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Abstract

Mel-frequency cepstral coefficients introduced
biologically-inspired features into speech technol-
ogy, becoming the most commonly used represen-
tation for speech, speaker and emotion recognition,
and even for applications in music. While this rep-
resentation is quite popular, it is ambitious to as-
sume that it would provide the best results for every
application, as it is not designed for each specific
objective. This work proposes a methodology to
learn a speech representation from data by optimis-
ing a filter bank, in order to improve results in the
classification of stressed speech. Since population-
based metaheuristics have proved successful in re-
lated applications, an evolutionary algorithm is de-
signed to search for a filter bank that maximises the
classification accuracy. For the codification, spline
functions are used to shape the filter banks, which
allows reducing the number of parameters to opti-
mise. The filter banks obtained with the proposed
methodology improve the results in stressed and
emotional speech classification.

1 Introduction

The most widely used speech representation con-
sists of the Mel-Frequency Cepstral Coefficients
(MFCCs) [Albornoz et al., 2011, Reyes-Vargas
et al., 2013], based on the linear voice production
model, and uses a psycho-acoustic scale to mimic
the frequency response in the human ear [Deller
et al., 1993]. The MFCC features have been ex-
tensively used for speech [Sarikaya and Hansen,
2000, Zheng et al., 2001], speaker [Sahidullah and

Saha, 2013], emotion [Ooi et al., 2014, Ververidis
and Kotropoulos, 2006,Zheng et al., 2014] and lan-
guage recognition [Huang et al., 2013], and even
also for other applications not related to speech,
such as music information retrieval [Qin et al.,
2013]. However, the entire auditory system is not
yet fully understood and the shape of the truly opti-
mal filter bank is unknown. Moreover, the relevant
part of the information contained in the signal de-
pends on the application. Thus, it is unlikely that
the same filter bank would provide the best per-
formance for any kind of task. In fact, many al-
ternative representations have been developed and
some of them consist of modifications to the mel-
scaled filter bank [Zheng et al., 2001]. For exam-
ple, a scheme for determining filter bandwidth was
presented in [Skowronski and Harris, 2004], show-
ing speech recognition improvements compared to
traditional features. Also, auditory features based
on Gammatone filters were developed for robust
speech recognition [Shao et al., 2009]. Moreover,
different approaches considering the noise energy
on each mel band have been proposed in order
to define MFCC weighting parameters [Yeganeh
et al., 2008, Zhou et al., 2007]. The compression
of filter bank energies according to the signal-to-
noise ratio in each band was proposed in [Naser-
sharif and Akbari, 2007]. Similarly, other adjust-
ments to the classical representation have been in-
troduced [Wu and Cao, 2005]. Particularly for
stressed speech classification, new time-frequency
features have been presented [Zão et al., 2014]. Al-
though these alternative features improve recogni-
tion results in particular tasks, to our knowledge, a
methodology to automatically obtain an optimised
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filter bank for speech emotion classification has not
been proposed.

Another common strategy that has been ex-
ploited for speech recognition is based on the op-
timisation of the feature extraction process in or-
der to maximise the discrimination capability for a
given corpus [Bǒril, H. and Fousek, P. and Pollák,
P., 2006]. In this sense, the use of deep neural
networks for learning filter banks was presented
in [Sainath et al., 2013], while other works intro-
duced the use of linear discriminant analysis [Bur-
get and Heřmanský, 2001, Zamani et al., 2011].
Genetic algorithms have also been applied for the
design of wavelet-based representations [Vignolo
et al., 2013a]. Similarly, evolutionary strategies
have been proposed for feature selection in other
tasks [Vignolo et al., 2013b]. Moreover, different
approaches for the optimisation of speech features
were based on evolutionary algorithms [Vignolo
et al., 2011a, Vignolo et al., 2011b]. Also, an evo-
lutionary approach for the generation of novel fea-
tures has been proposed [Schuller et al., 2006]. For
stressed speech classification, genetic algorithms
are also among the most successful feature selection
techniques [Casale et al., 2007]. Nevertheless, there
have not been attempts to optimise filter banks for
the specific tasks of emotion or stress classification.

