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ABSTRACT

The objective of this chapter is to optimize the photovoltaic power plant considering the effects of vari-
able shading on time and weather. For that purpose, an optimization scheme based on the simulator
from Sanchez Reinoso, Milone, and Buitrago (2013) and on evolutionary computation techniques is
proposed. Regarding the latter, the representation used and the proposed initialization mechanism are
explained. Afterwards, the proposed algorithms that allow carrying out crossover and mutation
operations for the problem are detailed. In addition, the designed fitness function is presented. Lastly,
experiments are conducted with the proposed optimization methodology and the results obtained are
discussed.

1. INTRODUCTION

In the photovoltaic conversion chain, modules are responsible for converting energy from the sun into
electric power, and several researchers attempted to improve the performance of the modules and their
cells. This is a possible approach to optimize the performance of the photovoltaic system. However, in
a photovoltaic system there are other devices that make up the conversion chain. Interaction among
these stages should be considered in the system optimization, which gains fundamental importance
when increasing its size. A problem associated with photovoltaic power plants is shading. There are
some studies that discuss its impact on photovoltaic systems (Martinez-Moreno, Mufioz, & Lorenzo,
2010) (Sullivan, Awerbuch, & Latham, 2011) (Ubisse & Sebitosi, 2009). In these systems, the
maximum power point tracking stage is very sensitive to shading, thus affecting the magnitude and
morphology of the output curve (Petrone, Spanuolo, & Vitelli, 2007). To a large extent, this is due to
the fact that Maximum
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Power Point Tracking (MPPT) algorithms are usually based on the assumption that the generated power
curve has only one peak (Houssamo, Locment, & Sechilariu, 2010) (Moradi & Reisi, 2011) (Enrique,
Durén, Sidrach de Cardona, & Anddjar, 2010) (Esram & Chapman, 2007). Sanchez Reinoso, Milone,
and Buitrago (2013) introduces the different aspects mentioned previously within the simulation, and
the heterogeneity of static and variable cloud cover on the performance of the system is taken into ac-
count. The said paper does an exploratory analysis based on the simulation of the effects of shading,
but it does not propose any methodology to optimize the system. The way of designing a scheme that
makes the most of the energy received, in the case of highly-powerful plants under shading, is scarcely
studied. On the other hand, it is known that there exist optimization problems that demand to explore a
wide range of solutions, making the classic methods almost inapplicable.

In recent years, different approaches to deal with these problems have been proposed, for example,
evolutionary algorithms (EA). Some interesting features from this technique are the simplicity of the
operators used, the possibility of using fitness functions with very few formal requirements, and the
ability to explore multiple points of the search space in every iteration (Sivanandam & Depa, 2008). In
the photovoltaic area, different computational intelligence techniques were successfully applied on the
detection of operation in island mode (Chao, Chiu, Li, & Chang, 2011), on radiation modeling (Koca,
Oztop, Varol, & Koca, 2011) (Ozgoren, Bilgili, & Sahin, 2012) (Mellit, Mekki, Messai, & Kalogirou,
2011), and on simulators of autonomous systems (Mellit, Mekki, Messai, & Salhi, 2010b) (G6mez-
Lorente, Triguero, Gil, & Espin Estrella, 2012). In Larbes, Ait Cheikh, Obeidi, and Zerguerras (2009)
and Messai, Guessoum, and Kalogirou (2011), evolutionary algorithms are employed to optimize the
maximum power point tracker controller, whereas in Mellit, Kalogirou, and Drif (2010a) the
dimension- ing of little isolated systems including batteries is optimized. In the case of grid-connected
systems, the system optimization was also approached from the dimensioning point of view but using
particle swarm optimization (Kornelakis & Marinakis, 2010). Other study that optimizes through
evolutionary algorithms (Diaz-Dorado, Sudrez-Garcia, Carrillo, & Cidras, 2011) focuses on the
projection of shades among the installation components when using tracking mechanisms. It is noted in
literature that although the effect shading has on photovoltaic systems has been proved, most
optimization works focus on dimensioning (mainly, the array-inverter relationship), on static shades and
on improving the maximum power point tracking algorithms. However, if the first stage is not
optimized, the following stages, at best, would only be able to mitigate greater losses.

