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ABSTRACT

Brain-Computer Interfaces (BCI) that could decode thoughts into commands would improve the quality of life of
patients who have lost control over voluntary muscles. Imagined speech consists in imagining the pronunciation
of words, without moving or emitting sounds. In this study, we introduce a new open access database of
electroencephalogram (EEG) signals recorded while 15 subjects imagined the pronunciation of two groups of
Spanish words. The first one contained the vowels /a/, /e/, /i/, /o/, /u/; and the second one corresponds
to the commands up, down, left, right, backward and forward. Each subject repeated each word 50 times in
a random order, meanwhile EEG signals were recorded using a six channel acquisition system and sampled at
1024 Hz. For comparison, some blocks were recorded using the pronounced speech condition, in which audio and
EEG signals were acquired simultaneously. The EEG signals were filtered for artifact’s removal between 2 Hz
and 40 Hz using a finite impulse response (FIR) pass-band filter. As a preliminary analysis of the EEG data, an
offline classification method is presented. Accuracy rate is above chance level for almost all subjects, suggesting
that EEG signals possess discriminative information about the imagined word.

Keywords: EEG, Database, Imagined Speech, Covert Speech, Classification

1. INTRODUCTION

Some severe muscular disorders, such as amyotrophic lateral sclerosis (ALS), advanced stages of multiple sclerosis,
and brainstem stroke, among others, can make the usual pathways employed for communication unavailable.
The patients suffering from these conditions found themselves in a locked-in state, because of lack of control
over voluntary muscles. Even though their intellectual capabilities are intact, they cannot interact with their
environment.1,2

Brain Computer Interfaces have been developed for the purpose of bringing a new communication path,
allowing the use of brain signals to control devices, such as wheelchairs or voice synthesizers. Usually, the EEG
is chosen as a measure of brain activity because it is a non-invasive technique, has a relative low cost when
compared to others like functional magnetic resonance imaging, and it is portable due to the simple equipment
needed for its acquisition system.3

-

The aim of this work is to create an openly accessible database of EEG signals acquired during imagined and
pronounced speech from healthy subjects. This would provide a starting point for future research about imagined
speech and facilitate the development of new classification algorithms by avoiding the time-consuming stages
of acquisition and artifact removal. Furthermore, we present the results achieved using a similar classification
method as the one proposed by Torres-Garćıa et al. in Ref. 4, which uses Relative Wavelet Energy (RWE) to
generate the feature vectors and Random Forest (RF) and Support Vector Machines (SVM) as classifiers. These
results are intended to be used as an initial baseline reference for future works, but it is not the purpose of this
study to find an optimal classification algorithm.

Further author information: (Send correspondence to Germán A. Pressel Coretto)
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This work is organized as follows. In Section 2 a brief description of the subjects selection process, the protocol
implemented and the data collection methodology is presented. Section 3 introduces the feature extraction stage
and the classifiers employed. The results obtained and a succinct discussion are presented in Section 4, followed
by the conclusions of this work in Section 5.

2. MATERIALS AND METHODS

2.1 Subjects

The subjects in this study were fifteen young adults who voluntarily agreed to participate. All understood the
anonymity of the data collected and gave informed consent to create a database using their EEG signals. The
subjects were Argentinian college students, healthy and native Spanish speakers. The group included eight men
and seven women, with a mean age of 25 years old. Only one of the subjects reported to be left-handed, while
the rest were right-handed. Handedness is relevant because of the suspected relation with the language dominant
hemisphere of the cerebral cortex.5

Also, given the relationship between hearing impairment and distorted speech development, an audiometry
was performed on each subject to discard hearing pathologies that could introduce changes in speech, and thus
possibly modify EEG patterns. The software used to perform the audiometries was designed by the University
of New South Wales and is available online on its website∗. The program measures the hearing sensitivity to
different frequencies, described by a curve of equal loudness. None of the subjects presented moderate or severe
hearing deficiencies so, for the purpose of this study, they can be considered normal listeners.

