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Abstract

Structured sparsity approaches have recently received much attention in the statistics,

machine learning, and signal processing communities. A common strategy is to exploit

or assume prior information about structural dependencies inherent in the data; the so-

lution is encouraged to behave as such by the inclusion of an appropriate regularization

term which enforces structured sparsity constraints over sub-groups of data. An impor-

tant variant of this idea considers the tree-like dependency structures often apparent

in wavelet decompositions. However, both the constituent groups and their associated

weights in the regularization term are typically defined a priori. We here introduce an

adaptive wavelet denoising framework whereby a sparsity-inducing regularizer is modi-

fied based on information extracted from the signal itself. In particular, we use the same

wavelet decomposition to detect the location of salient features in the signal, such as

jumps or sharp bumps. Given these locations, the weights in the regularizer associated

to the groups of coefficients that cover these time locations are modified in order to favour

retention of those coefficients. Denoising experiments show that, not only does the adap-

tive method preserve the salient features better than the non-adaptive constraints, but

it also delivers significantly better shrinkage over the signal as a whole.
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1. Introduction

A key attraction of wavelets is their compressive representation of data. This is funda-

mental to powerful nonlinear processing methods such as wavelet shrinkage [1–3]. Early

approaches often regarded wavelet coefficients as statistically independent. Further de-

velopments, however, showed that for many applications involving real-world signals and

images, performance improved when the dependencies between coefficients were taken

into account [4–9]. Most of such methods typically focussed on the persistency property

which is often apparent across wavelet scales. The simplest models account for such sta-

tistical dependencies between parent coefficients at a given level of the decomposition and

their child coefficients at the following level of finer resolution. Although methods based

on these models proved successful in many applications such as denoising, compression,

and classification, some concerns remained about the preservation of salient features in

the signal, such as jumps or sharp bumps [10]. In applications such as denoising or de-

convolution these features are typically over-smoothed which compromises the quality of

the estimates. Some attempts to improve performance under these conditions explore

total variation filtering [11, 12], combined Tikhonov and total variation regularization

[10] and decompositions based on footprints of the discontinuities in the signal [13].

In this work we take advantage of the latest developments in regularized least-squares

regression to promote tree-structured sparsity on the denoised estimates. Unlike previous

tree-structured estimators [5, 8, 14–16], the method proposed here uses a lasso-like algo-

rithm with a mixed-norm regularizer that induces structured sparsity over an overcom-

plete representation. A novel signal-driven approach is introduced to adapt the weights

of the regularizer. The ability of shift-invariant complex wavelet transforms to detect

salient features in the signal is exploited to design a penalization term which favours

estimated jumps or sharp bumps during the optimization process. We show that this

results in a denoising approach with better preservation of salient features.

The manuscript is organized as follows. In the remainder of the current section we

provide motivation and discuss the specific contributions of our work in the context of the
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current literature. In Section 2 we offer an overview of structured sparsity approaches

and the dual-tree complex wavelet transform. The proposed method is introduced in

Section 3. This considers both an oracle and a practical approach to account for the

occurrence of salient features. In Section 4, results obtained in denoising experiments

show the advantage of the proposed adaptive scheme over structured sparsity estimates

set a priori. We then close with the main conclusions and a discussion of further work.

1.1. Motivation

Sparse representations have been at the core of many signal processing methods in

recent years [17, 18]. Early algorithms such as basis pursuit [19] and matching pursuit

[20] regarded coefficients as mutually independent, meaning that each atom in the decom-

position is selected or discarded independently of its neighbours. In the signal processing

community, efforts to introduce structured sparsity constraints were spurred by the com-

pressed sensing paradigm [21, 22] which used prior knowledge to reconstruct signals with

fewer samples than classical sampling theorems allowed. Model-based compressed sens-

ing has showed promise in this context [23–25]. These early attempts, however, were

based on non-convex or greedy optimization approaches. To achieve scalability with-

out compromising consistency, non-greedy convex approaches are often desirable. To

this end, regularized approaches using mixed-norms have proven successful in obtaining

sparse estimates that retain an assumed dependence structure [26, 27].

It is important to note that most of the existing wavelet/structured models deal with

the persistency property of the coefficients without taking into account any additional

information provided by the specific choice of transformation or dictionary used to obtain

the representation [27–29]. Moreover, all of these dependence structures are set a priori,

and no further information from the signal is used to adapt them. In denoising applica-

tions, features with strong local high frequency content are often over-smoothed by such

methods. This is due to the erroneous shrinkage or elimination of coefficients at finer

scale levels. On the other hand, when regularization parameters are set to favour data-

fitting much more than sparsity, the resulting estimates often retain too many fine-scale

coefficients and remain noisy.
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1.2. Contribution

In this work, a new signal processing method is developed that uses additional in-

formation, extracted directly from the signal, to reinforce the apriori structured sparsity

constraints. To do so, we use the dual-tree complex wavelet transform (DTCWT) as the

sparsity inducing transform together with a hierarchical mixed norm regularizer. The

weights in the regularizer are adaptively modified in order to help preserve salient fea-

tures of the analyzed signal. This adaptive modification is driven by a detection stage

which aggregates information from the different scales of the wavelet decomposition to in-

fer the locations of salient features in the signal. In this way, the mixed norm regularizer,

defined a priori, is tailored to the observed signal.

1.3. Related work

Tree-structured estimators have been proposed earlier for wavelet decompositions,

both in the signal processing and statistics communities [5, 8, 14–16]. They often rely

on orthonormal transforms and hard-thresholding approaches. Following their success in

machine learning and statistics, generalized lasso-type algorithms have received recent

and growing attention for signal processing applications. The closest works are [29] and

[30]. In [29], the parent-child dependence of wavelet coefficients is coded into overlapping

groups, each of which comprises a parent-child pair. A variable replication approach is

taken to account for different instances of a given coefficient appearing in different groups

and a regularization term is added to account for the dissimilarity of the replicates of the

same variable. Unlike the present work, their approach uses the standard discrete wavelet

transform (DWT) without adding any additional information onto the structure assumed

a priori. In [30], a chain structure is assumed to model the spectrogram of audio signals

obtained from their short-time Fourier transform representation. This simple structure

gives rise to a regularization term that is bounded above by a quantity which is simpler

to compute, allowing for an efficient minimization-majorization algorithm. It should be

noted, however, that it is suited for signals with emphasized band structures in their

spectrogram. On the other hand, edge information has been used to aid image denoising

[31] and reconstruction under compressed sensing applications [32]. To the best of our
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knowledge, however, such information has not been used to adapt a structured regularizer

as proposed here.