Evolutionary algorithms have proved to be effec-
tive in many complex optimisation problems [Lin
et al., 2015]. Then, in order to tackle this chal-
lenging optimisation problem, we propose the use
of an evolutionary algorithm for learning a filter
bank from speech data. This work, based on the
approach for the optimisation of filter banks, ad-
dresses the classification of different emotions and
stress types in speech. The approach makes use of
an evolutionary algorithm in order to optimise the
filter bank involved in the extraction of cepstral fea-
tures, with spline interpolation for parameter en-
coding. Our method attempts to provide an alter-
native speech representation to improve the classi-
cal MFCC on stress and emotion classification. A
classifier is used to evaluate the evolved individu-
als, so that the accuracy is assigned as fitness. In
contrast to previous work [Vignolo et al., 2011b],
in which the temporal dynamics of each class was
modelled, for this task we introduced a static clas-
sification approach based on a single feature vector
per utterance.

The remainder of this paper is organised as fol-

lows. In Section 2, a short overview of evolutionary
algorithms is given, and also the feature extraction
process for the MFCC is explained. Then, the pro-
posal of this work is presented in Section 3 and the
results obtained are discussed in Section 4. Finally,
conclusions and proposals for future work are given
in Section 5.

2 Background

2.1 Evolutionary algorithms

Evolutionary Algorithms (EAs) are heuristic meth-
ods inspired by the process of biological evolution,
which are useful for a wide range of optimisation
problems [Andrews and McNicholas, 2013,Paul and
Das, 2015, Sanchez-Diaz et al., 2014]. The evo-
lution is typically performed by means of natural
operations like selection, mutation, crossover and
replacement [Bäck et al., 1997]. The selection op-
erator assigns a reproduction probability to each
individual in the population, favouring those with
high fitness, in order to simulate natural selection.
Mutation introduces random changes into chromo-
somes to maintain diversity within the population,
while crossover combines information from parent
individuals to create the offspring. Finally, the re-
placement strategy determines how many individ-
uals in the current population are replaced by the
offspring. This means that every population is re-
placed to improve fitness average and the loop is re-
peated to meet a stop criterion, after which the best
individual provides an appropriate solution to the
problem [Engelbrecht, 2007]. Solutions are repre-
sented by individuals and their information is coded
by means of chromosomes, while their fitness is de-
termined by a problem-specific objective function.

2.2 Mel-frequency cepstral coeffi-
cients

MFCCs are based on the linear speech production
model, which assumes that the magnitude spec-
trum of a speech signal S(f) can be formulated as
the product of the excitation spectrum X(f) and
the frequency response of the vocal tract H(f).
That is S(f) = X(f)H(f). Inspired on the hu-
man auditory system, the power spectrum is inte-
grated into bands, according to the mel perceptual
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Figure 1: Mean log spectrums (top) and first difference of mean log spectrums (bottom) for each of the
five classes in a Hindi stressed speech corpus.

scale [Deller et al., 1993]. Given M filters, Gm(f),
the energy outputs are computed by:

C(m) =
∑
f

|S(f)|2Gm(f). (1)

The logarithm is taken on the filter outputs, C(m),
and the MFCCs are computed by applying the Dis-
crete Cosine Transform (DCT) [Deller et al., 1993].

Even though these features are biologically in-
spired, their classification performance has been
improved by other representations in different
tasks. For example, a modification of MFCC that
uses the known relationship between centre fre-
quency and critical bandwidth was shown to in-
crease noise robustness over traditional features
in [Skowronski and Harris, 2004]. Also, [Yeganeh
et al., 2008] proposed performing Wiener filtering
to mel sub-bands and estimating weights based on
sub-band SNR-to-entropy ratio. Results showed
that the method allows improving speech recog-
nition performance in noisy environments. Fur-
thermore, several experiments that compare the
performance using different number of filters, fil-
ter shapes, filter spacing and spectrum warping
were carried out [Zheng et al., 2001]. In addition,
the compression of filter bank energies according
to the presence of noise in each mel sub-band was
proposed so as to provide increased robustness in
speech recognition and speaker identification [Zhou
et al., 2007].