This chapter proposes a methodology that makes possible to consider variable shading and optimize
photovoltaic power plants that can be composed of a great number of modules, considering the simula-
tion of all phases in the conversion chain and basing the global optimization of the system on the array
configuration. In particular, will be used genetic programming techniques and will be proposed
different fitness functions and methods of initialization, crossover and mutation. The organization of the
chapter is the following: next sections present the approach used in the optimization, the simulation,
and there follows a description of the characteristics of the algorithm developed in the proposed
optimization methodology. Results are presented and discussed in Section 3. Finally, conclusions are
summarized and future works are proposed.
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Figure 1. Block diagram of the optimization methodology
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2. PROPOSED MODEL AND ALGORITHM

Figure 1 shows a general scheme of the methodology used in the problem optimization. The sequence
of climatic data C(k) enters the deterministic simulator, which is parameterized through m parameters:
number of modules, power of modules, power of the inverter, maximum voltage of the inverter, maxi-
mum current of the inverter, etc. Although the simulator allows obtaining several outputs, the one used
in this optimization approach is power P(k). This output is added for the whole sequence of length [ and
the result is one of the optimization block inputs. Other inputs from this optimizing block are internal
parameters of the simulator such as maximum allowable voltages and currents. The optimizer is based
on an evolutionary algorithm and those inputs are functionally related to make a cost function. In the
iteration i of the global loop, the optimizer gives as an output a population of solutions A, based on the
cost function evaluation. Simulations are essentially based on the approach described in Sanchez Re-
inoso, Milone and Buitrago (2013).

The aim is to solve an optimization problem regarding the type and distribution of connections that
are made on a set of solar panels, in order to obtain the best performance possible in heterogeneous
situations. Two objective functions are proposed, which consider maximizing the generated
accumulated power and minimizing the number of output curve peaks. The objective is to find the
optimum configuration of the system w*. This configuration is composed of a subset of connections
and a subset of modules. The constraint established was that the cardinality of the configurations’
connection set must be constant. That is to say that the initial number of photovoltaic modules must
remain invariable, which not only implies avoiding the elimination and creation of new modules, but
also not repeating them. In addition, voltages and currents entering the inverter must be confined to
their respective allowable ranges.

Below, the representation of circuits will be covered. Next, the proposed mechanism for the
initializa- tion of populations will be discussed. From Section 2.3 onwards, the proposed mechanisms
for selec- tion, crossover and mutation will be covered in detail. Finally, the fitness function will be
developed in Section 2.5.
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2.1. Representation

A widely used representation in evolutionary computation is that of trees. This chapter attempts to solve
a problem that leads us, almost naturally, to a tree representation. An electric connection system can
be exactly represented through trees, using the roots as type of connection (series/parallel) and hosting
the elements of the circuit in the leaves (photovoltaic solar modules, in this case). Figure 2 shows three
cases of traditional representation of electric circuits and their respective tree representation. The first
and second cases correspond to parallel module connections in one and two levels, respectively. The
third case shows a series-parallel hybrid connection, where it is possible to observe how suitable the
tree representation is since it makes possible to establish the appropriate precedence order. In addition,
the said structure may be useful in subsequent studies, for instance, for analyzing solutions through
metrics usually used in trees.

Figure 2. Traditional and tree representation for electric circuits
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Figure 3. Ways of indexing nodes. (a) Graphic representation of a tree with 7 modules, (b) Relative
indexing of (a), (c) Absolute indexing of (a)

In order to operate on these trees, two different ways of referencing (indexing) the elements of the
structure were used: the relative and the absolute one. In the first one, roots and leaves have an inde-
pendent index, whereas in the second, all nodes are listed without distinction of type. Both are based
on going through the tree in pre-order (Root, Left child, Right child). Figure 3 shows an example of the
indexes that correspond to each node of the tree for both indexing systems.

2.2. Initialization

Three types of initialization are proposed: deterministic, random and hybrid. The initial population is
generated through algorithms that design connection trees, the constraint being that all of them must
have K modules (the number of modules defined in the design is maintained) distributed in a
rectangular array

Figure 4. Distribution of modules and connection trees for all modules connected in parallel and in series
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Figure 5. Simple group: 3 groups widthwise with a series root

(Figure 4(a)). In the deterministic initialization, series-parallel connections are made with subgroups
according to known rules, which may be summarized as follows:

. All P or S: a single root connecting all modules in parallel or in series (Figure 4(b) and 4(c)).

. Simple groups: modules are grouped by one of the dimensions (width or height). The general
configuration is inverse to the configuration of the groups. For example, series groups joined in
parallel, and vice versa (Figure 5).

. Matrix groups: similar to the previous one, modules are grouped in both dimensions through a
previous partitioning of the distribution matrix (Figure 6(b)). The general configuration is inverse
to the configuration of the groups (Figure 6(a)).

Figure 6. Matrix group type configurations and detail of the groupings
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(a) Matrix group: 3 groups widthwise, 2 groups heightwise, with a parallel root.
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(b) Detail of the way of grouping modules in configuration (a).



sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (sinc.unl.edu.ar)
C. R. Sanchez Reinoso, R. H. Buitrago & D. H. Milone; "Solar Power Plant Optimization.”

, Pp. 360-385, 2017.

Solar Power Plant Optimization

Figure 7. Three random configurations with 6 modules are shown in (a), (b) and (c)

On the other hand, random initialization is obtained through 30 random mutations (10 for each type
of mutation described in 2.4.) of the elements of a deterministic tree of the matrix group type, whose
parameters were set at random (Figure 7(a), 7(b), 7(c)). Whereas hybrid initialization combines a deter-
ministic initialization with the random one (50% for each).