2. Background

This work builds upon two main ideas: the use of mixed-norm regularizers to obtain

structured sparse estimates and the use of the DTCWT as a signal analysis tool to induce

sparsity and locate salient features in the signal, while retaining desirable properties such

as shift-invariance and low redundancy. We briefly examine these two ingredients in the

following sections.

2.1. Regularized regression using structured sparsity constraints

Sparse linear models have become very popular in signal processing, machine learning

and statistics. Their purpose is to predict an output by using linear combinations of only

a small subset of the potential features that could describe the data. In this context, `1

regularization has become a widely-used tool to obtain estimation and feature selection

simultaneously. The strategy can be stated as the solution of the convex optimization

problem

θ̂ = arg min
θ
‖y −Aθ‖2

2 + λ‖θ‖1. (1)

In signal processing, the method is known as Basis Pursuit [19], and the aim is to find a

sparse representation θ̂ of a signal y in terms of the columns (or atoms) of an overcomplete

dictionary A. In statistics, the method is known as the Lasso [33]. In this case, A is a

data matrix comprising more variables than observations and the aim is to get a sparse

regression of the observations y on the measurements A.

The popularity of `1 regularization is largely due to the existence of efficient algo-

rithms to solve (1) and a large body of supporting theory [33–39]. Nevertheless, in this

formulation every variable or feature is regarded independent of the others. In practical

situations, however, estimation can benefit from additional a priori knowledge regard-

ing dependencies between sets of variables. Because of this, attention has been given in

recent years to regularization problems that can accommodate such knowledge.
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Figure 1: Group lasso with overlapping groups and its relationship with the zero and non-zero patterns
of the obtained estimates. The non-zero pattern is obtained as the complement of the union of groups
pushed to zero, in this case {1, 3}.

The most simple structure is the case in which we know, a priori, that sets of variables

should be considered or discarded jointly from the linear model. Such a set of variables

can be regarded as a group. Let G denote the set of groups, let θg refer to the subset of

variables of θ in group g and let wg be associated positive scalars acting as weights. The

optimization problem reads [40]

θ̂ = arg min
θ
‖y −Aθ‖2

2 + λ
∑
g∈G

wg‖θg‖q. (2)

Common choices for q are {2,∞}. The regularizer Ω1,q(θ) =
∑

g∈G wg‖θg‖q is often

referred to as a mixed-norm regularizer and it can indeed be verified that it induces

sparsity by deleting all the variables within a given group simultaneously. When the

collection G forms a partition of the set of variables, the method is known as group lasso

[40] and it is easy to see that the subset of coefficients shrunk to zero during estimation

gives rise to a zero pattern that is the union of some groups in G.

One way to generalise this formulation is to allow for more flexible grouping schemes

whereby groups are allowed to overlap (i.e. such that G does not need to be a partition of

the set of variables) [26–28, 41, 42]. In this case, the regularizer Ω1,q(θ) =
∑

g∈G wg‖θg‖q
is still a norm, provided all covariates belong to at least one group, and it still induces

complete groups of covariates to be set to zero. Moreover, a variable in a group that is

set to zero during optimization will be pushed to zero even if it belongs also to other
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groups that are not set to zero. More formally, it is shown in [27] that under very mild

assumptions, the support of the solution θ̂ almost surely is the complement of the union

of some groups in G; that is,

supp(θ̂) =

(⋃
g∈G0

g

)c

=
⋂
g∈G0

gc, (3)

for some G0 ⊂ G. This situation is illustrated in Figure 2.1. Sets of non-zero patterns

that can be represented as in (3) are referred to as intersection-closed. There are some

expected structures that cannot be described appropriately by an intersection-closed

grouping scheme but which can be modeled by union-closed families of supports [41, 42].

Practical solution of the optimization problem involving overlapping groups is more

challenging computationally and dedicated algorithms have been developed to address

this task [43–46]. In addition, the selection of weights wg has a greater impact on the

estimate in the case of overlapping groups, since they have to mitigate not only the

unbalanced size of the groups but also the over-penalization of variables appearing in a

greater number of groups. Currently, principled rules to set the weights optimally for

these regularizers are not available.

2.2. Dual-tree complex wavelet transform

Despite its widespread use in applications, the standard (real) DWT suffers from some

important shortcomings such as a lack of shift-invariance and the substantial aliasing

due to critical downsampling that affects perfect reconstruction if some processing is

applied to the coefficients. For image analysis, the standard DWT with real wavelets also

lacks directionality due to the standard tensor product construction of multidimensional

wavelets. The DTCWT provides a better alternative to deal with those problems, while

retaining simple computation and low redundancy [47]. It seeks to provide a nearly

analytic wavelet transform using two real filter-bank trees, one for the real part and

other for the imaginary part of the transform. These two real wavelet transforms use

two different set of filters, each of compact support and satisfying perfect reconstruction.

The choice of filters for each tree is not arbitrary, but they are designed to form an
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approximate Hilbert pair, so that the resulting complex wavelet transform is as close

as possible to analytic. Indeed, the design of the pair of filters is the key point to

the success of the transform, and several efforts have addressed this topic [48–55]. The

resulting transform is near shift-invariant [56] and, of particular importance to structured

sparsity approaches, it has also been shown that the magnitude of the coefficients are

more strongly dependent in inter-scale and intra-scale neighborhoods [47, 57, 58] than

those of the DWT. Refer to [47] and references there in for a comprehensive introduction

to the DTCWT and its properties.

3. Proposed method

In this section we describe the overlapping-group lasso approach for tree-structured

wavelet estimators. We then propose a way to estimate the salient features directly from

the signal and show that this affords the opportunity to adaptively choose the weights.