2.2 Experimental Protocol

To build the database, an ad-hoc protocol was defined to ensure that every subject was under the same conditions
during the experiment. During the recording sessions, subjects seated in a comfortable chair at a distance of
approximately one meter from an LCD display, where the target words were visually presented. Additionally,
an auditory stimulus was heard through a pair of headphones indicating the intended word. In order to reduce
intra-subject variance, the registers were collected during a single recording session for each subject.

Two groups of words have been selected as “dictionaries” for this study. The first one contains the Spanish
vowels: /a/, /e/, /i/, /o/ and /u/, which were selected due to its acoustic stationarity, simplicity and lack
of meaning by themselves. The second group also includes Spanish words, but in this case they correspond to
possible commands, and were selected due to their direct association to the control of an external device in a
BCI system. The command words were: “arriba”, “abajo”, “derecha”, “izquierda”, “adelante” and “atrás” (up,
down, right, left, forward and backward, respectively).

EEG signals were recorded under two conditions: during imagined speech and pronounced speech, both
modes being chosen to allow future studies towards identifying the EEG patterns that differentiate overt from
covert speech. In imagined speech mode, only the EEG signals were registered while in pronounced speech audio
signals were also recorded. The number of trials (repetitions, several in each block) performed by each subject
for each word is 50, with forty corresponding to the imagined speech mode and the other ten belonging to the
pronounced speech modality.

Target stimuli were presented in a sequence comprised of four intervals of predefined duration as shown in
Figure 1. (i) A ready interval is presented first for 2 seconds, in which the subject is informed that the rest
interval finished and a new cue would be displayed soon. (ii) Then the target word is presented, both visually
and acoustically, during the stimulus presentation interval of 2 seconds. (iii) In the Imagine/Pronounce stage an
image displays the task requested (either imagined or pronounced speech). It is in this stage that the subject
has to imagine the pronunciation or pronounce the word given as cue. In the case that the word is a vowel, the
subject must perform the task during the complete 4 seconds of this interval duration, while if the word is a
command, a sequence of three audible clicks will indicate when to imagine or pronounce the target word. (iv) The
rest interval consists of a 4-second period when the subject is allowed to move, swallow or blink. This last stage
is necessary because in all the other stages these actions must be avoided to reduce the presence of artifacts in

∗www.phys.unsw.edu.au/jw/hearing.html accessed August 20, 2016
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Figure 1. Sequence time course for the presentation of one stimulus, in this particular case for the word “adelante” and
under the imagined mode. Also, the name and length of each interval are shown.

the recorded signals. Using fixed duration windows facilitates preprocessing and implementing feature extraction
techniques.

To shorten the recording process, all the words of the selected dictionary were presented twice in each block
in a random order, defining blocks of two different lengths. As a result, the blocks containing vowels as stimuli
had a duration of 2 minutes and the blocks where command words were target lasted 2.43 minutes. Considering
the long duration of the acquisition process, breaks were introduced to allow the subjects to relax and keep the
focus during the recording process. In average the complete session, where at least fifty repetitions of every word
of both groups were recorded, took 3.5 hours.

2.3 Data Collection

The recording sessions were performed in the offices of the Laboratorio de Ingenieŕıa en Rehabilitación e Inves-
tigaciones Neuromusculares y Sensoriales (LIRINS) in the Faculty of Engineering of the National University of
Entre Ŕıos (UNER). The offices were located in a quiet area, far from external noise sources and gathering places,
in order to minimize distractions as well as improving the quality of the recorded audio signals. On arrival, the
experimental protocol was described to the subjects, who proceeded to sign the informed consent document.

EEG signals were registered using Ag - AgCl cup electrodes, which were attached to the scalp with conductive
paste and without using an electrode cap. Electrode positions were determined by measuring distances from
standard head anatomical landmarks proposed by the 10-20 international system.6 A referential montage was
implemented using the electrodes placed over F3, F4, C3, C4, P3, and P4 as active electrodes, while reference
and ground corresponded to the ones on the left and right mastoids, respectively (see Fig. 2). Electrode positions
were selected to be as close as possible to the cortical areas related to language processing and described in the
Geschwind Wernicke model,7 but far enough from the muscles involved in speech to reduce the myoelectric noise
acquired in the pronounced mode.