2.3. Crossover

Crossover of two connection trees has a significant constraint compared to the crossover methods
usually used in genetic programming: the crossover must not modify the number of modules. For this
purpose, a new crossover operator was designed, which is detailed in Algorithm 1 and represented
graphically in Figure 8. First, all subtrees with an equal number of descendant modules in both parents
are identified (Figure 8(a)). Then, a subtree of each parent is chosen at random (both with the same
number of descen-

dants), which we will call subtree and subtree , (Figure 8(b,c)). Subsequently, the list of descendants
from subtree is obtained and it is used to replace the descendants in subtree, (Figure 8(d)). At this point,
subtree, keeps its structure and only the way the modules are connected varies. Finally, in tree  the sub-
tree is replaced by subtree, (Figure 8(e)). Consequently, tree  does not modify the number of modules
and the set of module indexes is not altered (there are not repeated values and others are not eliminated).

2.4. Mutation

Just as crossover, mutation must also be carried out in a way that the number of modules remains con-
stant. Mutation operators capable of generating valid individuals were designed: node exchange
operator, inversion operator for the type of connection and ungroup operator.
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Algorithm 1. Crossover with constant modules

Input: configurations of rree, and tree,.

QOutput: cross trees
1 For each root of free, and rree, obtain the number of descendant modules, including all sublevels:
2 Determine compatible subtrees: roots of tree, that have a number of descendants equal to some root of free;
3 List as possible crossover points roots with an equal number of descendants:
4 Choose a crossover point at random from the list of feasible points;
5 Obtain the list of descendants of subrree . with root in the crossover point of ree ;
6 Take subitree, (root in the crossover point of iree,) and replace the descendants with the original descendants of subrree ;
7 Replace the crossover point of free with the updated subtree; )
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Figure 8. Crossover of configuration trees. (a) Number of descendants for each root, (b) subtree; (root 3),
(c) subtree; (root 3), (d) subtree, with indexes from updated modules according to the order in subtree;.
(e) Replacement of subtree, through subtree,
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Exchange Operator

This operator modifies the structure of a tree exchanging two randomly selected nodes. Any element of
the tree is considered as a node; it may be a connection (where the type is specified) or a leaf (where
reference is made to a photovoltaic module). Therefore, when an operation is made with a connection
node, the operation will be with the whole structure that descends from it. This independent manipula-
tion is carried out using the absolute indexing to indicate the pair of nodes in the exchange.

Exchange operations may be grouped in three cases: Module-Module, Module-Connection, and
Connection-Connection. The exchange, described by Algorithm 2, is quite complex since it must follow
a coherent structure. Rules governing the exchange are:

. Two nodes not having any descendant relationship between them are free to exchange. When a
node is of the Connection type, the exchange is made together with all of its descendants, main-
taining the structure of that connection subtree.

. It is not possible to exchange a Connection for a Module within its descendants.

. If a Connection is exchanged for a Connection in its descendants, the first one is added as a direct
descendant of the second one and the latter replaces it in the original tree.

Figure 9 shows the results of applying the different types of mutation by means of node exchange.
The original tree and its absolute indexing are represented in Figure 9(a) and Figure 9(b), respectively.
The result of the exchange of nodes 2 and 7 is an exchange of the corresponding subtrees (Figure 9(c)).
Other possibility permitted by the proposed operator is the exchange of leaves, i.e. modules, as shown
in Figure 9(d). When attempting to make an exchange between node 7 and 6, the descendant relation-
ship implies separating the subtree with root in 7 from the subtree with index 6, assigning the subtree 6
as the child of 7, and inserting the new subtree 7 into the original place of the node with absolute index
(Figure 9(e)). The operator also considers the possibility of exchanging a Connection type node and its
subtree for a module (Figure 9(f)). Figure 9(g) shows the case of an exchange operation that cannot be
made because a module cannot become the parent of any other element.

Inversion Operator

The inversion operator acts on the type of connection, without altering the connection direction of the
components. Therefore, it is possible to mutate a root so that the type of connection changes from series
to parallel, and vice versa. For that purpose, its value is located and updated using reference indexes
relative to the type of connection.

Some examples of inversion of the tree from Figure 3(a) can be seen in Figure 10. In the case of
Figure 10(a) and Figure 10(b), inversions of nodes 3 and 4 are made independently, whereas the
remaining case (Figure 10(c)) corresponds to inverting node 3 and inverting node 4 to the result
obtained.

Ungroup Operator

This mutation uses relative indexes and consists of ungrouping a single root from the original tree. The
root is eliminated and the direct descendants are connected to the immediate higher root. The main root
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Figure 9. Examples of mutation by node exchange (absolute indexes are used). (a) Original
configuration tree, (b) Absolute indexing, (c) Exchange 2-7, (d) Exchange 4-5, (e) Exchange 7-6, (f)
Exchange 2-10,

(g9) 1t is not possible to make the exchange 6-10 because a module cannot be a parent
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Algorithm 2. Mutation by node exchange.