We then conclude the section with a treatment of how these ideas can be incorporated

into an optimization framework which solves the structured sparse estimation problem

for overlapping groups of variables.

3.1. Overlapping-groups lasso with adaptive weights

The multiresolution nature of wavelet decompositions allows one to think of par-

ent coefficients at a given scale level and child coefficients at the next finer scale level.

Wavelet decompositions possess two properties of great interest to structural sparsity

approaches: firstly, they are typically sparse and secondly, coefficients in the same time

interval usually show a persistency property across scale [5]. The persistency property

means that the magnitude of the child coefficients depends strongly on that of their

parent— a large/small parent usually implies a large/small child. Such a dependence

can be modelled as a set of trees, each rooted at a wavelet coefficient from the coars-

est scale of the decomposition [28, 59]. Let I be the set of indexes for the coefficients

θ : I 7→ C and let I0 ⊂ I be the subset of indexes indicating the wavelet coefficients at

the coarsest scale. Furthermore, let g(i) be a subset of indexes of I organized as a tree
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rooted at some index i, and let θg(i) be the corresponding subset of coefficients in this

tree. Consider the collection of groups

G := {g(i) : i ∈ I}. (4)

We assume the inter-scale dependence structure between wavelet coefficients determines

a forest-like hierarchical structureM(θ), so that for all i, j ∈ I, g(i) ⊂ g(j), g(j) ⊂ g(i),

or g(i) ∩ g(j) = ∅, and

M(θ) :=
⊕
i∈I0

θg(i). (5)

This grouping scheme is illustrated in Figure 2-(a), where circles represent coefficients

of the wavelet representation and rectangles represent the groups. For simplicity, only

one tree of the forest is shown in the figure. This nested structure can be understood

as an example of the composite absolute penalties family and it allows one to obtain

estimates whose supports show the desired persistency property. See [60] for a discussion

of these type of penalties. An example is shown in Figure 2-(b). Highlighted rectangles

show the groups pushed to zero during optimization and the shaded circles show the

variables set to zero as a consequence. The support of the estimate is then represented

by the set of white circles, which is the complement of the union of the groups set to zero

during the optimization. This example illustrates that the hierarchical structure defines

a intersection-closed set of supports, which can be then obtained solving a regularized

regression problem like (2); in particular,

θ̂ = arg min
θ
‖y −Aθ‖2

2 + λ
∑
i∈I

wi‖θg(i)‖2. (6)

Whilst the use of this structure and the associated mixed-norm regularizer has already

been proposed [27, 28], we note that the introduction of this structured regularizer also

requires the specification of the weights wi. Indeed, although much less attention has

been given to this topic, it is well-known that the values of the weights in fact have an

important effect on determining the support of the resulting estimates [26, 27].
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Figure 2: (a): Grouping scheme for the proposed mixed-norm regularization. (b): Example of estimate
induced by the adopted grouping scheme; its support is the complement of the union of the sets pushed
to zero during optimization which in turn sets to zero the coefficients represented by shaded circles.

Motivated by this dependence on the choice of the weights, we propose to adapt

them from the a priori specification by taking into account the salient features of the

analyzed signal. In particular, we modify the weights wg with the aim of achieving a

better reconstruction of jumps and bumps, which are often over-smoothed by denoising

algorithms.

To formalize the idea, let k ∈ supp(f) be a location of interest, where the signal f

presents a salient feature such as a jump or a sharp bump. Let Ǧk ⊂ G be the set of

groups containing coefficients θj,n related to k and let w̌k be the vector of associated

weights. We define a shrinkage operator on the weights P : w ∈ R+ → R+ by

P (wi) ≡ w̃i =

αiwi if g(i) ∈ Ǧk,

wi otherwise,

(7)

where αi ∈ [0; 1]. For a given group g(i), w̃i ≤ wi and then the shrunk weights allows the

respective groups to be penalized more weakly during the optimization process. In this

way, coefficients related to salient features of the signal can be favoured in the regularized

estimation process so that they are surely retained in the final estimate.

3.2. Edge and ridge detection via DTCWT

We now focus on the practicalities of detecting and locating these salient features.

It is shown in [61] that analytic complex wavelets (with a non-negative frequency spec-
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trum) can be used to extract edge-like and ridge-like features from noise-free signals.

Theoretically, at the limit of the finest resolution, all the coefficients are zero except

those corresponding to the location of the features. Moreover, the phase of these limiting

coefficients can be used to distinguish between an edge-like or a ridge-like structure at a

given position of interest.

In practice, the edges and bumps can be estimated by replacing the limiting process

with an average of the normalized complex coefficients over a finite number of scales. This

approach, nevertheless, has two important limitations. The first is that an undecimated

or interpolated complex wavelet representation is required so that the coefficients included

in the average are well localized in time in order for the the detected locations of interest to

be accurate. The second limitation is perhaps more serious, namely that the approach as

stated currently does not take into account noisy conditions. Thus, there is no guarantee

on the attainable performance when using it in noisy scenarios.

For 1D signals, it is well-known that jumps and ridges give rise to strong persistency

figures in their scalogram when using the continuous wavelet transform [62]. This be-

haviour is still noticeable when using a discrete wavelet transform. Motivated by this,

we propose to average the magnitude of the wavelet coefficients throughout the different

scales to get the signatures. Since the DTCWT provides a decimated representation,

we interpolate the magnitudes of the wavelet coefficients to match the resolution of the

finest scale.

3.2.1. A measure for relevant information

Let θ be the DTCWT of discrete signal f and let |θ̃j,n| be the interpolated magnitude

of the coefficient corresponding to location n in time at the scale indexed by j. We

measure the amount of important information on f at location n by a function δ :

supp(f)→ [0; 1]

δ(n) :=

( J∏
j=J0

γ
(∣∣θ̃j,n∣∣)) 1

J−J0+1

, (8)
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with γ(·) a normalization function given by

γ
(
θj,n
)

:=
θj,n −min θj,·

max θj,· −min θj,·
. (9)

At locations where the signal has a jump or a bump, δ is close to 1. For noise-free

scenarios, δ → 0 at intervals where the signal is smooth. In this case, J0 should be set to

1, in order to include the coefficients at the finest scale of the decomposition. In noisy

scenarios, coefficients at the finest scale can be noisy and averaging from scale J0 = 2 can

prove useful. In addition, when the decomposition runs up to a very coarse level, very

little information can be extracted from the coarsest scales about the location of salient

features. Indeed, for very smooth signals the interpolated coefficients can become nearly

constant at the coarsest scales. The geometric mean given by Equation (8) shows small

sensitivity to this effect because it depends mostly on the coefficients whose magnitude

is close to zero [63].

