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Abstract

Detection of desaturations on the pulse oximetry signal is of great impor-

tance for the diagnosis of sleep apneas. Using the counting of desaturations,

an index can be built to help in the diagnosis of severe cases of obstructive

sleep apnea-hypopnea syndrome. It is important to have automatic detection

methods that allows the screening for this syndrome, reducing the need of the

expensive polysomnography based studies. In this paper a novel recognition

method based on the empirical mode decomposition of the pulse oximetry

signal is proposed. The desaturations produce a very specific wave pattern

that is extracted in the modes of the decomposition. Using this information,

a detector based on properly selected thresholds and a set of simple rules

is built. The oxygen desaturation index constructed from these detections

produces a detector for obstructive sleep apnea-hypopnea syndrome with

high sensitivity (0.838) and specificity (0.855) and yields better results than
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standard desaturation detection approaches.

Keywords: empirical mode decomposition, pulse oximetry, sleep apnea.

1. Introduction1

Sleep disorders include more than 80 frequent pathologies in adults and2

children [1]. Such disorders cause daytime sleepiness, affecting between 353

and 40% of the adult population of USA, and are an important cause of mor-4

bidity and mortality. As a result of this high prevalence, severe complications,5

and concomitant diseases in the non treated cases, there are very important6

associated costs [2]. The more common and important sleep pathology is the7

obstructive sleep apnea-hypopnea syndrome (OSAHS). This disorder is char-8

acterized by repetitive airflow reduction caused by an intermittent partial or9

complete upper airway obstruction during sleep. The main consequences of10

this disorder are sleep fragmentation, reduced blood oxygen saturation, and11

excessive daytime somnolence [3, 4, 5, 6]. According to recent studies [7, 8],12

the prevalence of OSAHS in a general population, without taking into ac-13

count symptoms of sleepiness, has been estimated to be 24% in a males and,14

when associated with these symptoms, it decreases to approximately 3− 7%15

in men and 2 − 5% in women. It is worth to be mentioned that it is much16

higher, e.g. ≥ 50%, in patients with cardiac or metabolic disorders than in17

the general population.18

The current gold standard for the diagnosis of OSAHS is polysomnogra-19

phy (PSG). PSG is an overnight study made at a sleep center, in a quiet and20

dark room, that consists of simultaneous recording of electroencephalogra-21

phy (EEG), electrooculography (EOG), electromyography (EMG), electro-22
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cardiography (ECG), oxygen saturation (SpO2), oronasal airflow, thoracic23

and abdominal movement, body position, and other signals. PSG allows to24

estimate the apnea/hypopnea index (AHI) that is used as the primary index25

of OSAHS severity. PSG is supervised by a technician, and its analysis re-26

quires a tedious scoring, often by hand [9]. This study is cost intensive, its27

availability is limited, and only one study can be made per night.28

As alternatives to PSG, several approaches have been proposed using29

cardiac, respiratory, and snore sounds [10, 11], pulse oximetry [3], ECG [12],30

nasal airway pressure [4, 13] and combinations of several signals [14]. These31

signals were studied by time-frequency analysis techniques [15], statistical32

approaches based on several ad hoc indexes [14], empirical mode decomposi-33

tion [4, 13], information theory [3], linear and quadratic discriminants [10],34

and other methods. Unlike other signals for which the recording instrumen-35

tation is more complex, nocturnal pulse oximetry is a low-cost technique and36

it can be easily applied in outpatient studies with the purpose of screening37

of OSAHS. However, pulse oximetry requires more sophisticated processing38

tools to extract relevant information.39

Empirical Mode Decomposition (EMD) is a complete data-driven sig-40

nal analysis technique, that can be applied to nonstationary and nonlinear41

signals, proposed by Huang et al. [22] 1. EMD decomposes a signal into42

a usually small number of components known as Intrinsic Mode Functions43

(IMF) or modes. EMD was successfully used for the extraction of the respi-44

ratory signal from ECG [23], and for detecting apneas processing the nasal45

1Details about EMD can be found in the Supplementary Material accompanying this

paper.
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airflow signal [4] and even the ECG [24]. As an undesired effect, we can men-46

tion the problem known as “mode mixing”, where very similar oscillations47

are present in different modes. This is partially alleviated with noise-assisted48