Input: configuration tree. absolute index, and index,
Quiput: configuration tree with exchanged nodes. or
empty tree in case the exchange is not possible.
1 Exchange the indexes so that index, < index,.
2 Obtain node, and nade, as the elements of the original tree in index and index,, respectively.
if node is a configuration then
if nmff: is descendant of node then
if node, is a configuration then

Eliminate node, from node,

Add node, as a child of node,

Replace tree in index, with node,

else

10 tree = empiy
1 end if
12 else
13 Replace tree in index, with node
14 Replace tree in index, with node,
15 endif
16 else
17 Replace rree in index, with node,
18  Replace iree in a’nde.t: with mm’e;
19 end if
20 return tree

E=J- - B - I A ]

Figure 10. Examples of mutation by inverting the type of connection (relative indexes are used, see
Figure 3(b)). (a) Invert 3, (b) Invert 4, (c) Invert 3 and invert 4 to the result obtained

that originates the tree is the only one this technique cannot be applied to, since it would break the
whole structure. Figure 11 presents examples of different ungrouping.

2.5. Fitness Function

The fitness function was designed to evaluate the quality of the individuals during the evolution and to
conduct the search. This function shapes the characteristics the solution to the problem must have. The
following aspects are considered:

. Relationship between the power given out by the array of modules and the nominal power of the
array.
. Penalty for arrays that move away from allowable voltage and current limit values set by converters.
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Figure 11. Examples of mutation by ungrouping (relative indexes are used). (a) Original configuration
tree, (b) Ungroup root 2, (c) Ungroup root 3, (d) Ungroup root 4

= Pk

7= 5280 (10) - £, ) - s (P10 1)

where: L is the length of the sequence, P is the power, I is the current and V is the voltage. Constraints
are represented through g , g, and g, The first two are functions that control the effect of their respec-
tive parameters, from which different methods are defined. On the other hand, function g ,considers the
multimodality of the output curve. P is the array nominal power, calculated as the number of modules
by their nominal power.

This expression includes the optimality and feasibility of the problem. The power given out is
related to the optimality of the problem, whereas the operating constraints that allow obtaining feasible
solu- tions are the ones related to the allowable voltage and current ranges. Including the number of
peaks is, in fact, an indirect way of adding a constraint in favor of the global optimality of the system.

Penalties

Different ways are proposed to penalize violations to the constraints. The common element among all
of them is the use of variables that are calculated as the difference relative to the maximum allowable
values

(1)
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o= (Lo=1) /1,

o= (Vo= V)1V,

max

where it is observed that excesses over allowable limits cause ¢, and ¢, to result in negative values.

Fitness Functions with Penalties

Twelve different fitness functions that respond to the general form of (1) were implemented, using c,and c:

Addition: the sum of coefficients causes excesses (negative values) to reduce fitness, whereas deficien-
cies are seen as fitness boosters:

9,(1) =~ (1) @
9,(v) =~¢,(v) ®)
9, =0 @

Absolute Addition: in this case, both defects and excesses are treated as penalties (they subtract) to the
ideal fitness:

9,(1)=lc,(r) (5)
9,(v)=le, (v]) (6)
g, =0 )

Exponential: this function allows the fitness to penalize excesses and defects but with an exponential,
non linear weight:

(e._,fl,g B 1)‘

g(1)=
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o (g“-'i-"" - 1]‘ ©)

9, =0 (10)

Hyperbolic Tangent: in this case, a special function by parts is defined, which allows controlling dif-
ferent values for the excesses and defects. An important feature of this function is the possibility
of controlling the degree and saturation of penalties. The hyperbolic tangent function can be
defined as

AL/ Q+e™™)N -4 six<D
tgH(x)40 six =10 (11)
AQL/(1+e™))—4, six>0

"

where parameters A and A]D modify the saturation limits, whereas m and m pmodify the manner of
the transition between those limits. Subscripts p and n refer to positive and negative values, respectively.
Therefore, they are defined as:

g, (1) =gt (c, (1)) (12)
6,(v) =t (c,(v)) (13)
9,=0 (14)

The previous functions do not consider all stages of the power plant and according to the input
scenarios, the MPPT algorithms that are usually used could reduce the performance. Considering this
situation, the penalty function g, is added. The reason for including this penalty and not adding the
global output to the fitness function is to avoid a higher computational cost. In this way, only solutions
that obtained the highest fitness values in the evolution are evaluated with the complete simulator. Two
types of g are proposed, the first one given by

g, =g (15)

where |E| is the cardinality of the subset of extremes E. The second one can be expressed as
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9, =|E, (16)

where |E | is the number of pairs of adjacent extremes e that exceed the threshold u so that

|£T —el>u
1 i

i+

Note: The extremes correspond to the maxima of the output curve (power-voltage). Two extremes
are adjacent if are the closest on its coordinates of tension.