3.2.2. Detection of points of interest

Given a threshold τ ∈ (0; 1) and a minimum length of interval r, we define the sets

Kτ,r(1),Kτ,r(2), . . . ,Kτ,r(S) to be the collection of non-empty, non-intersecting, and non-

neighbouring intervals of length greater than r such that δ(n) > τ and where each set

is simply connected (i.e. for each s, the set Kτ,r(s) does not contain any gaps between

elements). Then, the set of S-many locations Kτ,r of the salient features in f is given by

the points where δ(n) attains its maximum value within each interval of Kτ,r; that is,

Kτ,r :=

{
max

n∈Kτ,r(s)
δ(n)

}S
s=1

.

The procedure to estimate the set of locations Kτ,r is summarized in Algorithm 1.

The detection of points of interest as described above depends on the choice of parameters

τ and r. For fixed r, moving τ from 0 to 1 changes the pattern of connected sets Kτ,r.

In particular, for τ1 < τ2, Kτ1,r ⊃ Kτ2,r but the set of detected locations Kτ2,r can add a

new element with respect to Kτ1,r if a local minimum in δ is passed-through when going
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Algorithm 1 Detection of points of interest

Inputs: f ; r, n0.
Outputs: Kr,n0

procedure DetectPoi(f ; r, n0)
θ ← DTCWT(f)
˜|θ| ← Interpolate(|θ|)
for all n ∈ supp(f) do

δ(n)← Compute the geometric mean of ˜|θ|·,n . see (8)
end for
{τq} ← Compute quantiles of δ
for all τq do

Kτq,r ← {n : δ(n) > τq}
for all Kr,τq (i) do
Kτq,r(i)← arg maxn∈Kτq,r(i) δ(n)

end for
end for
for all {Kτq,r(i)} do

κi ← Check persistence {Kτq,r(i)} ≥ n0

end for
Kr,n0 ← {κi}

end procedure

from τ1 to τ2. If the new extremum is a local maximum due to noise or a irrelevant

fluctuation in δ, it will disappear as τ is increased. On the other hand, if the added

extremum represents a location of a salient feature, it will persist over a wide range of

τ > τ2. As such, persistence of detected locations on the sequence {Kτn,r}, obtained using

a sequence of threshold values {τn}, is an indicative of a true salient feature in f . For

this procedure to be useful in general, we should define the sequence {τn} to be adaptive

to the data, since the peaks in δ at the locations of interest are less emphasized when the

noise increases. To do so, we propose to match {τn} to a sequence of quantiles of δ and

look for the locations that persist in {Kτn,r} at least n0 times.

3.3. Implementation

In this section we describe an algorithm to solve (6) and a criterion to select the

regularization parameter λ.

3.3.1. Optimization algorithm

Several numerical approaches have been proposed to deal with the `1,2 minimization

problem involving overlapping groups [43–46, 59]. In this work we solve (6) using a

proximal method based on Mureau-Yosida regularization [64]. Our presentation follows
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[64]. Let Ω1,2 =
∑

i∈I wi‖θg(i)‖2 be the regularization term in (6). Under the Mureau-

Yosida regularization framework, the regularization associated with Ω1,2 for a given v ∈

Rp is given by:

φλ(v) = arg min
v

{
1

2
‖θ − v‖2

2 + λΩ1,2

}
, (10)

for some λ > 0. Let πλ(·) be a minimizer of (10) and let θ̂ be an optimal solution to (6).

Then, θ̂ satisfies:

θ̂ = πλτ (θ̂ + τA†(y −Aθ̂)), ∀τ > 0, (11)

with A† and A here denoting the DTCWT and its inverse transformation, respectively.

Equation (11) affords the opportunity to apply an accelerated gradient descent for solving

(6). The key point of the algorithm is the solution of (10). It is shown that this minimizer

has indeed an analytical solution that can be found with Algorithm 2 (see [64] for details).

Algorithm 2 Mureau-Yosida regularization

Inputs: v ∈ Rp; grouping structure G, related weights {wi} and λ > 0.
Outputs: πλ(v)
procedure SolveMYtree(v, λ; G, {wi})

λi ← λwi
uL0+1 ← v
for i = L0 to 1 do . Iteration runs from finest to coarsest scale.

for all g(j) at scale i do

uig(j) ←


0, if ‖ui+1

g(j)
‖2 ≤ λj

‖ui+1
g(j)
‖2−λj

‖ui+1
g(j)
‖2

ui+1
g(j))

, if ‖ui+1
g(j)
‖2 > λj ,

(12)

end for
end for
πλ(v)← u1

end procedure

3.3.2. Selection of the regularization parameter

For practical applications, an important aspect to be specified is the value of the

regularization parameter λ. Although there exist well-stablished criteria for selecting

λ for the standard lasso and related problems when A is orthonormal, such criteria

do not apply for the case of overlapping groups. In recent papers involving structured

regularizers with overlapping groups, selection of the regularization parameter has been

done empirically using simulations. For instance, in [30] a numerical study is carried out
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to relate the value of λ with the expected reduction of noise variance for uncorrelated

white Gaussian noise. The offered values depend on the choice of block structure in the

regularizer. In [10], a grid of values for a pair of regularization parameters is evaluated

and the best pair is selected graphically.