EMD versions, as the Ensemble EMD [25] with very good results in voice49

processing [26], but with high computational cost and a residual noise in the50

reconstructed signal. More recent noise assisted versions overcome some of51

these problems [27, 28].52

In this work, we present an algorithm based on EMD for detecting desatu-53

rations associated with sleep apnea/hypopnea in pulse oximetry signals. The54

purpose of this procedure is to estimate an index that behaves in a similar way55

than the classical apnea/hypopnea index derived from PSG, but using only56

information from oxygen desaturations measured by pulse oximetry. This57

will be done by decomposing the oximetry signal using EMD, identifying the58

particular modes where the information associated to desaturations appears59

more clearly, and using a set of properly chosen thresholds and simple rules60

to count each desaturation.61

2. Materials62

2.1. Oximetry Signal63

2.1.1. SpO2 Signal Basis64

Oximetry is the measurement of the percent saturation of oxygen in65

hemoglobin. The arterial oxygen saturation is commonly referred as SaO2.66

Pulse oximetry is a noninvasive estimation of the peripheral oxygen satura-67

tion (SpO2) based on the transmission, absorption, and dispersion of light68

as it passes through hemoglobin. The reading is obtained using a light sen-69

4

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

ch
lo

tth
au

er
, L

. D
i P

er
si

a,
 L

. L
ar

ra
te

gu
y 

&
 D

. H
. M

ilo
ne

; "
Sc

re
en

in
g 

of
 o

bs
tr

uc
tiv

e 
sl

ee
p 

ap
ne

a 
w

ith
 e

m
pi

ri
ca

l m
od

e 
de

co
m

po
si

tio
n 

of
 p

ul
se

 o
xi

m
et

ry
."

M
ed

ic
al

 E
ng

in
ee

ri
ng

 \&
 P

hy
si

cs
, a

pr
, 2

01
4.



500 1000 1500 2000 2500 3000
70

75

80

85

90

95

100

Time (s)

S
pO

   
(%

)
2

Figure 1: Typical SpO2 signal from a patient suffering OSAHS.

sor containing two sources of light (red and infrared) that are absorbed by70

hemoglobin and transmitted through tissues to a photodetector. Measure-71

ment of SpO2 is less accurate at low values, and 70% saturation is generally72

taken as the lowest accurate reading. Typical technical specifications of pulse73

oximeters include a sampling rate of 1 Hz, a resolution of 1%, and an accuracy74

of ±2% in the range of 70% to 100%.75

In Fig. 1 a SpO2 signal corresponding to a patient suffering OSAHS is76

shown. The range was limited to 70 − 100%. Several characteristics of this77

signal are illustrated in this example. Typical disconnection errors are at 250,78

300, and 2300 s (the value provided by the oximeter in these events is 0.1%).79

Examples of desaturation events can be observed at 1000 s and between 200080

and 3500 s, where sawtooth-like waveforms are present. Additionally, a low81

frequency tendency can be noticed in the segment shown.82

2.1.2. SpO2 and OSAHS83

A full PSG is required for the diagnosis of OSAHS. With these records,84

a specialized physician can accurately diagnose this syndrome, taking into85
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account the number of complete and partial obstructions (apnea and hypop-86

nea respectively) of breathing per hour of sleep. This quantity is known as87

the Apnea-Hypopnea Index (AHI) [29]. It is a very expensive study and the88

sleep laboratories are scarce, specially in developing countries.89

The nocturnal transcutaneous pulse oximetry is used with increasing fre-90

quency for early screenings of OSAHS due to its low cost and simplicity.91

During obstructive apneas, oxygen desaturations are common, but they can92

be absent with hypopneas or in events with increased upper airway resistance93

[29]. In the first case, the desaturations show a typical sawtooth waveform94

with a rapid increase in SpO2 during or after the arousal. However, this95

increase is not as abrupt in hypopneas and the sawtooth pattern can be96

completely missing in central apneas.97

An obstructive apnea/hypopnea event is characterized by a transient re-98

duction or complete cessation of breathing. In the clinical practice apneas are99

not considered differently from obstructive hypopneas because these events100

have similar pathophysiology. To be considered as an apnea/hypopnea event,101

criterion 1 or 2, plus criterion 3 of the following must be fulfilled [30]:102

1. The amplitude of a valid signal related to the breathing must present103

a clear decrease (≥ 50%) from its baseline. This baseline is defined as104

the mean amplitude of the signal in stable breathing and oxygenation105

in the 2 minutes preceding the onset of the event.106

2. A clear reduction in the amplitude of a validated measure of breathing107

during sleep that does not reach the previous criterion, but occurs with108

an oxygen desaturation greater or equal to 3% or an arousal.109

3. The duration of the event is 10 s or longer.110
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In this work, we are focused in detecting the blood oxygen desaturations,111

with the intention of identify events associated with criteria 2 and 3. Our112

interest lies in estimating an index with high sensitivity for OSAHS detection.113