Fitness functions 1, 2, 3 and 4 with the addition of the first penalty g ,are called functions 5, 6, 7
and 8. A similar situation arises for fitness functions 9, 10, 11 and 12 but using the second g , Out of
expediency, from now on the said penalties will be called p and p ,

3. RESULTS

This section presents the performance obtained through the application of the proposed methodology.
First, experiments are carried out to determine a crossover rate and the best way to initiate the algorithm
for the problem under study. Both determinations will be applied to the rest of the experiments in this
chapter. Then, the results for different mutation rates are presented and discussed, using specially de-
signed operators and the proposed variations of fitness functions.

In these experiments, the fitness function is not directly used as a measure of goodness of the
solutions found. Instead, the efficiency of the system is used in order to obtain results that can be
compared to the results of Sanchez Reinoso, Milone, and Buitrago (2013). However, the fitness
function is employed to lead the search since it adds the problem constraints. The efficiency of the
system is the result of consid- ering the relationship between the output power and the power that would
be obtained from the system without considering the losses caused by interconnections and, therefore,
with maximum power point trackers finding the maximum points of their respective curves effectively.
Each module will present an individual instant efficiency before the input data. The method used in
this chapter to calculate the efficiency of the system allows obtaining solutions that are independent of
the above-mentioned instant efficiencies and they only depend on the configuration of the system. This
is very useful in spite of not being independent of the material used in the production of modules. A
corresponding simulator must be used for each kind of material and the evolutionary method will find
the most adequate solution for each case.

Simulations employed consider seven cloudy days under the same scenario described in Sanchez
Reinoso, Milone and Buitrago (2013). This allows maintaining the shading conditions of the said paper
and, besides, an extra difficulty is added when the optimization horizon is expanded. In order to make
weather conditions more real, real radiation and temperature data were used, which were measured at
the weather station belonging to the Weather Research Center of the School of Engineering and Water
Sciences located within the facilities of the University “Universidad Nacional del Litoral”. Since the
results of power plant generations are calculated normalizing by the nominal power, it is possible to
gain independence of the size of the power plant. Therefore, arrays of 32 photovoltaic modules were
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used to avoid high computational costs, but maintaining, at the same time, the possibility of comparing
the results obtained.

Initializations

Experiments were carried out with the different types of initialization: deterministic, random and
hybrid. Some works indicate that a range of high crossover probability values and a low mutation
probability value may be suitable (Grefenstette, 1986; Schaffer, Caruana, Eshelman, & Das, 1989).
These tests took crossover probabilities between 0.7 and 0.9, whereas the mutation probability value
was 0.02. The fitness

function employed for the sake of simplicity is f, and a population of 150 individuals was used to evolve
for 500 generations. The selection process employed was competition and elitism was used to keep the
best solution in each generation. A competition consists in choosing completely random of individuals
(k> 1); these individuals compete through its fitness and the winner is selected (this paper uses k = 4).
Elitism was implemented conserving the best individual to the next generation.

Table 1 shows the results of the experiments (30 searches) carried out with different crossover prob-
abilities and the three types of initializations. The results found demonstrate that a better performance is
obtained using a crossover probability of 0.8. On the other hand, the results obtained when using the
most common initialization —random— are better than the ones obtained with the deterministic
initialization. Nevertheless, a hybrid initialization is the one that gave the best results; therefore, it will
be used in the following experiments, particularly with the above-mentioned crossover probability.

Operators and Fithess Functions

Experiments were carried out with the different types of mutation operators and fitness functions pro-
posed to solve the problem under study. These experiments were made using mutation rates between 2
and 10%, and a c, = 80%, that gave the best results in previous experiments. The population size was
150 individuals and optimization stopped after 600 generations. Other factors considered in the
experiments are the twelve fitness functions and the three mutation operators proposed. Results of 10
searches for each combination of parameters were evaluated and they are shown in Tables 2, 3 and 4.
The lowest mutation probabilities are the ones which gave the best results, in particular the m o

0.02 (Table 2). Regarding the operators, the results obtained with f, and m, of 0.02 and 0.04 do not show
significant improvements when the operator used is changed, being the performance of the best
solutions around 0.6. In the case of f, in general, a higher performance is observed when using the
inversion and exchange mutation operators. However, the ungroup operator with its best solutions
achieves a perfor- mance of 0.71, which is not too far from the results obtained with the other gperators.
With f, the best solutions obtained when using the ungroup and exchange operators show a higher
performance than

Table 1. Efficiency for different initializations varying the crossover probability

@ Deterministic Random Deterministic-Random
0.7 0.55 0.59 0.70
0.8 0.60 0.65 0.72

0.9 0.53 0.67 0.69
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Table 2. Efficiency achieved with fitness functions 1, 2, 3 and 4 with inversion, ungroup and exchange
mutation operators