The approach proposed in this paper is based on theoretical results for regularized M-

estimators with decomposable regularizers [65]. It is easy to see that the highly structured

regularizer used in (6) is decomposable in the sense defined in [65]. Let θ̂λ denote the

solution to (6) for a given value of λ. It is shown in that paper that theoretical guarantees

on ‖θ̂λ − θo‖ can be found provided

λ ≥ 2 Ω∗1,2(∇L(θo)), (13)

where Ω∗1,2 stands for the dual of the regularizer Ω1,2, θo is the true vector of coefficients

under the tree-structured model, and L is the loss function, which in this paper is the

squared-error loss. Following this, we require:

λ ≥ 2
∥∥wi‖ψg(i)‖2

∥∥
∞, (14)

with ψ the DTCWT of the noise η in the model y = Aθo + η.

Expression (14) is impossible to compute, since it involves the DTCWT of the true

noise η. Nevertheless, we can use simulations to find a bound for λ according to (14).

The procedure involves generating a noise signal ηi with variance σ2
η and picking the

maximum of S = max{wi‖ψg(i)‖2} using the non-adapted weights {wi}. After repeating

the steps to obtain a large number of replicates of S, the distribution of S̃ = 2S/σ is

found to be invariant. Thus, we can use a quantile of the distribution of S to set a bound

for λ that holds with high probability. For uncorrelated white Gussian noise and using

the .95 quantile of the empirical distribution, we set λ = 0.568σ̂, with σ̂ an estimate of

the noise variance.
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3.3.3. Overall algorithm

An overall algorithm to implement the proposed method is shown in Algorithm 3,

which joins the optization steps and the procedure to detect the point of salient features

discussed in the current section. The evolution of the objective function as the number

of iterations increases within the main loop in the denosing algorithm is shown in Fig-

ure 3. Shown curve corresponds to the piecewise-polynomial signal from WaveLab [66],

corrupted with white Gaussian noise of variance σ2
η = 4. Similar evolutions are obtained

for other types of signals and noise levels. It can be seen that convergence is monotone

and little improvement is gained after 20 iterations. In Appendix A, the performance

obtained with λ chosen as explained in the previous section is compared against the best

performance obtained with Algorithm 3 using a fine grid of values of λ. The influence of

r and n0 on the overall denoisng procedure is analyzed in Appendix B.

Algorithm 3 Adaptive tree-structured wavelet shrinkage

Inputs: y; grouping structure G and related prior weights {wi}.
Outputs: Denoised signal ẑ
procedure Denoising(y; G, {wi},r, n0)
Kr,n0 ← DetectPoi(y; r, n0) . see Algorithm 1.
Ǧk ← Find groups in G related to Kr,n0

Set x← Compute DTCWT(y)
σ̂2 ← Estimate noise variance from x
α← Set shrinkage factor according to σ̂
{wi} ← Adapt weights {wi}, from (Ǧk, α) . see (7).
λ← Set λ according to σ̂ . see (14) and comments below it.
Set L = 1, ζ = 1, ζp = 0;xp = x
repeat

β ← (ζp − 1)/ζ
s← x + β(x− xp)
G← Compute gradient from y, s
while ‖A(x− s)‖22 > L‖x− s‖22 do

v← s−G/L
x← SolveMYtree(v, λ/L;G, {wi}) . see Algorithm 3
L← max(2L, ‖(x− s)‖22/‖A(x− s)‖22)

end while
(ζ, ζp)← Update(ζ, ζp)

until convergence
θ̂ ← x
ẑ← Compute IDTCWT(θ̂)

end procedure

16

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

, D
. H

. M
ilo

ne
 &

 J
. D

. B
. N

el
so

n;
 "

W
av

el
et

 s
hr

in
ka

ge
 u

si
ng

 a
da

pt
iv

e 
st

ru
ct

ur
ed

 s
pa

rs
ity

 c
on

st
ra

in
ts

"
Si

gn
al

 P
ro

ce
ss

in
g,

 V
ol

. 1
06

, p
p.

 7
3-

87
, j

un
, 2

01
5.



0 5 10 15 20 25 30 35
22

23

24

25

26

27

28

29

30

31

32

Iteration

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Figure 3: Convergence of the proposed algorithm. Shown figure corresponds to the PP signal corrupted
with white Gaussian noise of variance σ2

η = 4.

4. Experiments and results

To assess the performance of the proposed method, simulation studies were carried out

using synthetic signals from the WaveLab Toolbox [66], which have been used extensively

for benchmarking wavelet-based denoising methods. The Blocks, Bumps, Piecewise-

Regular (PR) and Piecewise-Polynomial (PP) signals were chosen, since they comprise

smooth segments with jumps and bumps and serve to illustrate the kind of signals tar-

geted to by the proposed method. All test signals were generated with N = 1024 sample

points. Independent and identically distributed white Gaussian noise was added to the

signals, at different SNR determined by the variance σ2
η of the noise. Near-symmetric

(13,19)-tap filters were used to compute the first stage of the decomposition, while Q-

Shift (14,14)-tap filters were used for the rest of the scales. Preliminary experiments with

other combinations of filters showed that the effect of this choice on the performance of

the proposed method was neglible for most of the tested conditions. Decomposition was

carried out up to level L0 = 7. Implementation of Algorithm 3 was done in MATLAB.

The optimization code was adapted from [67] to deal with complex variables. For the

detection of salient features, interpolation of coefficient magnitudes at each scale was

carried out using a cubic interpolator, although the proposed method was not found

sensitive to the type of interpolator chosen.
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4.1. DTCWT vs DWT

A key characteristic of the proposed method is the use of the DTCWT instead of the

DWT. In this subsection we illustrate the benefits of this choice. A simulation was run

to assess the performance of the proposed tree-structured estimators for both DTCWT

and DWT decompositions, using the same grouping structure for both of them. Both the

adaptive methodology exploiting detection of salient features (A-DTCWT and A-DWT)

and the alternative methods with the weights of the goups fixed a priori were assessed

(F-DTCWT and F-DWT). In addition, for the adaptive structured estimators, results

obtained using the oracle locations of salient features (O-DTCWT and O-DWT) were

included in order to explore whether the choice of transformation affects the detection of

salient features, the denoising process or both of them. The results of 100 experiments

were averaged to assess the performance of each method. In each run, all the methods

processed the same signal so that noise variability between realizations do not contribute

to a difference in performance between the methods. To avoid the influence of the choice

of the regularization parameter for the adaptive methods, a set of 1000 uniformly spaced

samples of λ in the interval [0, λmax] were tried out for each method at each run. λmax is

such that for λ > λmax, the resulting estimate is a zero vector. λmax was estimated in each

run using the algorithm proposed in [64]. Only the best estimate across the differente

values of λ was picked as the result corresponding to the run, both for DTCWT and

DWT-based methods.