However, as could be seen in Fig. 1, this is not an easy task for real SpO2114

signals. There are many problems to be solved, as artifacts, quantization115

noise, baseline, etc.116

2.2. The Sleep Heart Health Study Polysomnography Database117

The Sleep Heart Health Study (SHHS) was designed to investigate the118

relationship between sleep disordered breathing and cardiovascular disease119

2. Polysomnograms were obtained in an unattended setting, usually in the120

homes of the participants, by trained and certified technicians [31]. The121

recording montage consisted of:122

• C3/A2 and C4/A1 EEGs, sampled at 125 Hz.123

• Right and left EOGs, sampled at 50 Hz.124

• Bipolar submental EMGs, sampled at 125 Hz.125

• Thoracic and abdominal excursions sampled at 10 Hz.126

• Airflow (nasal-oral thermocouple), sampled at 10 Hz.127

• Pulse oximetry, sampled at 1 Hz.128

2The findings in this report were based on publicly available data made available

through the Sleep Heart Health Study (SHHS). However, the analyses and interpreta-

tion were not reviewed by members of the SHHS and does not reflect their approval for

the accuracy of its contents or appropriateness of analyses or interpretation.
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• ECG sampled at 125 Hz or 250 Hz.129

• Heart rate sampled at 1 Hz.130

• Body position.131

• Ambient light.132

Full details can be found in [32, 33]. From the conditional-use SHHS133

dataset containing 1000 records, 996 were used in this work. Due to technical134

reasons, four signals were discarded.135

3. Methods136

3.1. Preprocessing137

The fingertip pulse oximetry signal available in the SHHS database is138

complemented with information regarding the state of the oximeter. When139

the patient changes its position or simply moves its limbs, this movement can140

produce artifacts and render an invalid measurement, as can be seen in Fig.141

1. This causes a discontinuity in the signal, with an abrupt jump toward a142

saturation value of 0.1%. Thus, the obtained signal can have one or more143

invalid portions during a study. These non-informative components badly144

affect the EMD algorithm [34], and they should be avoided.145

For this purpose we use the data regarding the sensor status, and we146

simply eliminate the time span during which the sensor signal is invalid, with147

a concatenation of the previous and posterior data. Although this may sound148

unnatural, we have tried other alternatives, like interpolation using different149

methods, and in all cases the interpolation also produces a perturbation in150
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the EMD algorithm that renders unusable the results. For this reason, we151

applied this simple method.152

An additional problem is related with the quantization: each quantiza-153

tion level corresponds to 1% of the saturation value. This quantization noise154

produces artifacts in the resulting EMD decomposition. To reduce its influ-155

ence and taking into account that the desaturations produced by the apneas156

would have periods larger than 5 s, corresponding to oscillations of 0.2 Hz,157

we apply a lowpass FIR filter with a cutoff frequency of 0.25 Hz to preprocess158

the signal.159

3.2. EMD of SpO2160

In Fig. 2 the decomposition in six modes via EMD of an oximetry signal161

is shown. The signal has been preprocessed as described above. The oxime-162

try signal is in the upper panel in Fig. 2a. It can be noticed the distinctive163

sawtooth-like behavior of the SpO2 in presence of desaturations. The first164

mode of this decomposition contains the residual quantization noise with165

useless information. Modes 2 to 5 seem to provide more useful data showing166

oscillations where the desaturation events occur. Mode 6 and the final residue167

contain irrelevant information, including low-energy and low-frequency oscil-168

lations, and the signal trend. The oscillations associated to desaturations are169

distributed in different modes, making impossible to select a single mode to170

detect these events. As a solution, combinations of two or more modes are171

here proposed.172
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3.3. Detection173