Efficiency Inversion Ungroup Exchange
o p Better p Better p Better
0.02 0.69 0.72 0.49 0.61 0.62 0.64
0.04 0.63 0.65 0.55 0.63 0.62 0.63
fi 0.06 0.66 0.67 0.53 0.61 0.60 0.62
0.08 0.53 0.55 0.45 0.54 0.52 0.58
0.1 0.40 0.42 0.41 0.52 0.51 0.54
0.02 0.74 0.79 0.52 0.71 0.75 0.77
0.04 0.75 0.75 0.53 0.64 0.74 0.76
f2 0.06 0.62 0.73 0.39 0.56 0.66 0.68
0.08 0.53 0.60 0.35 0.44 0.63 0.64
0.1 0.45 0.59 0.32 0.41 0.60 0.66
0.02 0.68 0.69 0.65 0.77 0.82 0.84
0.04 0.65 0.69 0.72 0.75 0.77 0.82
f3 0.06 0.37 0.55 0.50 0.55 0.57 0.74
0.08 0.22 0.41 0.32 0.51 0.49 0.62
0.1 0.21 0.38 0.43 0.54 0.39 0.51
0.02 0.80 0.83 0.61 0.65 0.84 0.86
0.04 0.79 0.81 0.71 0.72 0.82 0.836
fi 0.06 0.68 0.75 0.52 0.64 0.39 0.51
0.08 0.61 0.74 0.33 0.42 0.35 0.53
0.1 0.42 0.66 0.43 0.50 0.37 0.42

Table 3. Efficiency achieved with fitness functions 5, 6, 7 and 8 with the inversion, ungroup and exchange
mutation operators

Efficiency Inversion Ungroup Exchange
T n Better p Better p Better
0.02 0.68 0.71 0.38 0.70 0.54 0.60
0.04 0.77 0.78 0.7 0.75 0.76 0.79
fs 0.06 0.54 0.61 0.42 0.54 0.62 0.65
0.08 0.41 0.57 0.43 0.53 0.59 0.63
0.1 0.32 0.51 0.27 0.44 0.5 0.57
0.02 0.71 0.73 0.62 0.68 0.78 0.8
0.04 0.74 0.75 0.74 0.79 0.81 0.82
fo 0.06 0.65 0.67 0.53 0.62 0.58 0.60
0.08 0.42 0.50 0.44 0.48 0.54 0.57
0.1 0.48 0.52 0.37 0.43 0.41 0.51
0.02 0.71 0.75 0.57 0.77 0.84 0.85
0.04 0.63 0.77 0.71 0.81 0.85 0.87
fr 0.06 0.30 0.35 0.44 0.49 0.46 0.51
0.08 0.22 0.43 0.24 0.40 0.42 0.47
0.1 0.19 0.32 0.41 0.47 0.35 0.42
0.02 0.64 0.66 0.72 0.83 0.81 0.87
0.04 0.72 0.79 0.8 0.84 0.85 0.89
fs 0.06 0.69 0.70 0.59 0.63 0.4 0.56
0.08 0.66 0.68 0.19 0.48 0.36 0.47
0.1 0.53 0.55 0.41 0.45 0.21 0.39
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Table 4. Efficiency achieved with fitness functions 9, 10, 11 and 12 with the inversion, ungroup and
exchange mutation operators

Efficiency Inversion Ungroup Exchange
T I Better n Better B Better
0.02 0.69 0.73 0.70 0.75 0.64 0.67
0.04 0.66 0.70 0.67 0.72 0.64 0.65
fo 0.06 0.60 0.64 0.55 0.62 0.56 0.62
0.08 0.54 0.57 0.54 0.59 0.51 0.60
0.1 0.49 0.53 0.48 0.55 0.50 0.58
0.02 0.73 0.74 0.75 0.80 0.77 0.82
0.04 0.70 0.79 0.72 0.77 0.72 0.79
f,g 0.06 0.67 0.7 0.54 0.61 0.60 0.64
0.08 0.60 0.63 0.51 0.54 0.53 0.55
0.1 0.53 0.61 0.45 0.48 0.44 0.52
0.02 0.75 0.79 0.78 0.84 0.81 0.90
0.04 0.64 0.70 0.74 0.84 0.81 0.89
fu 0.06 0.57 0.60 0.59 0.63 0.69 0.76
0.08 0.51 0.55 0.53 0.58 0.57 0.60
0.1 0.46 0.52 0.49 0.57 0.53 0.57
0.02 0.74 0.8 0.76 0.81 0.82 0.92
0.04 0.75 0.83 0.68 0.79 0.80 0.90
fzZ 0.06 0.70 0.74 0.61 0.65 0.56 0.59
0.08 0.64 0.68 0.46 0.51 0.47 0.52
0.1 0.53 0.59 0.29 0.32 0.46 0.50

the one achieved when using f 1and f 2with the said operators. The reason may be a better design of the
fitness function that penalizes more strongly at the extreme of the allowable input range of the inverters.
However, with f, and the inversion operator, the best performance values are lower than the one found