Obtained results are shown in Figure 4. Reconstruction errors for σ2
η = 4 only are

reported, since very similar figures are obtained for other signal to noise ratios. It can

be seen that methods using the DTCWT significantly outperforms alternatives of the

same algorithms that use the DWT. Furthermore, it can be seen that the difference in

performance between O-DTCWT and A-DTCWT is roughly the same as between O-

DWT and A-DWT, albeit the O-DTCWT clearly outperforms O-DWT. Thus, the main

benefit of the DTCWT over the DWT lies in the signal denoising step and not in the

detection of salient features. These results, together with the fact that the magnitude

of the (near shift-invariant) DTCWT coefficients have stronger dependence in inter-scale
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Figure 4: Comparison of results obtained when using the DTCWT or the standard DWT. (a) Blocks;
(b) Bumps; (c) PP signal. In all cases, variance of the noise is σ2

η = 4.

and intra-scale neighborhoods than those of the DWT, suggest that the assumed tree-

structured models are better suited to DTCWT decompositions than to DWT.

4.2. Accuracy of the edge/ridge detection method

Examples of obtained results are shown in Figure 5 and Figure 6. The variance of

noise increases from left to right in each figure, starting with the noise-free condition in

panel (a). In each panel, the upper box shows the analyzed signal, the middle-box shows

the estimated δ and the box at the bottom shows the detected locations. The choice of

the minimum length of interval r and minimum persistence n0 for each signal remained

fixed across the different noise level. In particular, values r = 4 and n0 = 7 where used

for both signals, and fifteen different values of τ where used to assess persistence. It can

be seen that for the noise-free conditions and the first noisy conditions, the algorithm

achieves perfect detection of the points of interest. For the most severe noisy condition,

the algorithm introduces some false positives, two in the case of the PR signal and only

one for the PP signal. The rate of false positives can be controlled by modifying the

values of r and the minimum persistence n0. An increase in any of them, most notably

in n0, reduces the number of detections. As a trade-off, some points of interest will be

missed.
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(a) (b) (c)

Figure 5: Detection of salient features for the Piecewise-Regular signal from WaveLab. (a): noise-free
condition; (b) σ2

η = 4; (c) σ2
η = 9.

(a) (b) (c)

Figure 6: Detection of salient features for the PP from WaveLab. (a): noise-free condition; (b) σ2
η = 4;

(c) σ2
η = 9.

ROC curves were constructed to facilitate assessment of the performance salient fea-

ture detector. For a given noise level, the detection algorithm was run with r taking

values in {1, 3, 5, 7, 9} and n0 taking integer values from 1 to 50. The set of thresholds

{τn} used to evaluate persistence of candidate locations was determined using a regular

grid of fifty points in the interval [Q0.50, Q0.95]. Each point in the ROC curve gives the

true positives rate (TPR) and the false positives rate (FPR) for a given value of the

persistence parameter n0, averaged over 500 replicates of the experiment. Figure 7 shows

the ROC curves obtained for PR and PP signals, for three different noise levels. For both

signals, it can be seen that the detection ability degrades with increasing noise levels, as

showed by the maximum attained values of TPR. It is important to clarify that these low

TPR are in fact due mostly to detection of salient features in locations close to the true

ones. Computation of the TPR is sensitive to these displacements of the detected points
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Figure 7: ROC curves for the detector of salient features at different noise levels.(a): PR signal; (b): PP
signal. Noise levels increase from left to right, at σ2

η = 1, σ2
η = 4, σ2

η = 9.

relative to the true ones. Nevertheless, when plotting such detections like in Figure 5 and

Figure 6, they are usually not noticeable. It can be seen also that the different choices

of the parameter r lead to very similar ROC curves. Comparing the figures obtained for

both signals shows that better performance is achieved for the PP signal; this suggests

that jumps are easier to detect than bumps.

A study of the influence of the choice of parameters r and n0 on the peformance of

the overall denoising process as proposed in Algorithm 3 is left to Appendix B.

4.3. Denoising

To illustrate the effect of weight adaptation in the mixed-norm regularizer, denoising

results were obtained using the following methods: (i) proposed method with locations

of salient features given by an oracle (O-DTCWT); (ii) proposed method with locations

of salient features estimated by the proposed detection algorithm (A-DTCWT); (iii)

regularized method using the same structured prior but with weights fixed in advance (F-

21

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

D
. R

. T
om

as
si

, D
. H

. M
ilo

ne
 &

 J
. D

. B
. N

el
so

n;
 "

W
av

el
et

 s
hr

in
ka

ge
 u

si
ng

 a
da

pt
iv

e 
st

ru
ct

ur
ed

 s
pa

rs
ity

 c
on

st
ra

in
ts

"
Si

gn
al

 P
ro

ce
ss

in
g,

 V
ol

. 1
06

, p
p.

 7
3-

87
, j

un
, 2

01
5.



DTCWT); and (iv) standard soft-thresholding algorithm as proposed in [2] (ST). Results

for ST were included as a baseline, to help appreciate whether the added complexity of

the proposed method was worth the gain in efficiency. Performance is measured as both

the ‖ · ‖∞ and ‖ · ‖2 of the reconstruction errors, averaged over 100 replicates of the

experiment. Informed by the ROC analysis in Section 4.1, the parameters that control

the detection of salient features were set to r = 4 and n0 = 7, with persistence measured

using 15 different values of τ sampled regularly on the interval specified by the quantiles

Q0.5 and Q0.95. This choice for n0 = 7 proved convenient for all signals and all noise

levels, representing a good compromise between TPR and FPR. Other combinations of

(r, n0) are similarly capable, as shown in Appendix B.