The acquisition system used to register EEG signals consisted of an 18-channel Grass R© analog amplifier
model 8-18-36 and a DataTranslation R© analog-to-digital converter board model DT9816. The amplifier provides
an analog band-pass filter for each channel, being the lower and upper cutoff frequencies set to 0.3 Hz and 35 Hz.
The ADC board has only six simultaneously converted channels–not including ground and reference electrodes–
limiting the number of recorded EEG channels. The EEG signals were sampled at a sampling rate of 1024 Hz
with a 16-bit resolution and stored in a notebook hard drive.

A Shure R© SM58 microphone was employed to register the pronounced speech, which has a frequency range
adapted to vocals and a spherical filter that reduces breathing noise. Then, the acquired sound was amplified
and digitized using an M-Audio R© MobilePre preamplifier at a sampling rate of 44.1 kHz and with a resolution
of 16 bits. In the same way as the EEG signals, the audio signals were saved in the hard drive of a notebook
computer.

Both EEG and audio signals were collected using the software platform BCI2000 described by Schalk et al.
in Ref. 8. BCI2000 is comprised of four modules: Operator, Source, Signal Processing, and User Application. A
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Figure 2. Electrode distribution for the EEG registers.

new User Application module, called ImaginedSpeech, was created using VisualStudio 2010 Express Edition to
implement the protocol defined in Section 2.2. This application allowed users (the supervisor of the experiment,
in this case) to define the length of every interval and to specify the images that were shown in each of them.
Also, it was possible to indicate the modality and the group of words shown for a block, with the supervisor in
charge of selecting the desired combination of this two parameters at runtime.

After the recording session was completed, the EEG signals were visually scrutinized searching for artifacts.
Those registers that contained artifacts within the Imagine/Pronounce interval, such as muscular, electrode pop
or saturation artifacts, were marked to be eliminated because they tend to obscure the underlying EEG pattern
or are difficult to remove. Instead, the ones presenting blinking artifacts were identified but not erased, due to
the existence of some techniques such as Independent Component Analysis (ICA), that separate the artifacts
from the signal of interest.9

The EEG signals preprocessing stage consisted of using a 2 Hz to 40 Hz digital band-pass filter implemented
with a low-pass and a high-pass FIR filters of orders 372 and 1204, respectively. The selection of FIR filters
is based on the fact that minimal distortion is introduced by its linear phase and constant group delay. The
788-sample group delay produced by the FIR filters was compensated by left-shifting without any signal loss.
The low-pass filter attenuated the line noise at 50 Hz by 60 dB, therefore a notch filter was not required. A
fourth order Butterworth low-pass filter with a cutoff frequency of 10 kHz was used to filter the voice signals.

The filtered registers were sectioned, leaving only the signals captured during the Imagine/Pronounce interval.
Then, the six EEG signals corresponding to channels F3, F4, C3, C4, P3, and P4 of one stimulus repetition
were concatenated in a vector following that order. In the final positions of the vector, three labels were added
specifying the mode, the stimulus code and the presence of blinking artifacts. A matrix was created in which
each row represented the EEG signals recorded during a particular Imagine/Pronounced interval. A similar
procedure was applied to create the matrix containing the audio recordings, except that only two labels were
appended to the vector containing the single-channel voice signal. The first label indicated the stimulus, and the
second one indicated the row of the EEG matrix where the simultaneously acquired EEG signals were stored.
For each subject, both matrices were saved in separate Matlab R© files and stored together with a plain text file
containing the subject’s disclosable information.

3. DATA ANALYSIS AND CLASSIFICATION

In this section, the steps of a preliminary analysis of the EEG signals collected in the database are described.
Only the signals recorded using the imagined speech modality were used, and imagined vowels and commands
were processed separately.
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3.1 Feature Extraction

Considering that EEG signals are non-stationary and the spectral content varies temporally and spatially, a
multiresolution approach was used. The Wavelet Transform decomposes a signal using a set of functions called
wavelets, which are scaled and shifted versions of another function named mother wavelet ψ(t). Then, the wavelet
dictionary could be expressed as:

