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Abstract. Evaluating similarity between graphs is of major importance
in several computer vision and patteru recoguition problems, where graph
representations arc often used to model objects or interactions between
elements. The choice of a distance or similarity metric is, however, not
trivial and can be highly dependent on the application at hand. T this
work. we proposc a novel metric learning method to cvaluate distance
between graphs that leverages the power of convolutional neural net-
works, while exploiting concepts from spectral graph theory to allow
these operations on irregular graphs. We demonstrate the potential of
our method in the field of connectomics, where neuronal pathways or
functional conncctions between brain regions are commonly modelled as
graphs. In this problem, the definition of an appropriate graph similarity
function is critical to unveil patterns of disruptions associated with cer-
tain brain disorders. Experimental results on the ABIDE datasct show
that our mcthod can learn a graph similarity metric tailored for a clini-
cal application, improving the performance of a simple k-nn classifier by
11.9% comparced to a traditional distance metric.

1 Introduction

'The highly challenging problem of inexact graph matching entails the evaluation
ol how much two graphs share or. conversely. how much they difTer [9]. Obtain-
ing a measurc of global similarity between two graphs can [acilitalc classification
and clustering problems. This concept is particularly valuable in brain connectiv-
ity studics, which involve the representation of the structural and/or functional
conncections within the brain as labelled graphs. Resting-state fNMRI (rs-fMRI)
can be used to wap the connections between spatially remote regious in order
to obtain functional networks incorporating the strength of these connections
in their edge labels. At the same time, disruptions to this functional network
organisation have been associated with neurodevelopmental disorders. such as
antism spectrum disorder (ASD) [1]. As a result, studying the brain’s organisa-
tion has the potential to identify predictive biomarkers for neurodevelopmental

* T'he support of the KPSRC CD'T' (HiPEDS. Grant Reference EP/1.016796/1) is
greatfully acknowledged. Timail correspondence to: ira.ktena@imperial.ac.uk



S. |. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker & D. Rueckert; "Distance metric learning using graph convolutional networks: Application to functional brain networks"
International Conference on Medical Image Computing and Computer-Assisted Interventions (MICCAL), 2017.

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (fich.unl.edu.ar/sinc)

disorders. a task of great importance for understanding the disorder’s under-
lying mechanisms. Such tasks require an accurate metric of similarity/distance
between brain networks to apply statistical and machine learning analyses.

Related work: The cstimation of (dis)similarity between two graphs has, most
commonly, been dealt with using four mainstrcain approaches [9]: graph ker-
ncls, graph embedding. motif counting and graph edit distance. Graph kernels
have heen employed to compare functional brain graphs [15], but often fail to
capture global properties as they compare features of sinaller subgraphs. Graph
embedding involves obtaining a feature vector representation that summarizes
the graph topology in terms of well-known network features. This method has
been widely used to estimate brain graph similarity [1], since it facilitates the
application of traditional classification or regression analyses. However, it of-
ten discards valuable information about the graph structure. Counting motifs,
1.c. occurrences ol significant subgraph pattcrns, has also been used [13], but is
a computationally cxpensive process. Finally, mcthods based on graph cdit dis-
tance necatly modecl both structural and sciantic variation within the graphs and
arc particularly uscful in cases of unknown node correspondences [12], but arc
limited by the fact that they require the definition of the edit costs in advance.

Recently, different neural network models have been explored to learn a sim-
ilarity function that compares images patches [16.8]. The network architectures
investigated employ 2D convolutions to yield hierarchies of features and deal
with the different factors that aflect the final appcarance of an image. However,
the application of convolutions on irrcgular graphs, such as brain conncctivity
graphs, is not straightforward. Onc of the main challenges is the definition of
a local ncighbourhood structure, which is required for convolution opcrations.
Recent work has attempted to address this challenge by ciploying a graph la-
belling procedure for the construction of a receptive field [11], but requires node
features to 1neet certain criteria dictated by the labelling function (e.g. cate-
gorical values). Shuman et al. [14] introduced the concept of signal processing
on graphs, through the use of computational harmonic analysis to perform data
processing tasks. like filtering. 1'his allows convolutions to be dealt as multiplica-
tions in the graph spectral domain. rendering the extension of CNNs to irregular
graphs feasible. Recenl work by [3.7] relies on this properly (o define polynomial
[ilters that are strictly localised and employ a recursive formulation in terms of
Chcbyshev polynomials that allows fast filtering opcrations.