For all the methods except ST, initial values of the weights were set according to

the cardinality of each group, using1 wg = |θg|1/4. These weights remained fixed for

F-DTCWT but were modified using information from the location of salient features

for O-DTCWT and A-DTCWT. For the adaptive methods, given the locations of the

salient features, the weights of the corresponding groups in the regularizer were shrunk

using αg = min(1, σ̂/σ0), with σ0 = 4, σ̂ = MAD/0.6745, and MAD the median absolute

value of the appropriately normalized wavelet coefficients at the finest resolution, as

proposed for the standard ST method [2]. With this choice of αg, in a noise-free scenario

the weights wg related to the locations of salient features are set close to zero, while in

very noisy scenarios the weights will remain unchanged2.

Results are shown in Table 1. For Blocks, Bumps and PP signals, it can be seen that

the proposed method involving an adaptive regularizer outperforms the other alternatives

for all the tested conditions, both when using ‖·‖∞ or ‖·‖2 as the measure of performance.

It is important to note that these conclusions are valid for the adaptive regularizer based

on oracle information as well as for the adaptive approach using the proposed algorithm

to detect the locations of the salient features of the signal. Indeed, results show that

1| · | here denotes cardinality.
2Note that αg should be such that it favors retention of involved groups, but not force it. In this

sense, for vey mild noisy conditions, it might be appropiate to lower bound the value of αg.
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Table 1: Performance of denoising algorithms for synthetic signals.

Error σ2
η ST F-DTCWT O-DTCWT A-DTCWT

mean(sd) mean(sd) mean(sd) mean(sd)
Blocks signal

1 0.3238 (0.0224) 0.1742 (0.0235) 0.1411 (0.0213) 0.1475 (0.0235)
‖z− ẑ‖∞/‖z‖∞ 4 0.4594 (0.0356) 0.3182 (0.0425) 0.2666 (0.0412) 0.2811 (0.0391)

9 0.5621 (0.0351) 0.4362 (0.0593) 0.4029 (0.0617) 0.4218 (0.0709)
1 0.1011 (0.0031) 0.0666 (0.0019) 0.0581 (0.0017) 0.0588 (0.0022)

‖z− ẑ‖2/‖z‖2 4 0.1479 (0.0052) 0.1182 (0.0035) 0.0887 (0.0028) 0.0941 (0.0049)
9 0.1881 (0.0064) 0.1650 (0.0062) 0.1219 (0.0057) 0.1310 (0.0080)

Bumps signal
1 0.1509 (0.0105) 0.0631 (0.0077) 0.0434 (0.0067) 0.0423 (.0104)

‖z− ẑ‖∞/‖z‖∞ 4 0.2206 (0.0185) 0.1194 (0.0165) 0.0812 (0.0127) 0.0871 (0.0048)
9 0.2876 (0.0263) 0.1717 (0.0205) 0.1189 (0.0174) 0.1282 (0.0256)
1 0.1249 (0.033) 0.0714 (0.0018) 0.0661 (0.0017) 0.0656 (0.0020)

‖z− ẑ‖2/‖z‖2 4 0.1742 (0.0060) 0.1309 (0.0039) 0.1009 (0.0038) 0.1015 (0.0048)
9 0.2255 (0.0090) 0.1857 (0.0060) 0.1353 (0.0060) 0.1384 (0.0075)

Piecewise-Regular signal
1 0.1989 (0.0194) 0.1435 (0.0371) 0.1333 (0.0086) 0.1333 (0.0086)

‖z− ẑ‖∞/‖z‖∞ 4 0.2953 (0.0220) 0.2476 (0.0281) 0.2059 (0.0314) 0.2101 (0.0357)
9 0.3477 (0.0245) 0.3165 (0.0470) 0.2617 (0.0042) 0.2669 (0.0196)
1 0.0644 (0.0026) 0.0614 (0.0037) 0.0617 (0.0014) 0.0621 (0.0021)

‖z− ẑ‖2/‖z‖2 4 0.1045 (0.0041) 0.1044 (0.0052) 0.0941 (0.0033) 0.0945(0.0031)
9 0.1355 (0.0056) 0.1224 (0.0042) 0.1112 (0.0061) 0.1151 (0.0083)

Piecewise-Polynomial signal
1 0.1897 (0.0176) 0.1091 (0.0871) 0.0871 (0.0151) 0.0871 (0.0151)

‖z− ẑ‖∞/‖z‖∞ 4 0.3010 (0.0471) 0.1934 (0.0256) 0.1663 (0.0267) 0.1786 (0.0290)
9 0.3953 (0.0685) 0.2619 (0.0433) 0.2436 (0.0410) 0.2516 (0.0491)
1 0.0812 (0.0025) 0.0642 (0.0019) 0.0572 (0.0016) 0.0573 (0.0017)

‖z− ẑ‖2/‖z‖2 4 0.1207 (0.0043) 0.1135 (0.0040) 0.0891 (0.0041) 0.0918 (0.0057)
9 0.1519 (0.0062) 0.1319 (0.0056) 0.1181 (0.0050) 0.1219 (0.0074)

the practical method achieves scores very similar to those for the oracle version and

the difference between them is not significant for moderate levels of noise. This can be

visualized in Figure 8, which shows boxplots of the obtained reconstruction errors when

the variance of the noise is σ2
η = 4. It is clear from the figure that results obtained with

the practical implementation are almost identical to those achieved when the locations

of the salient features are known. In addition, variance of the obtained errors is similar

for the proposed method and standard soft-thresholding for all tested conditions. It

is interesting to note that, although experiments have considered Gaussian noise only,

neither the overall method nor the strategy to select λ assume this condition.

4.4. Example with real data

Figure 9 shows the performance of the proposed method in supressing noise from a

real electromyographic (EMG) signal of a healthy person. The signal was taken from the
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Figure 8: Box-plots of the obtained reconstruction errors over 100 runs of the experiment, for a noisy
scenario with σ2 = 4. (a) ‖z− ẑ‖∞ for for Blocks, Bumps and PP signal; (b) ‖z− ẑ‖2 for Blocks, Bumps
and PP signal.