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
, (1)

where a, b ∈ R, with a 6= 0, are the scale and shifting factors, respectively. But when those parameters are
selected at discrete steps based on powers of two, the Discrete Wavelet Transform (DWT) of the function f(t)
can be written as:

DWTψ(j, k) =

∫ ∞
−∞

f(t)ψ∗j,k(t)dt, (2)

where ψj,k(t) = 1√
2j
ψ
(
2−jt− k

)
. An efficient implementation for the DWT was proposed by Mallat in Ref. 10,

using an algorithm based on successive convolutions with quadrature mirror filters. In each level, the signal is
decomposed in approximation and detail coefficients, and then the approximation signal is downsampled by a
factor of 2. The process repeats itself until reaching the desired number of decomposition levels.

The feature extraction process started with downsampling eight times the EEG signals corresponding to the
imagined modality, obtaining an effective sampling rate of 128 Hz and thus reducing the amount of data to be
processed. After that, the DWT with five levels of decomposition was computed for each EEG channel, selecting
the mother wavelets from the Daubechies family. Four orders of Daubechies–2, 4, 6, and 8–were used to search
for correlations between the order and the achieved recognition rate. An example of the decomposition levels of
an EEG signal for one channel is shown in Figure 3.

Being di,j and ai,j the j-th detail and approximation coefficients corresponding to the decomposition level i,
the energy of the i-th resolution level Ei, can be expressed as:

Ei =

{ ∑
j |di,j |

2
, for i ≤ N.∑

j |ai,j |
2
, otherwise.

(3)

where N is the number of decomposition levels.

If we define the total energy of all the decomposition as ET =
∑
iEi, we can use it to compute the Relative

Wavelet Energy (RWE) for each decomposition level i as:

RWEi =
Ei
ET

, with i = 1 . . . N + 1, (4)

In accordance with the 128 Hz sampling frequency, the six decomposition levels correspond to the following
frequency bands: 32-64 (D1, γ); 16-32 (D2, β); 8-16 (D3, α); 4-8 (D4, θ); 2-4 (D5, δ) and <2 (A5). Since the
frequency band of D1 is associated with myoelectric noise, that decomposition level was not used to calculate
the RWE. The feature vector was formed with the RWE of the decomposition levels D2 to D5 and A5 of each of
the six EEG channels, hence each instance was described with a thirty-element vector.

3.2 Classification

In this preliminary analysis, the feature vectors of the EEG signals were classified using two types of classifiers,
a Support Vector Machine (SVM) and a Random Forest (RF) algorithm. The SVMs are classifiers that find
an hyper-plane within the features space, maximizing the margin between the nearest data point of each class
and the hyper-plane. Despite being originally designed for binary classification problems,11 the SVMs can be
extended to multiclass problems. In this study, a “one vs one” reduction was used to tackle the multiclass
problem. SVM with linear kernels were used and different C complexity values were tested. RF is a collection of
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Figure 3. A 4-second EEG signal recorded from channel F3 and downsampled to 128Hz, and its five-level DWT decom-
position using a 4th order Daubechies wavelet.

tree-based classifiers, where each tree is built using a randomly selected group of features, independently sampled
with an identical distribution for all trees.12 For each feature vector, each tree predicts a class and the output is
the class having the majority of votes. RFs were built using 4, 5 and 6 features randomly selected at each node,
and RFs made of 10, 50, 100, 200, and 500 trees were tested.

The implementations used for both classifiers are the ones provided by Weka∗, a workbench containing
machine learning algorithms and feature visualization tools. The classifiers performance was measured by its
accuracy, which can be expressed as the ratio of the number of instances correctly classified and the total number
of instances. The accuracy that was reported was the mean of ten repetitions of a 10-fold cross-validation system
using different seed values.

4. RESULTS AND DISCUSSION

Over the course of two months, EEG and audio signals of fifteen subjects were acquired employing the proposed
protocol and for almost all subjects the fifty-repetition per stimulus condition was fulfilled. Then, a folder
structured database was built with the recorded signals in which the root folder contains a plain text file describing
the protocol, another plain text file with the number of recordings per subject, stimulus and modality, and a
folder for each subject. The folders of all the subjects consist of three files, two representing the .mat extension
files in which the audio and EEG signals were stored, and a plain text file in which the disclosable information
of the subject is documented (see Figure 4).