using f, and the same operator. Probably, this is caused by higher exploration requirements, whereas the
operator in question is less disruptive than the rest. When using f4, the inversion and exchange operators
show a higher performance than for the other fitness functions cases, whereas the best results obtained
by the ungroup operator are slightly lower than when f3 is used. The results obtained with ]: would sug-
gest that including penalties with saturation is beneficial, thus reducing the number of individuals that
are excessively penalized and that affect the convergence of the population. An analysis of the complete
table indicates that the best results are obtained with the exchange operator, particularly for cases in
which f3 and f4 are used. With f3 a performance of 0.84 is achieved and with f4 the value reaches 0.86. It
is known that many maximum power point tracking algorithms are based on first-order search methods
and that those methods can undergo stagnation in local minimums. A possible cause for not obtaining
higher performance values may be that an optimum array can give out the maximum global power but
it may be difficult for the maximum power point tracking algorithm to explore the morphology of the
output curve.

When . and f, are used with m = 0.06, 0.08 and 0.1, the best performance values obtained are lower
than using the same probabilities with f and f, (Table 3). Using identical mutation probabilities, the
inversion operator obtains higher performance values with f .than when it is used with f , Nevertheless,
when using it with f, the best performance values are lower than when using f . If the results obtained

. 6 2
with f . and f6 are compared to the results obtained with f and f, using the ungroup operator, lower per-

formance values can be observed. However, with the exchange operator, the best performance values
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increase, all this with the probabilities mentioned previously. Table 3 shows that the highest performance
is achieved with m = 0.04, in contrast with when .  are used, which show a higher optimality for m

p p
= 0.02. This would be caused by the influence of the g ,penalty that reflects the output multimodality
and would require a higher mutation to find the global optimum. The best results using f oo with the

designed operators show better solutions for the exchange operator that, in fact, are better than when
using f1 K Under such situations, attacking the problems of the MPPT in cases of shading through the

g, penalty was favorable. In fact, it is worth mentioning that this was achieved without modifying the
tracking algorithm per se. Improving the algorithm would increase the global performance even more.

Table 4 shows the results obtained when using functions fg_12 and the best performance values are, in
general, higher than the ones obtained with the other fitness functions. Out of expediency, from now on
g, penalties of those functions will be called p s and g s penalties used in f o will be p.Usingp, penalty
yielded better results than using p .. In the case of n peaks of equal magnitude, this could be explained
because p, would be equal to n, whereas p, would be equal to 0. In such cases, the correct penalty should
be equal to 0 since the aim is to optimize power; therefore, only the voltage magnitude would vary but that
magnitude is already considered by the corresponding constraint. Consequently, p ,could be considered
as a maximum value of p,. Although, in general, better results can be obtained with p, than with p , there
are few cases in which functions that do not include a peak penalty achieve a better performance. These
cases may be due to the fact that the maximum power point tracking works especially well under that
scenario and/or the thresholding penalty led to the rejection of solutions that could have been optimum
enough at the moment of evolving. When selecting the threshold for p,, relative magnitude differences
higher than 0.35 were considered for counting the peaks. Using this value is a conservative strategy
since we do not want to penalize too strongly solutions that could be promising at the time of evolving.
Besides, adopting differences of very small magnitude makes us tend to the case of using p, and it is
clear that if the difference among power peaks is small, preference of one extreme over others must not
exist. Considering the fitness functions and operators used in the experiments, the best performance
values are achieved by f,, function and the exchange operator, and the value is around 0.9.

For greater clarity results are synthesized for different fitness functions and operators in Figure 12.
In addition, is shown the change fitness of the best individual in depending on number of generations
(Figure 13).

Results show a promising performance if compared to the design of some photovoltaic power plants
that are currently installed and that were monitored for several years, showing a minimum average ef-
ficiency of 56% and a maximum average efficiency of 71%.

Evolved Configurations

Examples of evolved configurations will be now presented. The results presented were subjected to an
(automatic) simplification process. The simplification consists of removing one root and connecting all
its descendants to the parent of the said root. The purpose is to eliminate the redundancy in the tree-
based representation, thus allowing a better interpretation of its meaning from a physical point of view.
This operation does not modify the series-parallel relationship of its elements, which means that they
represent the same connection and, therefore, the final output of the array is not altered.