Physionet data bank3. Uncorrelated white Gaussian noise of variance σ2
η = 4 was added

to the standardized EMG. To aid visualization, only a segment cut at random from the

whole signal was used in the experiment. It can be seen that ST oversmoothes the signal

significantly, thus loosing many details. The estimated signal using F-DTCWT preserves

more details than ST but a reduced dynamic range, especially in the peaks and bumps,

is still evident. On the contrary, the A-DTCWT estimate better preserves details and

dynamic range of the main features of the signal. For this example, the relative `2-norm of

the reconstruction error is 0.421 for ST, 0.319 for F-DTCWT and 0.172 for A-DTCWT.

For ‖z − ẑ‖∞/‖z‖∞, obtained reasults for the shown example are 0.425 for ST, 0.289

for F-DTCWT and 0.169 for A-DTCWT. Both measures shown the superiority of the

proposed method for this denoising task. To check that the obtained results are not a

consequence of a favorable choice of fragment of the EMG signal, 100 replicates of the

experiment were run, each with a segment of length N = 1024 cut at random from the

3http://physionet.org/physiobank/database/emgdb/
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Figure 9: Example with real EMG signal

Table 2: Average denoising results for 100 fragments of EMG picked at random

σ2
η = 4 ST F-DTCWT A-DTCWT

Error measure mean(sd) mean(sd) mean(sd)
‖ẑ− z‖2/‖z‖2 0.347 (0.062) 0.260 (0.017) 0.173 (0.017)
‖ẑ− z‖∞/‖z‖∞ 0.345 (0.059) 0.266 (0.054) 0.212 (0.076)

whole signal. Averaged results can be seen in Figure 2, showing the same trend as for

the realization shown in Figure 9.
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5. Conclusions and further work

In this work we have introduced an adaptive structured wavelet shrinkage estimator.

In the proposed method, the weights in a hierarchical structured regularizer are modified

in order to favour the retention of coefficients related to the locations of salient features

in the signal. The detection of such locations is carried out using information extracted

from the wavelet decomposition. Denoising experiments with synthetic and EMG signals

showed that the adaptive scheme outperforms the non-adaptive structured estimators.

These results encourage the extension of the adaptive scheme to images, in order to

improve preservation of edges in denoising applications. Further extensions could also

involve relaxing the hierarchical structure to allow for more general dictionaries to replace

the DTCWT used in the present work. Alternatively a union-of-basis-framework could

be introduced to catch different features in the signal.
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AppendixA. Influence of the selection of λ

The goodness of the proposed procedure to select the value of the regularization pa-

rameter λ is assessed. The reconstruction error obtained with the proposed λ is compared

to the minimum reconstruction error achieved using a fine grid of values of λ. The rest

of the parameters were set as described in Section 4.3. The `2-norm of the error is used

for comparison. Results of 50 experiments were averaged to get the reported results. A

set of 1000 uniformly spaced samples of λ in the interval [0, λmax] were tried out for each

method at each run. λmax is such that for λ > λmax > 0, the resulting estimate is a zero

vector. λmax was estimated in each case using the Algorithm proposed in [64].
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Obtained results are shown in Figure A.10. O-best and A-best denote results corre-

sponding to the best choice of the regularization parameter when using the true location

of the salient features or estimated ones, respectively. For methods O-best and A-best,

only the best estimate across the differente values of λ was picked as the result corre-

sponding to the run. Results for the non-adaptive tree-grouped estimator is also included

for comparison. It can be seen that the difference in performance between the best se-

lection of λ and the one proposed here is always significantly smaller than the difference

in performance between the non-adaptive alternative F-best and the adaptive one A-

DTCWT. This result shows the advantage of adaptation beyond the fine tunning of the

regularization parameter. Furthermore, for methods A-DTCWT and A-best that do not

use oracle information about the location of salient features, it can be seen that the

difference in performance between them is smaller than for O-best versus O-DTCWT.

When noise increases, it can be seen also that the difference in performance between

A-best and A-DTCWT is indeed smaller than the difference between O-best and A-best.

This suggests that the performance of the denoising method is more sensitive to the cor-

rect detection of salient features than to the deviation of the proposed value for λ from

its optimal choice. Moreover, the overall performance of the adaptive method due to

practical implementation constraints is still significantly better than the performance of

tree-structured estimators with the regularizer fixed a priori. These results indicate that,

at a very modest cost to simplicity, the suggested procedure for selecting λ is suitable for
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Figure A.10: Performance of the introduced denoising algorithm using the proposed selection method
for the regularization parameter λ, compared with the best achievable performance estimated using a
fine grid of 1000 values of λ in the interval (0, λmax). (a) Blocks; (b) Bumps; (c) PP.
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Figure B.11: Influence of parameters for detection of salient features on the overall proposed denoising
method. (a) Blocks; (b) Bumps; (c) PP. For each signal, noise variance increases from left to right.

practical applications.

AppendixB. Influence of the parameters r and n0

The effect of the parameters (r, n0) on the accuracy of the detection stage of the

method was assessed in Section 4.2. Here, the influence of these parameters on the final

outcome of Algorithm 3 is addressed. A simulation was run using the synthetic signals

considered in Section 4, corrupted with uncorrelated white Gaussian noise. Results of

50 experiments were used to get the reported results. For each run, the regularization

parameter was set as discussed in Section 3.3.2 and a grid of values (ri, nj) was evaluated
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for the detection stage. For each pair of parameters values, the resulting reconstruction

error measured in the `2-norm was stored.

Averaged results over the 50 runs are shown in Figure B.11. It can be seen that for all

signals and noise levels, denoising performance suffers for large values of the persistence

parameter n0 and radius r. These large values accounts for situations where only large

isolated peaks in δ(n) are detected increasing the number of false negatives. When

the noise is weak, there is little effect of the choice of (r, n0) on the denoising result;

a wide range of values of the parameters, except the largest ones, obtain very similar

reconstruction errors. When the signal to noise ratio becomes small, as in the situation

in the plots on the right of Figure B.11, small values of n0 and r also affects negatively

the denoising performance. This is expected, since this leads to an increase in the false

positive rate of the detection stage, meaning that noisy coefficients are forced to be

preserved during shrinkage. Nevertheless, figure shows that there is a wide range of

values in the middle of the grid so that, for a fixed choice around (r = 4, n0 = 6), the

performance is good and near the best one regardless of the signal and noise level.
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