This type of database was selected because it is the typical structure used for storing biomedical signals and
allows the addition of new sets of data without needing to restructure the database. The database final version
is made of 15 folders and 47 files, with a total weight of 2.48 Gb. It contains 4201 recordings using vowels as

∗http://www.cs.waikato.ac.nz/ml/weka/ accessed August 20, 2016
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Figure 4. Folder structure of the database and an example of the signals found in the EEG and Audio files.

Table 1. Recognition rates for the two groups of stimuli achieved for subjects S01 to S03.

Subject
Commands Vowels
RF SVM RF SVM

S01 19.31 17.26 23.68 22.35
S02 19.58 19.81 22.52 22.01
S03 19.92 17.72 21.96 21.45

Mean 19.60 18.26 22.72 21.94

stimulus and 5113 recordings in which command words were presented. Considering that each recording lasts 4
seconds, the total recording duration was 37,256 seconds of six-channel EEG signals (approximately 10.3 hours)
and 7,892 seconds of single-channel audio (approximately 2.2 hours). The database is stored in the Research
Institute for Signals, Systems and Computational Intelligence (sınc(i)) server and was made publicly available
at http://fich.unl.edu.ar/sinc/downloads/imagined_speech/. Additional details about the material and
experimental conditions for each register can be found in the Appendix A.

A preliminary experiment was performed with the EEG signals recorded during imagined speech. Recordings
belonging to subjects S1, S2 and S3 were used to find the best configuration for the SVM and RF classifiers,
and then the best classifier was employed for the remaining subjects. Also, Daubechies of different orders were
tried as mother Wavelet, but no significant difference was detected. Therefore, fourth order Daubechies (db4)
were used to achieve the following results. An RF with 200 trees that used 5 random features and an SVM
with a complexity coefficient of 0.9, yielded the best results for the command word dictionary. Thus, the same
configuration was applied for the vowel dictionary. The recognition rate for the first 3 subjects is shown in
Table 1.

Given that a better result was obtained using the Random Forest algorithm for the two groups of stimuli
than with the linear SVM, the first one was used to process the EEG signals of the rest of the subjects. The
mean accuracy after ten iterations with different seeds for subjects S4 to S15 for the command words and vowel
group is depicted in Figure 5. The mean recognition rate for all the subjects was 22.32 (±1.81) for the vowels
and 18.58 (±1.47) for the words that express commands. So the mean accuracy is greater than chance for almost
all the subjects in both groups (being the chance level 20% and 16.6% for the vowel and command groups,
respectively). The results are worst than those obtained in Ref.4 but better than the ones reported in Ref.13.
However, in Ref.4 the different stimuli are not presented in random order, as it is the case in both Ref.13 and
this work. The randomization of the stimuli presentation increases the difficulty of the task, since it prevents
other features that are not related with the imagery speech task from aiding the classification process.14 The
classification accuracy could be improved using more information besides the basic spectral one employed in this
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(a) Vowel Recognition Accuracy (b) Command Recognition Accuracy

Figure 5. Accuracy percentage achieved for subjects S04 to S15 using a Random Forest algorithm for both groups of
words: vowels and commands. Chance level is indicated by a horizontal line, at 20% and 16.6%, respectively.

initial approach. The addition of other temporal features such as mean and standard deviation of each channel,
should be explored.

5. CONCLUSIONS

The acquisition process of EEG signals requires specific equipment and time, and this coupled with the fact that
there are not public databases of EEG recordings during imagined speech, hamper the number of investigations
regarding the classification of imagined words. In this work, a public database of EEG signals recorded while
the subjects imagined or pronounced two groups of words or vowels was presented. It is believed that this will
facilitate and encourage studies tending to improve the recognition rates for imagined words, and ultimately lead
to the development of BCI systems that could decode thoughts.

