ri
va

l c
os

t u
pd

at
e 

fo
r 

im
pr

ov
in

g 
M

ov
in

g 
H

or
iz

on
 E

st
im

at
io

n 
pe

rf
or

m
an

ce
"

IS
A

 T
ra

ns
ac

tio
ns

 J
ou

rn
al

, 2
01

7.



4.1. Bounded stability
From Remark 3 we know that ||Pk || is nonincreasing, hence

||P−1
k || is nondecreasing. By the convergence of Pk to P∞, we

get that ||P−1
k || ≤ ||P

−1
k+1|| ≤ ||P

−1
∞ ||. Therefore, the arrival and

stage cost satisfy the following bounds

λmin(P−1
k−N)||x̂k−N |k−x̄k−N || ≤ ||x̂k−N |k−x̄k−N ||P−1

k−N
≤ λmax(P−1

∞ )||x̂k−N |k−x̄k−N ||

λmin(Q−1)||ŵ|| ≤ ||ŵ||Q−1 ≤ λmax(Q−1)||ŵ||

λmin(R−1)||v̂|| ≤ ||v̂||R−1 ≤ λmax(R−1)||v̂||.

Under bounded disturbances, the MHE estimator with adap-
tive arrival cost update is robust globally asymptotically sta-
ble. Furthermore, if limk→∞ wk = 0 and limk→∞ vk = 0, then
limk→∞ ||x̂k − x̄k || = 0.

Proof. See Theorem 7 of [28].

5. Results

For the simulations tests we adopted the discrete-time model
used by Rao et al. in [29]

xk+1 =

[
0.99 0.2
−0.1 0.3

]
xk +

[
0
1

]
wk,

yk =
[
1 −3

]
xk + vk,

(18)

where {vk} is a sequence of independent, normally distributed
random variables with zero mean and covariance σv, and wk =

|zk | where {zk} is a sequence of independent, normally dis-
tributed random variables with zero mean and covariance σw.
For all the following examples, the initial state x̄0 is normally
distributed with zero mean and covariance σx = 0.5 and we as-
sume that x0 = [0, 0]T and x̄0 = [0.5,−0.5]. The constrained
estimation problem is formulated here with Q = 1, R = 0.01,
P0 = 0.5 and we add the inequality constraint wk ≥ 0 to include
the available information on the random sequence.

First, the proposed algorithms (MHEAD−VF and MHEAD−CT)
are compared with the full information estimator (FIE) and with
a linear algorithm (MHEKF) available in the Nonlinear Model
Predictive Control Tools for CasADi (mpc-tools-casadi) tool-
box [30]. This algorithm propagates the arrival cost and initial
state estimate using a Kalman filter. The simulations evaluates
the effect of the horizon size on the performance of the estima-
tors. Three different horizon sizes (N = 3, N = 6 and N = 10)
were used for each MHE algorithm withσv = 0.1 andσw = 1.0.
The sum square estimation error

ξ(i) =

k∑
j=0

(x(i)
j − x̂(i)

j )2,

where the superscript (i) denotes the ith component of x, was
used as benchmark. In this test, 100 trials were run and the av-
erage sum square estimation error was computed. The results
are shown in Tables 1 and 2. It can be seen that MHEAD er-
rors are always lower than MHEKF and closer to FIE on every

x(1)

FIE MHEAD−VF MHEAD−CT MHEKF

N = 3 13.22 20.44 27.37 103.42
N = 6 13.22 17.77 16.25 50.68

N = 10 13.22 15.28 14.51 26.54

Table 1: Comparison of the effect of the horizon size on the average sum square
estimation error for state x(1).

x(2)

FIE MHEAD−VF MHEAD−CT MHEKF

N = 3 1.55 2.20 2.84 11.55
N = 6 1.55 1.96 1.76 5.71

N = 10 1.55 1.71 1.61 3.02

Table 2: Comparison of the effect of the horizon size on the average sum square
estimation error for state x(2).

window size considered. As the window size is enlarged, the
arrival cost plays a less significant role on the cost function of
the optimization problem and the cost of the three estimators
tends to converge to the same value. A good approximation
of the arrival cost allows us to decrease the window size. In
this aspect, it can be seen that MHEAD errors do not change
significantly with the different horizon sizes, showing that this
algorithm seems to be a good method for the arrival cost ap-
proximation, even for short horizons.