Contributions: In this work., we propose a novel method for learning a sin-
ilarity wetric between irregular graphs with known node correspoudences. We
use a siamese graph convolutional neural network applied to irregular graphs
using the polynomial filters formulated in [3]. We employ a global loss function
that, according to [8]. is robust to outliers and provides better regularisation.
Along with that the network learns latent representations of the graphs that
arc morc discriminative for the application at hand. As a prool of concept, we
demonstrate the modcl performance on the functional connectivity graphs of 871
subjects from the challenging Autism Brain Imaging Data Exchange (ABIDE)
databasc [5], which contains heterogencous 1s-fMRI data acquired at multiple
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Fig. 1: Pipcline used for lcarning to comparc [unctional brain graphs (source
codc available at https://github.com/sk1712/gcn_metric_learning).

international sites with different protocols. To the best of our knowledge, this is
the first application of graph convolutional networks for distance metric learning.

2 Methodology

Fig. 1 gives an overview of the proposed model for learning to compare brain
graphs. In this section, we first introduce the concept of graph convolutions and
filtering in the graph spectral domain in 2.1, as well as the proposed network
model and the loss function that we intend to minimise in 2.2. Finally. we present
the dataset used and the process through which functional brain graphs are
derived from fMRI data in 2.3.

2.1 Spectral Graph Filtering and Convolutions

The classical definition of a convolution opcration cannot be casily genceralised
to the graph sctting, since traditional convolutional opcrators arc only defined
for regular grids, c.g. 2D or 3D images. Speetral graph theory makes this gen-
cralisation feasible by defining filters in the graph spectral domain. An essential
operator in spectral graph analysis is the normalised graph Laplacian [14], de-
tined as L = Ig — D™Y2AD1/2 where A € REXF is the adjacency matrix
associated with the graph G, D is the diagonal degree matrix and Ig is the
identity matrix. L can be decomposed as L = UAUT | where U is the matrix of
eigenvectors and A the diagonal matrix of eigenvalues. The eigenvalues represent
the frequencies of their associated eigenvectors, i.e. eigenvectors associated with
larger cigenvalues oscillate more rapidly between connected nodes. The graph
Fouricr transform of a signal ¢ can, then, be expressed as ¢ = Uc. This allows
to define a convolution on a graph as a multiplication in the spectral domain of
the signal ¢ with a filter gg = diag(d) as:
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gy xc = UgyU'e, (1)
where 8 € R is a vector of Fourier cocfficients and go can be regarded as a
function of the cigenvalues of L, 1.c. go(A) [7].

To render the filters K-localised in space and reduce their computational
complexity they can be approximated by a truncated expaunsion in terms of
Chebyshev polynomials of order K [6]. The Chebyshev polynomials are recur-
sively defined as Ty.(¢) = 2¢T) 1 (c) — Tx—2(c), with To(e) = 1 and Ti(c) = c.
"The filtering operation of a signal ¢ with a K-localised filter is, then, given by:

K
v=go(l)e =) OxT(l)c, (2)
=0

with L = X 2 —L — I, where Apqq denotes the largest cigenvalue of L. The j"h’

output feature map of sanple s in a Graph Convolutional Network (GCN) is
then given by:

Fin
Ysj = Zgoi_j‘ (L)CS.Z' € RR» (3)
i=1

yielding Fj,, x Fyy; vectors of trainable Chebyshev coeflicients 6, ; € R, where
cs,; denotes the input feature maps.

2.2 Loss Function and Network Architecture

Our siamesc network, presented in Fig. 1, consists of two identical sets of convo-
lutional layers sharing the samc weights, cach taking a graph as input. An inner
product layer combines the outputs fromn the two branches of the network and is
followed by a single fully connected (FC) output layer with a siginoid activation
function and one output, that corresponds to the similarity estiinate. The FC
layer accounts for integrating global information about grapl similarity from the
preceding localised filters. Each convolutional layer is succeeded by a non-linear
activation. i.e. Rectified Linear Unit (ReLU).