In order to analyse the appropriateness of the
mel filter bank for classification of stressed speech,
we computed the mean of the log spectrum (MLS)
along the frames (30 ms long) of the training ut-
terances in each class. As it can be observed on
top of Figure 1, for a five-class corpus in Hindi lan-

guage, the most discriminative information is found
below 1 kHz, as the plots corresponding to differ-
ent classes show different peaks within this band.
Also, the first difference of each of the mean log
spectrums was computed and is shown at the bot-
tom of Figure 1. These plots present peaks at
high-frequency bands (from 3 to 4 kHz), showing
different relative energy and shape, which could
be useful for classification. This suggests that the
mel filter bank is not entirely appropriate for this
task. Figure 2 shows the result of the same anal-
ysis performed on the FAU Aibo Emotion Corpus,
which comprises recordings of German spontaneous
speech [Batliner et al., 2008,Steidl, 2009]. As in the
previous case, the most discriminative information
seems to be found on lower frequency bands. How-
ever, for this corpus, the peaks are more prominent
and the five emotions present noticeable different
behaviour up to 2 kHz. Then, we can expect the
optimum filter bank to be different for each corpus.

3 Evolutionary filter bank op-
timisation

Several parameters could be taken into account in
the search for an optimal filter bank, such as the
number of filters, filter shape and filter gain. How-
ever, as the number of parameters is increased, the
problem becomes extremely complex, so there is a
tradeoff between optimisation complexity and flex-
ibility. In previous works, three parameters were
considered for each triangular filter in the filter
bank; these correspond to the frequency values
where: the triangle begins, reaches its maximum
and ends. The results suggested that this formula-
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Figure 2: Mean log spectrums (top) and first difference of mean log spectrums (bottom) for each of the
five classes in the FAU Aibo emotion corpus.

tion produced an ill-conditioned problem [Vignolo
et al., 2011a]. This approach, referred to as Evolu-
tionary Spline Cepstral Coefficients (ESCCs), uses
splines to shape the filter banks. In this way, the
chromosomes hold the spline parameters instead of
the filter bank parameters, so that the chromosome
size and the search space are reduced. Splines are
chosen because they allow limiting the start and
end points of the functions’ domain easily, which
is useful to generate filter banks that cover the fre-
quency range of interest.

We defined a spline mapping y = c(x), with
y ∈ [0, 1], and x taking nf equidistant values in
(0, 1). Then, for a filter bank with nf filters, xi
was assigned to filter i, with i = 1, ..., nf . For a
given chromosome, all yi values corresponding to
xi were obtained by cubic spline interpolation. We
used two different splines. The first one was used
to determine the frequency values corresponding to
the maximum of each triangular filter, from 0 Hz to
half the sampling frequency (fs). The edge points
of each filter were fixed to the frequencies where
its adjacent filters were maximum, thereby deter-
mining filter overlapping as well. The second spline
was used to set the amplitude of each filter.

3.1 Optimisation of filter frequency
locations

Here we used a monotonically increasing spline,
constrained to c(0) = 0 and c(1) = 1. We set four
parameters to define the spline I: yI1 and yI2 corre-
sponding to fixed values xI1 and xI2, and the deriva-
tives, σ and ρ, at the fixed points (x = 0, y = 0) and
(x = 1, y = 1). It is important to point out that pa-
rameter yI2 was restricted to be equal to or greater

than yI1 , in order to obtain monotonically increas-
ing splines. Then, parameter yI2 was obtained as
yI2 = yI1 + δy2

, and the parameters actually coded
in the chromosomes were yI1 , δy2

, σ and ρ. Given
a particular chromosome, which set the values for
these parameters, the y[i] corresponding to the x[i]
∀ i = 1, ..., nf were obtained by spline interpola-
tion. This is schematised in Figure 3.

The y[i] values obtained by spline interpolation
were linearly mapped to the frequency range of in-
terest (from 0 Hz to fs/2), so the frequency values
for the maximum of each of the nf filters, f ci , were
obtained as

f ci =
(y[i]− ym)fs
yM − ym

, (2)

where ym and yM are the spline minimum and max-
imum values, respectively. In this way, in the seg-
ments where the slope of the spline was low, the fil-
ters were far from each other; and where the slope
was high, the filters were closer. There was also a
parameter 0 < a < 1 to limit the range of yI1 and yI2
to [a, 1−a], with the purpose of keeping the splines
within [0, 1]. The splines that went beyond these
boundaries were modified, fixing them to 0 or 1.