Figure 14 exemplifies simplification cases from three configurations. Figure 7(a), 7(b) and 7(c)
show trees before the simplification operation is applied. It should be observed that after applying the
operator
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Figure 12. Best global efficiencies for different fitness functions and operators. In Figure 12(a) are
shown the results for the functions 1-4, in Figure 12(b) for the functions 5-8 and in Figure 12(c) for the
functions 9-12
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Figure 13. Efficiency as a function of the number of generations
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Figure 14. Simplified configurations of Figure 7(a), 7(b) and 7(c), respectively

to those configurations, it is possible to obtain representations with a reduction of 16.6%, 25% and
80%, respectively, of the number of nodes required to represent the same connection (Figure 14(a),
14(b), 14(c)). The best results in each table have certain similarity (Figure 16). This could be
attributed to the fact that they are obtained using the same fitness function and operator. Table 2 shows
the results with the highest similarity among themselves and Table 4 shows the ones having the lowest
similarity. This could be explained by the different mutation probabilities that produced those results.
Regarding Table 3, the best configurations are relatively more complex than the ones in the other
tables. The common characteristic of the best solutions in all tables is that they show a maximum use
of allowable current and a lower use of voltage. In addition, the current-voltage use relationship among
the solutions is similar. In order to analyze the common aspects in the solutions, the complexity of the
configuration will be used as a similarity measure and this complexity will be evaluated according to
the number of groups by level. Therefore, a complexity by level and a global complexity given bythe
sum of complexities will be considered.
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Figure 15. Complexity of solutions (C): Configuration (circuit) with four groups of level one (C,
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Figure 16. Evolved configurations. a) and b) show the best configurations in Table 2, c) and d) show
the best configurations in Table 3, and e) and f) show the ones in Table 4

The level indicates the order of precedence which is employed to solve the circuit. The said circuit
consists of groups (sub-circuits) in each level. To give one example, the configuration shown in Figure
15 indicates four groups of level one consisting of 50 strings in parallel (50p) with 50 modules in series
(50s) for each string, and that there are two groups of level two in parallel, which consist of level one
groups connected in series.

In the cases of Figure 16(a) and 16(b), the complexity of the highest and lowest level of these con-
figurations coincides and so does their global complexity. Considering the number of highest level
groups, configurations of Figure 16(c) and 16(d) are similar and the number of lowest level groups is
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equal. If the lowest level groups are observed, they also have some common characteristics. However,
the solutions are more complex that those obtained in the other tables. This is reflected in the higher
total number of groups considering all levels. On the other hand, within the best configurations obtained
in Table 4 (Figure 16(e) and 16(f)), the lowest level similarity is the same but the highest level
similarity differs. This difference is higher among the pairs of best configurations found. This could be
due to the different mutation probabilities with which they were obtained.

In general terms, the solutions do not have many nesting levels. Possibly, using a higher number
of modules may provide solutions of a higher number of levels. In the experiments carried out, the
proliferation of levels was strongly limited by voltage and current constraints. A similar effect can be
caused by the fact that the number of modules must be constant. Also, it is necessary to consider that
the redundant levels of the evolved solutions are eliminated by the simplification process. Nevertheless,
it is worth explaining that, in practice, it is desirable to obtain a low number of connection levels in
the systems. In addition, the representations obtained with this method, that is, the best chromosomes,
may have a structure that is not simple to analyze. Future works will evaluate the possibility of obtain-
ing general conclusions about the structure of the obtained representation and about the corresponding
electric systems.

4. CONCLUSION

The objective of this chapter was to optimize the photovoltaic power plant considering the effects of
variable shading on time and weather. For that purpose, an optimization scheme based on a simulator
and on genetic programming techniques were proposed.

The effect of crossover probability and initialization on the performance measures proposed for the
analysis was studied and it was observed that the best results are obtained with 80% rates. The proposed
hybrid initialization makes possible to obtain higher performance values than when the deterministic or
random initialization are used exclusively. Also, the results obtained for different mutation rates were
analyzed when the three designed mutation operators and the four proposed fitness functions are used
based on the performance of the system. Regarding the mutation rate, in general, the best performance
is achieved with a m = 0.02 in most cases and to a lesser extent with a m = 0.04. The proposed ex-
change operator is the one that obtains higher performance values, particularly with fitness functions
with exponential penalties and hyperbolic tangent. The said performance values reach 0.92 and 0.90,
respectively, turning them into promising results considering the performance currently obtained in
operating photovoltaic power plants.

The modeling methodology and the strategy to implement it provide a useful engineering tool to
analyze the performance of a photovoltaic system, to evaluate and design connection schemes, reducing
the probability of poor quality designs and high costs, and improving the power productivity and the
efficiency of the system.
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KEY TERMS AND DEFINITIONS

Crossover: Operation used in evolutionary algorithms to model the genetic crossover that occurs in
the natural evolution.

Evolved Configuration: Configuration obtained by applying the process of natural evolution in a
certain problem.

Initialization: Method for setting initial conditions enabling to an algorithm to perform the calcula-
tions. It is desirable to properly design the method to get the best possible performance of the algorithm.

Mutation: Operation used in evolutionary algorithms to model the genetic mutation that occurs in
the natural evolution.

Optimization: Theory that under certain criteria allows to minimize or maximize functions and
satisfy limitations.

Photovoltaic System: System for generating electricity from solar energy and semiconductors. This
mainly consists of photovoltaic modules and the power conversion stage which decomposes into a DC
and an AC stage.

Set of Solutions: A set whose elements are evolved configurations.
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