We train the network using the pairwise similarity global loss function pro-
posed in [§] thal yields superior results in the problem of learning local image
descriptors compared (o traditional losscs. This loss maximises the mean simi-
larity 4t between ecmbeddings belonging to the same class, minimiscs the mcan
similarity between embeddings belonging to different classes ¢~ and, at the same
timne, minimises the variance of pairwise simnilaritics for both matching o2 and
non-matching o2  pairs of graphs. The formula of this loss function is given by:

J9= (0% +6%7) + A max (0,m — (ut — 7)), 1)

where A balances the importance of the mcan and variance terms, and m is the
margin between the mcans of matching and non-matching similarity distribu-
tions. An additional /> regularisation term on the weights of the fully connected
layer is introduced to the loss function.
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2.3 From fMRI Data to Graph Signals

The datasct is provided by the Autism Brain Tmaging Data Exchange (ABIDE)
initiative [5] and has been preprocessed by the Configurable Pipeline for the
Analysis of Connectomes (C-PAC) [2], which involves skull striping, slice tim-
ing corrcction. motion correction, global mean intensity normalisation, nuisance
signal regression. band-pass filtering (0.01-0.1Hz) and registration of £MRI in-
ages to standard anatowical space (MNI152). It includes N = 871 subjects from
different imaging sites that met the imaging quality and phenotypic information
criteria. consisting of 403 individuals suffering from ASD and 468 healthy con-
trols. We, subsequently. extract the mean time series for a set of regions from
the Harvard Oxford (HO) atlas comprising /¢ = 110 cortical and subcortical
ROIls [4] and normalise them (o zero mean and unit variance.

Spectral graph convolutional networks filter signals defined on a common
graph structurc for all samples, since these operations arc paramectrised on the
graph Laplacian. As a result, we modcl the graph structure solely from anatony,
as the k-NN graph G = {V, £}, where cach ROLI is represeuted by a node v; €
V (located at the centre of the ROI) and the edges € = {e;;} of the graph
represent the spatial distances between connected nodes using e;; = d(v;. vj) =
V|[vi = 0|2, For each subject, node v; is associated with a signal cg; @ 0; — RE.
s =1,.... N which contains the node’s connectivity profile in terms of Pearson’s
correlation between the representative rs-fMNRI time series of each ROL.

3 Results

We evaluate the performance of the proposed model for similarity metric learning
on the ABIDE database. Similarly to the experimental setup used in [16], we
train the network on matching and non-matching pairs. In this context, matching
pairs correspond to brain graphs representing individuals of the same class (ASD
or conirols), while non-maftching pairs correspond Lo brain graphs representing
subjects from difTerent classes. Although the ground truth labels arc binary, the
nctwork output is a continuous value, hence training is performed in a weakly
supcrvised sctting. To dcal with this task, we train a siamesc nctwork with 2
convolutional layers consisting of 64 features cach. A binary featurc is introduced
at the FC layer indicating whether the subjects within the pair were scanned
at the same site or not. The different network paraneters arve optimised using
cross-validation. We use dropout ratio of 0.2 at the FC layer, regularisation
0.005. learning rate 0.001 with an Adam optimisation and K = 3, where the
filters at each convolution are taking into account neighbours that are at most
K steps away from a node. For the global loss function. the margin m is set to
0.6, while the weight A is 0.35. We train the model for 100 epochs on 43000 pairs
in mini-batches of 200 pairs. These pairs result from 720 dilferent subjects (alter
random splitting), comprising 21802 matching and 21398 non-matching graph
pairs, and we make surc that all graphs arc fcd to the network the same number
of tiincs to avoid biascs. The test sct consists of all combinations between the



S. |. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker & D. Rueckert; "Distance metric learning using graph convolutional networks: Application to functional brain networks"
International Conference on Medical Image Computing and Computer-Assisted Interventions (MICCAL), 2017.

sinc(i) Research Ingtitute for Signals, Systems and Computational Intelligence (fich.unl.edu.ar/sinc)

PCA/Eucl. di: - all sites (n.s.) PCA/Eucl. di: -site 6 (%) CA/Eucl. di - site 16 {n.s. PCA/Eucl. di: -site 18 (n.s.
- o 8 . “ac 0] »
8 H .