We propose a method based in the EMD of the oximetry signal with the174

goal of estimating an index that can be used in the screening of OSAHS.175

The standard algorithms for automatic detection of desaturations are176

based on the clinical criteria 2 and 3. The SpO2 must decrease at least177

3%, and last 10 s or longer, to be considered as an apnea/hypopnea event.178

This reduction is measured from a baseline corresponding to the normal179

oxygenation. Unfortunately, there is not a consensus about the methodology180

for estimating this baseline [35]. One approach is based on using the mean181

value of SpO2 over all the study. A different method only considers the first182

3 minutes [36]. Nevertheless, in some cases, SpO2 can drop to a stable value183

under the baseline during the sleep.184

To avoid these problems, dynamic estimations of the baseline are em-185

ployed. Chiner et al. [21] use the mean value of SpO2 during the previous n186

minutes as baseline estimator. The same strategy is used by de Chazal et al.187

[37]. Another method is applied by Vázquez et al. [19, 38]. In these cases,188

the baseline is estimated using the top fifth percentile of SpO2 values over189

the five minutes preceding the event. This method do not take into account190

the SpO2 values during desaturations, and for this reason the baseline esti-191

mation is much more similar to the basal value during the normal breathing.192

An equivalent procedure is employed in a recent study [39], where they adopt193

as baseline the mean of the top 20% of the SpO2 data within 1 min. The194

main failures of the algorithms for desaturation detection are related with195

incorrect baseline estimations.196

The new algorithm here proposed do not need these estimations. We197
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applied EMD to the preprocessed SpO2 signal, with a maximum number of198

modes set to six and a maximum number of sifting iterations set to 50. The199

stopping criterion was the one proposed by Rilling [40]. Auxiliary signals200

were obtained by adding two, three, or four consecutive modes, considering201

only modes from 2 to 6. Each auxiliary signal was processed searching for202

extrema. Next, the difference in amplitude between each local maximum203

and the following local minimum (∆A), and the corresponding time interval204

(∆T ) were measured. If both ∆A and ∆T are higher than certain previ-205

ously set thresholds (τA and τT ), a desaturation event is detected. Finally,206

an oxygen desaturation index (ODI) defined as the ratio between the num-207

ber of desaturation events and the duration of the valid signal (in hours) is208

calculated.209

4. Results210

In the previously described algorithm, three aspects need to be experi-211

mentally determined: the combination of EMD modes, and the parameters212

τA and τT . To determine these values a partition of 40 training signals was213

generated. These signals were randomly selected, making a balanced train-214

ing set with 10 signals with AHI ≤ 5, 10 with 5 < AHI ≤ 10, 10 with215

10 < AHI ≤ 15 and 10 with AHI higher than 15. This was necessary due to216

the unbalance in favor of high AHI signals in the database. The remaining217

signals were kept as a test database. As an objective measure to evaluate the218

algorithms, we use the area under the ROC curve (AUC) [41]. This measure219

allows for a comparison of different classifiers for the whole range of thresh-220

old. A bootstrap estimator [42] of the AUC using 100 replicates was applied221
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and the confidence intervals were estimated [43].222

4.1. Parameter selection223

To find the best combination of modes and thresholds τA and τT , a series224

of experiments was performed over a training dataset with the set of 40225

randomly selected signals. The values of τA were varied from τA = 1 to226

τA = 4 in steps of 0.1, τT was varied from τT = 10 to τT = 30 in steps of 1,227

and the ODI was estimated for each signal. The signals were separated into228

two classes using as thresholds the polisomnography based AHIs = 5, 10 and229

15.230

All mode combinations were explored. The behaviors were qualitatively231

similar. The combination of modes that yielded the best results was the sum232

of modes 3, 4, and 5. In Fig. 3 we show the AUC for a threshold AHI = 15233

as a function of τA and τT . The main reason for this combination of modes234

been more effective that using a single mode is that the oscillations more235

related with the desaturations events are present in one of these three modes.236

These events can not be captured in a single mode because its amplitude and237

duration are changing in time and among patients.238

In Fig. 3 it can be noticed that the best AUC values are in two well-239

localized “ridges”: one corresponding to τT around 19–20 and the other in240

τT with values rounding 24–25. The maximum is AUC = 0.972 for τT = 19241

and τA = 1.1.242

4.2. Evaluation on the test database243

The proposed algorithm was applied to the 70% of the remaining signals244

in the database (669 cases) using the best combination of modes and the245
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Table 1: AUC for the different detection algorithms. AUCmin and AUCmax indicate the

limits of the 90% confidence intervals.