5.1. Example 1: σw = 1.0, σv = 0.1, N = 5

In this example, the process noise covariance is set to σw =

1.0 and the measurement noise covariance to σv = 0.1. Figure
2 shows the states x(1), x(2) and its estimates (see Fig. 2a and
2b) with N = 5. It can be seen that MHEAD estimation is closer
to FIE despite the short horizon chosen. As time passes, the
state estimates of MHEAD converge to the estimates provided
by FIE. Figures 2c and 2d show the square error ξ(i) at every
sample time. In these figures it can be seen that the error of the
proposed methods are similar to the one obtained using FIE.
On the other hand, from these figures it can also be seen that
the performance of MHEKF is degraded, mainly because the
window size was set to N = 5. This difference can be explained
by the fact that KF update does not approximate properly the
arrival cost due to the effect of constraints [15]. This situation
gets worse when the horizon is shorter, as was mentioned in the
previous experiment.

5.2. Example 2: σw = 0.4, σv = 0.1, N = 5

In this example, although the process noise covariance is set
to σw = 0.4, it varies with time and the different MHE algo-
rithms do not have knowledge of this happening. The covari-
ance σw will take values 0.1 when 0 ≤ k < 20, 0.25 when
20 ≤ k < 40, 1.5 when 40 ≤ k < 100, 1.0 when 100 ≤ k < 150
and 0.4 when 150 ≤ k < 200. We can see in Fig. 3a that the
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Figure 2: Comparison of estimators for model (18) with horizon size N = 5.
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Figure 3: Comparison of estimators for model (18) with horizon size N = 5
and variable σw.

proposed algorithms still perform better than MHEKF . Fig. 3b
shows the trace of the matrix P−1

k−N used by every algorithm ex-
cept for FIE, since in that case the matrix P0 does not evolve
with time. We can see that the MHEKF matrix converges to a
steady state value and never changes again, while the proposed
algorithms adapt its weight according to the changing condi-
tions of the process noise. It can be seen that the trace of P−1

k−N
grows when the error is smaller, showing that it has more confi-
dence on the estimates. On the other hand, when the difference
between the real state and the estimate grows, the trace of the
weighting matrix becomes smaller, providing better adaptation
even under the influence of unknown and varying disturbances.
In Figures 4a and 4b we can see the evolution of the forget-
ting factors of MHEVF and MHECT, respectively. In both cases
we can see that αk is nearly 1 and the algorithm behaves like
a weighted least-squares estimator with very long asymptotic
memory length. In the cases where the noise increases and the
estimator is not following the system, the forgetting factor de-
creases in order to allow for rapid adaptation of the weighting
matrix. This is the main reason why the proposed algorithm
provides a better approximation of the arrival cost.
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Figure 4: Evolution of the sequences of forgeting factors for MHEVF and
MHECT.

6. Conclusion

In this work we investigated an alternative method to approx-
imate the arrival cost for the MHE problem on linear systems.
To the best of our knowledge, adaptive estimation techniques
have not been used before to update the weighting matrix Pk−N .
From the results obtained we could show that adaptive estima-
tion techniques give a good approximation of the arrival cost.
This fact is due to the ability of the variable forgetting factor to
provide good adaptation capabilities allowing the estimator to
incorporate the relevant information of the data and follow not
only slow changes but also sudden changes in the dynamics.
It is worth mentioning that the proposed approach can be eas-
ily extended to nonlinear systems, since the update mechanism
only depends on the state estimates and not on the model. The
use of CasADi toolbox [31] allows for fast implementation of
the optimization algorithms, leading to real-time operation.
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