3.2 Optimisation of filter amplitudes

The amplitude spline had the only restriction of ly-
ing in the range [0, 1], but y was free at x = 0 and
x = 1. Therefore, the parameters to be optimised
here were the y values yII1 , yII2 , yII3 and yII4 , corre-
sponding to the fixed x values xII1 , xII2 , xII3 and xII4 .
These four yIIj were limited to [0, 1]. In this way, we
obtained nf interpolated values that were used to
set the gain of the filters. This is shown in Figure
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Figure 3: General scheme explaining the optimi-
sation strategy and the feature extraction process.
The output vectors of each block, si, fi, li and di,
indicate that each window vi is processed isolated
and, finally, the mean and variance for each coeffi-
cient is computed from the di vectors.

3, where the gain of each filter was set according to
spline II. Hence, the assumption is that evolution-
ary optimisation will enhance the frequency bands
that are relevant for the classification of stressed
and emotional speech.

3.3 Overview of the optimisation
process

Every individual contains a set of spline param-
eters, encoding a particular filter bank. The se-
lection process takes into account the classification
performance. Prior to the classification, the filter
bank proposed by a chromosome was used for pro-
cessing the signals in the data set, in order to obtain
the speech features (Figure 3). Then, the fitness
assigned to an individual was the accuracy rate ob-
tained. To avoid overfitting of the filter banks, the
training and validation partitions used during the
optimisation were randomly reassembled on every
generation. As this strategy can slow down conver-
gence, we introduced an alternative for the fitness
computation that counterbalances this side effect.

This consists in computing the fitness of an indi-
vidual surviving for more than one generation as
an average of the performances on the generations
it remained unchanged. If the chromosome was al-
tered, the performance obtained in the current gen-
eration is assigned.

For the joint optimisation of filter amplitudes
and positions, the proposed codification makes pos-
sible to reduce the chromosome size from 2nf to the
number of spline parameters. Here we used 26 fil-
ters, so the size of the chromosome was reduced
from 46 to 8. It is important to note that, using
the spline codification, the length of the chromo-
some does not depend on the size of the filter bank.
Chromosomes were then coded as strings of 8 real
numbers (4 parameters for each of the two splines),
which were randomly initialized using uniform dis-
tribution.

In this EA, tournament selection and standard
one-point crossover methods were used, while the
mutation operator was designed to modify splines
parameters. The parameters were randomly chosen
by the operator and the modifications were per-
formed using a uniform random distribution. In
order to favour convergence, the elitist strategy was
incorporated into the search, which means that the
best individual from one generation was maintained
into the next one [Engelbrecht, 2007]. To determine
the proper values for the parameters of the evo-
lutionary algorithm, preliminary optimisation ex-
periments were performed using a separate subset
of the Hindi corpus. Based on the analysis of the
evolution of the population in these experiments, a
proper set of parameters was set as follows. The
size of the population was set to 30 individuals,
while crossover and mutation probabilities were set
to 0.9 and 0.12, respectively. A maximum of 300
generations was set as stopping criteria; however,
the evolution was early stopped when there was no
improvement during a lapse of 10% of the maxi-
mum number of generations.

4 Results and discussion

4.1 Materials

In the experiments, the FAU Aibo Emotion Cor-
pus [Batliner et al., 2008, Steidl, 2009] and a sim-
ulated stressed speech corpus in Hindi language
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[Shukla et al., 2011] were used. The Hindi lan-
guage database consists of stressed speech signals
recorded from fifteen speakers, ten male and five fe-
male. The speech utterances were sampled at 8 kHz
and include neutral speech and four acted stress
conditions: anger, happiness, lombard and sadness.
Each recorded signal consisted of a keyword, which
was uttered within a sentence and then isolated.
For each of these five classes, 395 instances were
used during the optimisation (80% for training and
the remainder for validation), and other 99 exam-
ples were left for the final test (i.e. a total of 495
utterances for testing).