Method AHIthr AUC AUCmin AUCmax

5 0.687 0.526 0.872

Chiner et al. [21] 10 0.754 0.694 0.798

15 0.749 0.701 0.795

5 0.856 0.723 0.941

Vázquez et al. [19] 10 0.894 0.854 0.922

15 0.905 0.880 0.920

5 0.888 0.837 0.962

EMD 10 0.912 0.879 0.941

15 0.923 0.898 0.942

optimal values of the parameters. The method was compared with the two246

mentioned baselines [21, 19]. Three values for the reference diagnostic AHI247

threshold were used. Table 1 displays the results for a threshold of AHI= 5,248

10, and 15. The estimated value of AUC and the 90% confidence intervals249

are shown.250

It can be seen that the AUC for the proposed method is the best among251

the tested alternatives. In case of the reference AHI threshold of 15, the252

resulting ROC curve can be seen in Fig. 4. The circle shows the optimal253

operating point which maximizes both the sensitivity (se) and the specificity254

(sp). This point corresponds to a diagnostic threshold of ODI τD = 18.512,255

and produces se = 0.851 and sp = 0.853. The figure also shows the ROC256

curve and optimal operating point for the algorithm by Chiner [21] with257
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se = 0.789 and sp = 0.597 for τD = 3.095, and the method by Vázquez [19]258

with se = 0.839 and sp = 0.806 using a τD = 11.351.259

The final test was done using the remaining 30% of the database (287260

signals never used in previous stages) estimating se and sp at the optimal261

operating points of the three analyzed methods. The sensitivity and speci-262

ficity corresponding to the here proposed method were 0.838 and 0.855 re-263

spectively. In the case of the algorithm by Chiner et al., se and sp were264

0.812 and 0.618 respectively, and the corresponding ones for the method by265

Vazquez were 0.829 and 0.818.266

5. Discussion267

The utilization of pulse oximetry as a sole signal to assist OSAHS di-268

agnosis is still a controversial issue. Collop et al. [16] stated that 1 or 2269

channels (including oximetry) home-unattended studies had wide variance270

of false positives, and that the evidence to support these studies to make a271

diagnosis of OSAHS is insufficient. Analysis of nocturnal oximetry has been272

applied as a potential diagnostic screening tool over the two past decades,273

but the signal interpretation were highly dependent on the physician, and on274

the technical performance. Recently it was demonstrated that, when treated275

with appropriated and sophisticated algorithms, overnight oximetry record-276

ing appears to be a very sensitive and specific screening method of OSAHS277

[17]. Pulse oximetry is accepted as the sole diagnostic evaluation criterion278

in United States, Australia and Sweden [18]. The Apnea Task Group of the279

German Society for Sleep Research and Sleep Medicine (DGSM) has stated280

that pulse oximetry can be employed to attain a tentative diagnosis that281
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requires further evaluation at a sleep laboratory.282

The results of pulse oximetry can be limited by artifacts due to inaccurate283

readings (especially in obese patients), hypotension, and abnormalities in the284

hemoglobin, among several factors. These drawbacks make evident the need285

of signal processing and pattern recognition techniques in order to detect and286

reduce the effects of noise and artifacts. In previous methods based on oxygen287

saturation obtained by pulse oximetry, sensitivity and specificity ranged from288

31 to 98%, and from 41 to 100% respectively, according to [3, 14, 19]. This289

high variability is caused by the differences among the devices, populations,290

and the applied signal processing methods [20]. The results of the here291

presented method overcome the ones of [19, 21], as shown in the previous292

section. Additionally, the database here used (996 patients) is larger than293

those utilized in [19] (241 patients) and [21] (275 patients), which may explain294

the discrepancies among the results of the original references and the obtained295

in our work. Given that our results were obtained using all the methods over296

the same larger database, the proposal of this work clearly outperforms the297

analyzed alternatives. Additionally, the bootstrapping approach allowed us298

to estimate the confidence intervals of the AUC, which was not done in the299

other cases. This is a rigorous methodology which, to our knowledge, was300

not used in this area in previous works.301

As the ROC curves for the proposed approach are above the ones corre-302

sponding to the standard methods in the whole range, this new technique303

produces a better compromise between sensitivity and specificity.304

One limitation of our method, as in all methods based only on desatura-305

tion, is that there is no information regarding the sleep stage of the patient.306
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The number of desaturations associated to apnea by hour of sleep is impos-307