The results of an exploratory experiment were described in this work, using as features the Relative Wavelet
Energy of each channel and five levels of decomposition. In addition, two classifiers were tested, being Random
Forest the best. The accuracy achieved is above chance level suggesting that there is information of the imagined
word within the EEG signal, although further research must be done to find the features that provide better
discriminative information and the optimal classifier.
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APPENDIX A.

In this appendix, additional information regarding the subjects and the recordings contained in the database are
presented. Table 2 shows the personal information collected prior to the recordings for each subject. In Tables
3 and 4, the number of trials recorded from each subject, identified by modality and stimulus, are indicated for
the dictionary of vowels and commands, respectively.
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Table 2. Disclosable personal information of the subjects.
ID Gender Age Handedness Nationality Province

S01 Female 24 Right Argentina Entre Ŕıos

S02 Female 28 Right Argentina San Luis

S03 Female 24 Right Argentina Entre Ŕıos

S04 Male 25 Right Argentina Tierra del Fuego

S05 Female 24 Left Argentina Entre Ŕıos

S06 Male 25 Right Argentina Entre Ŕıos

S07 Male 25 Right Argentina Neuquén

S08 Male 25 Right Argentina Santa Fe

S09 Male 24 Right Argentina Buenos Aires

S10 Male 26 Right Argentina Buenos Aires

S11 Female 25 Right Argentina Entre Ŕıos

S12 Male 28 Right Argentina Santa Fe

S13 Female 25 Right Argentina Entre Ŕıos

S14 Male 25 Right Argentina Entre Ŕıos

S15 Female 24 Right Argentina Entre Ŕıos

Table 3. Number of trials recorded by subject and modality using as stimuli the vowels group (I:Imagined speech /
P: Pronounced speech).

ID
/a/ /e/ /i/ /o/ /u/

Total
I P I P I P I P I P

S01 56 14 53 10 55 12 55 10 55 10 330

S02 44 12 44 12 44 12 44 12 44 12 280

S03 42 13 44 12 44 13 44 14 42 13 281

S04 41 11 43 12 43 12 41 11 41 11 266

S05 43 11 43 11 44 9 42 9 43 12 267

S06 43 12 43 12 38 12 43 11 44 12 270

S07 44 12 37 11 38 12 39 12 42 10 257

S08 44 12 42 12 44 12 43 11 45 12 277

S09 49 11 48 12 48 14 47 13 48 13 303

S10 44 14 42 14 44 14 42 13 43 14 284

S11 43 12 44 12 43 12 44 12 44 12 278

S12 44 12 44 11 43 12 44 11 44 11 276

S13 44 11 43 10 43 12 43 12 44 12 274

S14 46 11 46 11 46 11 46 12 45 11 285

S15 45 11 44 11 45 12 38 12 43 12 273

Total 672 179 660 173 662 181 655 175 667 177 4201
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Table 4. Number of trials recorded by subject and modality using as stimuli the commands group (I:Imagined speech /
P: Pronounced speech).

ID
“arriba” “abajo” “adelante” “atrás” “derecha” “izquierda”

Total
I P I P I P I P I P I P

S01 51 11 51 10 51 7 51 9 51 7 49 9 357

S02 43 11 44 11 44 12 43 12 43 12 44 12 331

S03 46 13 47 14 48 13 45 14 47 14 45 14 360

S04 44 10 43 13 42 13 45 13 43 13 46 12 337

S05 41 12 39 8 41 12 42 9 40 11 39 12 306

S06 44 13 39 13 44 14 44 14 44 14 41 13 337

S07 41 12 41 14 43 11 43 13 41 13 43 12 327

S08 46 13 47 13 47 14 44 14 47 12 47 13 357

S09 46 12 45 12 46 12 45 12 43 12 45 12 342

S10 45 14 46 14 45 12 43 11 46 14 43 14 347

S11 47 12 47 12 45 12 47 12 46 12 46 12 350

S12 45 11 46 11 45 11 46 11 45 10 45 12 338

S13 43 13 43 14 44 14 45 14 46 14 43 14 347

S14 48 12 48 12 47 12 48 11 48 11 45 12 354

S15 45 11 42 12 43 11 41 12 44 11 40 11 323

Total 675 180 668 183 675 180 672 181 674 180 661 184 5113

REFERENCES
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