The FAU Aibo corpus includes speech in neu-
tral state and four classes of spontaneous emo-
tions: anger (angry, touchy and reprimanding),
emphatic, positive (motherese and joyful) and rest.
It provides clearly-defined test and training parti-
tions with speaker independence and different room
acoustics. The speech utterances in this corpus,
which consist of sentences of varying lengths, were
recorded at 16 kHz sampling rate. In order to
compare filter banks optimised for both corpora,
we decided to sub-sample the recordings to 8 kHz.
The speaker-independent training and test parti-
tion suggested for the InterSpeech 2009 Emotion
Challenge [Schuller et al., 2009] was used. There-
fore, a set consisting of 9959 instances was used for
the optimisation (80% for training and 20% for val-
idation) and 8257 instances were used for the final
test.

4.2 Feature extraction and experi-
mental setup

For each candidate filter bank, speech signals were
processed on a frame basis, using a 30-ms Ham-
ming window with 7.5-ms step. This is a com-
mon setup for speech processing [Deller et al., 1993]
and provided good results in preliminary tests with
stressed speech. All frames without speech activity
were discarded and the different filter banks were
applied to voiced frames, in order to compute 13
cepstral coefficients from the filter output energies.
As opposed to our previous work [Vignolo et al.,
2011b], in which we used a temporal modelling ap-
proach for phoneme classification, here the feature
vectors extracted from the frames of an utterance
were averaged. This means that for each sentence
we obtained a single feature vector, which allowed

using a static classifier as shown in Figure 3. In
addition, the mean, minimum and maximum frame
energy were appended, obtaining a vector of 16 fea-
tures. Besides, for the experiments with the FAU
Aibo corpus, the variances of the cepstral coeffi-
cients were also appended, which allowed to ob-
tain satisfactory baseline results in this case. No
tuning was performed on the hyper-parameters for
this corpus, that is, the same values used for Hindi
stressed speech were set.

The classifier was trained using 80% of the in-
stances in the training set, and it was then eval-
uated on the remaining 20%. This provided a
good tradeoff between the number of training in-
stances and the number of test instances required
to evaluate the statistical significance of results.
This test set was separated and it was only used
to evaluate the best solution after the optimisa-
tion. As mentioned in Section 3.3, the data parti-
tion used during the optimisation was reassembled
randomly on every generation so as to avoid overfit-
ting. The performance of the best filter bank pro-
vided by the EA was evaluated using this separate
test set and a classifier based on Support Vector
Machines (SVMs) with polynomial kernel [Stein-
wart and Christmann, 2008]. As the FAU Aibo cor-
pus has unbalanced classes, we used the Unweighted
Average Recall (UAR) [Rosenberg, 2012] in order
to measure and compare the classification perfor-
mance with the test set. Also, the training set was
resampled with replacement in order to obtain the
same number of instances for each class.

4.3 Filter bank optimisation

Table 1 presents the classification results obtained
on the test sets using SVMs, comparing the perfor-
mance of optimised features and MFCCs. ESCC-
Eh and ESCC-Ef correspond to the filter banks op-
timised for Hindi stressed speech and FAU Aibo
Emotion Corpus, respectively. Although the per-
formances obtained with MFCC are acceptable for
both corpora, ESCC-Eh and ESCC-Ef provide sig-
nificant improvements in UAR for their correspond-
ing tasks. Moreover, ESCC-Eh and ESCC-Ef out-
performed the standard features in the recognition
of most of the stress and emotion classes. The
statistical significance of the results obtained was
evaluated by estimating the probability for the op-
timised features to perform better than the MFCC.
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Table 1: Results obtained on the final classification tests [%].