sible to estimate without knowing if the patient is asleep or not. Another308

limitation may be related to the signal quality. As above-mentioned, if the309

signal has artifacts related to movements or disconnections, that segments310

are eliminated prior to the EMD. Thus, for this method to be valuable, the311

signal quality must be assessed and low quality studies should be discarded.312

6. Conclusion313

A new algorithm for SpO2 signal analysis using EMD was proposed. It314

was shown that the information from desaturations was mainly concentrated315

in EMD modes 2-5. Based on this information, a detection algorithm using316

a combination of these modes was proposed. The optimal parameters were317

determined using a balanced training database. This desaturation detector318

was used to produce an ODI that is here used to detect OSAHS. It was319

found that the best alternative was to combine modes 3, 4 and 5. When320

compared AUC over the test database with the two standard algorithms, it321

was seen that the here proposed method outperforms the standard ones, with322

narrower confidence intervals. As future work, we are interested in testing323

more advanced methods for EMD that avoid the problem of mode mixing,324

to improve even more these results. Furthermore, a more balanced database325

would enable a better parameter selection.326
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Figure 2: Oxygen saturation signal and its empirical mode decomposition. (a) Original

SpO2 signal (top) and IMFs 1 to 3. (b) IMFs 4 to 6 and residue.
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Figure 3: Parameter selection using AUC. Diagnostic threshold for AHI=15.
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Figure 4: ROC curve for the proposed method. Diagnostic threshold for reference AHI

= 15. For each curve, the optimal operating point is marked with a circle.
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1 Empirical Mode Decomposition

The empirical mode decomposition is a method that can deal with signals from
nonstationary and nonlinear processes. It is adaptive and with an a posteriori -
defined basis, derived from the data [22]. The procedure of EMD is based on
an algorithm and, unfortunately, the theoretical basis are still incomplete. The
most important hypothesis is that any signal can be assumed as the sum of
slow and fast simple local oscillations. Each one of these simple oscillations,
linear or nonlinear, is assumed as an intrinsic mode of oscillation, known as
intrinsic mode function (IMF), which have the same number of extrema and
zero crossings (or differ at most by one). In addition, the “local mean” of an
IMF, conceived as the mean value of the upper and lower envelopes, is zero.
Each IMF can be expressed as an AM-FM signal and, under certain conditions,
its instantaneous amplitude and frequency can be extracted using the Hilbert
transform.

Given a signal x(t), k = 0, j = 1, and r10(t) = x(t), the algorithm of EMD
can be briefly described as follows:

1. find all extrema (maxima and minima) of rjk(t),

2. define the upper and lower envelopes (emax(t) and emin(t)) by interpola-
tion between maxima and minima of rjk(t), respectively,

3. compute the local mean defined as m(t) = (emax(t) + emin(t)) /2,

4. extract the detail djk+1(t) = rjk(t)−m(t).

5. if djk+1(t) can be considered as zero-mean according to some stopping
criterion, then

• the (k + 1)-th mode is dk+1(t) = djk+1(t), k = k + 1, j = 1,

• the residual is rjk(t) = x(t)−
∑k

i=1 di(t),
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• the procedure continues (go to 1) until all the required modes are
extracted.

else

• the residual is rjk(t) = djk+1(t), j = j + 1,

• steps 1 to 4 must be iterated until the stopping criterion is accom-
plished.

The loop that iterates steps 1 to 4 is known as the sifting process, because
by means of this procedure the k-th mode, dk(t), is refined until it can be
considered as an IMF, that is: i) the number of extrema and zero-crossings is
the same or differ by one and ii) the local mean is zero. This last condition can
not be accomplished in practice, and a stopping criterion must be applied. We
use the criterion proposed in [40]. The authors introduced the mode amplitude
a(t) = (emax(t)− emin(t)) /2 and the evaluation function σ(t) = |m(t)/a(t)|.
According to this criterion, the sifting process is iterated until σ(t) < θ1 for a
fraction (1− α) of the signal length, while σ(t) < θ2 for the remaining fraction.
Typical values for these parameters are: θ1 = 0.05, θ2 = 0.5, and α = 0.05.

The algorithm stops when a new mode can not be extracted, that is, the
number of extrema are not enough for defining the envelopes. Then the signal
x(t) can be written as:

x(t) =

K∑
k=1

dk(t) + r(t), (1)

where r(t) is the final residue and K is the total number of modes. Un-
fortunately, the number of modes is unknown until the algorithm be thor-
oughly finished. In this work the EMD toolbox available as a freeware at
http://perso.ens-lyon.fr/patrick.flandrin/emd.html was used.
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