EIELNIE IR

For marcaiag materirg w07 Marching At AIng non matchiry ~arch ng nor marching materirg

GCN distances - all sites (+) GCN distances - site 6 (~) GCN distances - site 16 (n.s.) CCN distances - site 18 (<)
> a >

T -
0 b i8 bl algr .

=

For-mate ing matcrirg ~arrmaiching Ak AIng non-matchirg ~atch ng nor-matching matcrirg

Fig.2: Box-plots showing Euclidean distances after PCA (top) and distances
learned with the proposed GCN model (bottom) between matching and non-
malching graph pairs of the test set. Dillerences between Lhe distance distribu-
tions of the two classcs (matching vs. non-matching) arc indicated as significant
(*) or non significant (n.s.) using a permutation test with 10000 permutations.

Table 1: k-nn classification results with & = 3 using the proposed metric and
Euclidcan distance following PCA.

Classification ‘all sites‘ site 6 ‘ site 9 ‘site l4‘si‘ce lG‘site 18

PCA/Euclidean| 51.0% | 59.3% | 25.0% | 30.0% |64.3%| 50.0%
GCN 62.9% |81.5%)|62.5%|70.0%| 50.0% [90.0%

remaining 151 subjects, i.c. 11325 pairs, 5631 of which belong to the same class
(cither ASD or controls) and 5694 belong to different classes. We also ensurc
that subjects from all 20 sites arc included in both training and test scts.

To illustratc how challenging the problem under consideration is, we show
the pairwisc Euclidcan distances between functional connectivity matrices for 3
of the largest acquisition sites and the full test sct after applying dimensionality
reduction (PCA) in Fig. 2. It can be observed that networks are hardly compara-
ble using standard distance functions. even within the same acquisition site. “All
sites” refers to all pairs from the test set. even if the subjects were scanned at
different sites. It can be seen that the learned metric, which corresponds to the
network output and is shown at the bottom of Fig. 2, is significantly improving
the separation between matching and non-matching pairs for the total test set.
as well as for most individual sites. In order to demonstrate the learned metric's
ability to facilitate a subject classification task (ASD vs control), we use a simple
k-nn classificr with k£ = 3 based the estimated distances, and summarise results
in Table 1. Improvement in classification scores reaches 11.9% on the total test
sct and up to 40% for individual sites. Results for smaller sites arc omitted, since
they have very few subjects in the test set to draw conclusions from.
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Fig. 3: ROC curves and area under curve (AUC) for the classification of matching
vs. non-matching graphs on the test set (a) for all sites and the 5 biggest sites
(b-f) for the proposed metric and Euclidean distance.

Fig. 3 illustrates the results on the test set through receiver operating char-
acteristic (ROC) curves for the task of classification between matching and non-
matching graphs for the biggest 5 sites, as well as across all sites. along with
the estimated area under curve (AUC). T'ig. 3a shows promising resulls, with
an overall improved performance of the proposed Iearned metric compared Lo a
traditional distance measurc on the whole database. The performance of the net-
work is more striking between pairs from the same site. We obtain higher AUC
values for all of the 5 biggest sites, with increases of up to 0.44 (for site 18). The
limited performance for “all sites” could be attributed to the heterogeneity of
the data across sites, as illustrated in Fig. 2.

4 Discussion

In this work. we propose a novel wctric learning method to estiinate siinilarity
between irregular graphs. We leverage the recent concept of graph convolutions
through a siamese architecture and employ a loss function tailored for our task.
We apply the proposed model to functional brain connectivity graphs from the
ABIDE database. aiming to separate subjects from the same class and subjects
from different classes. We obtain promising results across all sites, with signif-
icant increases in performance between same site pairs. While applied to brain
ncuworks, our proposed mcthod is flexible and gencral ecnough to be applicd to
any problem involving comparisons between graphs, c.g. shape analysis.

The proposed modcl could benefit from scveral extensions. The architecture
of our nctwork is relatively simple, and further immprovement in performance
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could be obtained by exploring more sophisticated networks. A particularly ex-
citing prospect would be to use autoencoders and adversarial training to learn
lower dimensional representation of connectivity networks that are site indepen-
dent. Addilionally, exploring the use of generalisable GCNs defined in the graph
spatial domain [10] would allow (o train similarily metrics between graphs of
different structures.
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