Hindi corpus MFCC ESCC-Eh FAU Aibo MFCC ESCC-Ef
neutral 78.79 95.96 neutral 31.82 39.22
anger 82.83 89.90 anger 46.81 52.86
happiness 87.88 84.85 emphatic 39.32 39.19
lombard 74.75 89.90 positive 57.67 65.12
sadness 83.84 95.96 rest 24.54 16.12
UAR 81.62 91.31 UAR 40.03 42.50

To estimate this probability, the error distributions
for the optimised features (p1) and MFCC (p2) were
approximated. Although these follow a binomial
distribution, for a large number of trials they can be
approximated with Gaussian distributions. Then,
the probability for the optimised features to per-
form better than MFCC, Pr(p1 < p2), was esti-
mated by integrating the distribution p(p1, p2) in
the region p1 < p2. The probabilities that ESCC-
Eh and ESCC-Ef perform better than MFCC on
their corresponding tasks were 0.9999 and 0.9996,
respectively.

Another point to remark is that only 183 and 90
generations were needed in order to obtain ESCC-
Eh and ESCC-Ef, respectively. The time required
for the algorithm to converge was 22 hs to obtain
ESCC-Ef, and 44 hs and 30 minutes for ESCC-Eh,
using a personal computer with an Intel Core I7
processor and 8 GB RAM.

We performed the same tests, in stress and emo-
tion classification, using a filter bank optimised
for phoneme recognition in [Vignolo et al., 2011b]
(ESCC-Ph in Figure 5). Moreover, we evaluated
the performance of ESCC-Eh with the German
emotion corpus and, conversely, the performance
of ESCC-Ef on the Hindi stressed speech corpus.
These results are shown in Table 2. As expected,
ESCC-Ph is not useful for stressed speech classi-
fication. Furthermore, the results obtained with
ESCC-Eh and ESCC-Ef on both corpora suggest
that, even with different languages and classes,
both tasks are closely related.

Table 3 shows more detailed information about
the classification performance comparing MFCC
and the optimised filter banks. In these confusion
matrices, rows correspond to the actual class and
columns correspond to the predicted class, while
the percentages of correct classification lay on the
diagonal. These matrices show coincidence between
the classes that are more confused using MFCCs,

and the ones that are more confused using ESCC-
Eh and ESCC-Ef, respectively. However, it can be
noticed that the optimised features allowed reduc-
ing most of the percentages outside the diagonal.
For example, for the FAU Aibo corpus, all the off-
diagonal values in columns e and r were signifi-
cantly reduced with ESCC-Ef. It can be also no-
ticed that the performance for happiness was not
improved, and an explanation could be obtained
from Figure 1 as follows. The first difference of the
MLS for this class presents lower and fewer peaks
at low frequencies (0-500 Hz), which seems to be
the band enhanced by ESCC-Eh (Figure 5). This
suggests that the evolution of the filter bank could
have faced a trade-off, in which a better average re-
sult was obtained by enhancing this band, despite
of a lower accuracy for happiness. A similar case
arises for class rest in the FAU Aibo corpus. This
class includes different types of emotions and con-
tains few examples, making it difficult to model.
Thus, it could be expected that a fine tuning for
improving the overall UAR could deteriorate the
performance for this class.

We performed another experiment in order to
evaluate speaker independence with the Hindi cor-
pus, which contains speech from 15 speakers. Then
we assessed the performance of the SVM classifier
through cross validation with 15 different data par-
titions. That is, on each partition we separated all
the sentences corresponding to one speaker for test-
ing and the rest for training. However, since ESCC-
Eh was optimised using training utterances from
all speakers, this step in the validation methodol-
ogy would not be speaker-independent. Therefore,
in this test we used the ESCC-Ef, which was op-
timised using another corpus. The unweighted ac-
curacy obtained with the optimised representation
was higher than the result obtained with MFCC
(42.38% and 38.05%, respectively). Moreover, since
ESCC-Ef was optimised for a different corpus, the
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Table 2: Results obtained on the final classification tests [UAR%].

MFCC ESCC-Ph ESCC-Eh ESCC-Ef
Hindi corpus 81.62 42.22 91.31 78.59
FAU Aibo 40.03 31.51 38.47 42.50

evaluation in the speaker-independent condition re-
vealed that the proposed methodology is able to
provide more general features, which are also use-
ful in other corpora for similar tasks on emotion
recognition. Although the performances obtained
in the speaker-dependent condition (Table 2) sug-
gest that MFCC could provide a more general so-
lution for different corpora, the results discussed
above show that it is also possible to obtain general-
isation through different corpora with this method-
ology. Nevertheless, the motivation of this work is
to provide a methodology to fit a filter bank for a
particular task, which allows improving classifica-
tion results in the application of interest.

In order to provide a tool for a qualitative anal-
ysis of these results, a Self-Organising Map (SOM)
[Kohonen, 2000] was trained to show the topologi-
cal distribution of the stress classes from the Hindi
speech corpus in two dimensions. SOMs are trained
in an unsupervised manner and preserve the neigh-
bourhood relations of the input space. For each
training case, the ESCC-Eh feature vectors were
used as input of a 25-neuron network, and the same
process was repeated for MFCC. Figure 4 presents
the SOM obtained, showing that the ESCC-Eh al-
lows grouping stress classes happiness (H) and lom-
bard (L) into one cluster each. Conversely, the map
corresponding to MFCC presents a more complex
topology, in which more classes are split into sep-
arate clusters. The exceptions are classes neutral
(N) and sadness (S), which are grouped in fewer
clusters in the map corresponding to MFCC. How-
ever, Table 3 shows that these two classes are bet-
ter discriminated in the new feature space, and they
exhibit the highest improvements of ESCC-Eh with
respect to MFCC. This suggests that the features
provided by the optimised filter bank make up a
representation in which the stress classes can be
more easily discriminated.

The performance of the optimised representa-
tions was also compared with other state-of-the-
art features, including: the InterSpeech 2009 Emo-
tion Challenge feature set consisting of 384 at-

tributes (IS09 Emotion) [Schuller et al., 2009],
the emobase2010 feature subset based on the
Interspeech 2010 Paralinguistic Challenge (IS10
Emobase, 1582 attributes) [Schuller et al., 2010],
the feature set proposed for the InterSpeech 2011
Speaker State Challenge (IS11 Speaker State, 4369
attributes) [Schuller et al., 2011] and the feature of
the InterSpeech 2013 Computational Paralinguis-
tics Challenge (IS13 ComParE, 6374 attributes)
[Schuller et al., 2013]. All of these feature sets have
been extracted with the openSMILE library [Ey-
ben et al., 2010]. Also, features based on the MLS
proposed by [Albornoz et al., 2011] were included
in the comparison, using the first 30 (MLS30) co-
efficients (covering from 0 to 1200 Hz) and these
MLSs with the 30 standard deviation coefficients
(MLS30+30) [Albornoz and Milone, 2015]. Results
are presented in Table 4. It is interesting to note
that the performance ranking of the feature sets
from InterSpeech challenges differs between Hindi
and FAU Aibo databases. The MLS performed
well in both databases when the variances were in-
cluded. For the Hindi corpus, the IS13 ComParE
features performed better than MFCCs. However,
the ESCC-Eh and ESCC-Ef provided the best per-
formances for the Hindi and FAU Aibo databases,
respectively. The statistical significance was evalu-
ated as previously described; for the Hindi corpus
the probability that ESCC-Eh performs better than
the features of IS13 ComParE was 0.9996, and for
the FAU Aibo corpus the probability that ESCC-Ef
performs better than MFCC was also 0.9996.

Figure 5 shows the standard mel filter bank
(MFCC), together with the filter banks optimised
for phoneme classification, Hindi stressed speech
and emotional German speech, respectively. It can
be noticed that the optimised filter banks differ
widely from mel filter bank. On the one hand,
ESCC-Ph provides higher resolution in the ap-
propriate frequency band, assigning almost equal
weight to all filters. On the other hand, ESCC-Eh
and ESCC-Ef provide higher resolution and gain on
narrow bands. Moreover, the ESCC-Eh enhances
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Table 3: Results obtained on the final classification tests [UAR%].

MFCC ESCC-Eh

H
in
d
i
co

rp
u
s a h l n s a h l n s

a= anger 82.83 10.10 07.07 00.00 00.00 89.90 05.05 04.04 01.01 00.00
h= happiness 01.01 87.88 03.03 07.07 01.01 02.02 84.85 02.02 06.06 05.05
l= lombard 09.09 09.09 74.75 07.07 00.00 06.06 01.01 89.90 03.03 00.00
n= neutral 00.00 13.13 05.05 78.79 03.03 00.00 02.02 01.01 95.96 01.01
s= sadness 00.00 11.11 00.00 05.05 83.84 00.00 03.03 00.00 01.01 95.96

MFCC ESCC-Ef

F
A
U

A
ib
o

a e n p r a e n p r

a= anger 46.81 19.15 10.47 02.62 20.95 52.86 13.09 14.57 05.73 13.75
e= emphatic 14.26 39.32 21.35 05.77 19.30 16.45 39.19 30.77 04.91 08.69
n= neutral 10.32 14.90 31.82 19.90 23.06 12.29 12.68 39.22 22.82 12.98
p= positive 03.26 05.58 11.16 57.67 22.33 03.26 03.72 10.23 65.12 17.67
r= rest 10.07 06.41 23.44 35.53 24.54 13.37 06.78 29.85 33.88 16.12

Table 4: Performance comparison with state-of-
the-art features [UAR%].

Hindi FAU Aibo
IS09 Emotion 70.71 IS09 Emotion 37.29
IS10 Emobase 79.80 IS10 Emobase 35.43
IS11 Speaker State 82.83 IS11 Speaker State 32.64
IS13 ComParE 84.04 IS13 ComParE 32.48
MLS30 48.69 MLS30 33.59
MLS30+30 61.21 MLS30+30 36.48
MFCC 81.62 MFCC 40.03
ESCC-Eh 91.31 ESCC-Ef 42.50

both the lowest and the highest frequency bands,
which agree with the observations made based on
Figure 1. ESCC-Ef also emphasises low frequency
bands, although the amplitude of its filters de-
creases beyond 2000 Hz and it does not suppress
mid-band frequencies as much as ESCC-Eh. This
is consistent with our previous analysis based on
Figures 1 and 2. Furthermore, these results sug-
gest that our methodology is able to provide filter
banks that capture relevant information from par-
ticular frequency bands.

5 Conclusion and future work

In this work, an evolutionary optimisation method
has been proposed in order to improve stressed
and emotional speech classification results. The
chromosome codification based on splines allowed
reducing the number of optimisation parameters,
while maintaining the quality and diversity of pos-
sible solutions. This encoding also helped to sim-
plify the filter bank optimisation problem, making
possible to speed up the convergence of the EA to

decent solutions. Also, we proposed a static classifi-
cation scheme based on mean and variance features
to describe utterances with a single vector, which
allowed simplifying the optimisation problem while
providing satisfactory performances.

The performances obtained in two different
speech corpora show that the approach is useful
to find an improved speech representation for the
classification of stressed speech. These results also
suggest that there is further room for improvement
over the classical filter bank on specific tasks.

It is important to note that our study was lim-
ited to clean speech signals; however, the impact of
noise on the shape of the filter banks should be eval-
uated. Thus, further experiments will include noisy
signals, as well as other types of stressed speech and
different languages. In addition, there are other fil-
ter bank parameters, such as the filter bandwidth,
that were not optimised in this work and will be
taken into account in the future. In order to ob-
tain improvements on the individual accuracies for
all classes, a multi-objective evolutionary algorithm
could be used to consider the accuracy for each class
as a separate objective.
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for MFCC and ESCC-Eh, respectively.

2014-1442), Universidad Nacional de Litoral (with
projects CAID 2011-519, -525 and PACT 2011-058)
and Consejo Nacional de Investigaciones Cient́ıficas
y Técnicas from Argentina.

References

[Albornoz and Milone, 2015] Albornoz, E. and
Milone, D. (2015). Emotion recognition in never-
seen languages using a novel ensemble method
with emotion profiles. IEEE Transactions on
Affective Computing,, PP(99):1–1.

[Albornoz et al., 2011] Albornoz, E. M., Milone,
D. H., and Rufiner, H. L. (2011). Spoken emotion
recognition using hierarchical classifiers. Com-
puter Speech and Language, 25(3):556–570.

[Andrews and McNicholas, 2013] Andrews, J. L.
and McNicholas, P. D. (2013). Using evolution-
ary algorithms for model-based clustering. Pat-
tern Recognition Letters, 34(9):987–992.
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