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Abstract—The pervasive development disorders in autism
condition lead to impairments in language and social commu-
nication. They are evidenced as atypical prosody production,
emotion recognition and apraxia, among others communication
deficits. This work tackle with the problem of the recognition
of pathologies derived from these disorders in children, based
on the acoustic analysis of speech. Specifically, the task consists
of the diagnosis of normality (typically developing children) or
three different pathologies. We propose an evolutionary approach
to the feature selection stage. It relies on the use of genetic
algorithm to find the set of features that optimally represent
the speech data for this classification task. The genetic algorithm
uses a support vector machine in order to evaluate the solutions
(each individual) during the search. The results showed that
our methodology improves the baseline provided for the task.
The obtained unweighted classification accuracy was 54.80%
on the development set, which represents a relative improvement
of 6%, and 55.41% on test set. On the related task of
binary classification between typical versus atypical developing
condition, our approach achieved an unweighted classification
accuracy of 92.66% on the test set.

Index Terms—evolutionary wrapper, speech feature selection,
autism disorders

I. INTRODUCTION

In the last years, there was a big impulse to the study

speech and research of language impairments in individuals

with autism. This pervasive developmental disorder leads to

atypical development of social communication skills such

as unusual or odd-sounding prosody [1], words and content

repetition [2] and impediments to appreciate and produce

emotions [3]. Efforts are now focused on the study of verbal

(and non verbal) behavioral features and language abilities of

children, from three years old to adolescence. At early ages,

the presence and characterization of voice are the strongest

predictors of autism spectrum disorders [4]. Differents aspects

of communication were studied, including childhood apraxia

[5], intonation recognition [6], interpretation and recognition

of prosody [7], proficiency in spontaneous conversations [8]

and vocalization patterns [9], [10].

In this work, we target the problem of detecting the presence

and type of pathology of children speakers. The problem is

divided in two related tasks: a binary ’typicality’ classifi-

cation (typically vs. atypically developing children), and a

four-classes ’diagnosis’ task (typically developing and three

pathologies related to autism). The classes presented are:

• TYP: typically developing children.

• PDD: pervasive development disorder.

• NOS: PDD Non-Otherwise Specified.

• DYS: DYSphasia, a specific language impairment.

The last three items comprise the ’atypically developing chil-

dren’ condition for the binary task.

Here we propose an evolutionary approach to optimize the

selection of acoustic features measured on speech utterances.

In the recent past, many efforts have been invested in the

optimization of feature sets, rather than the development of

more complex classifiers [11], [12], [13], [14].

Our approach relies on a genetic algorithm (GA) for finding

the best combination of features. In order to evaluate the

solutions during the search, the algorithm uses a support vector

machine as classifier. A similar methodology was previously

applied to related tasks: the search for the optimal speech

parameterization for speech recognition through cepstral filter-

banks and wavelet packet decomposition [15], [16], and facial

features for face recognition based on active shape models

[17]. They rely on the benefits provided by evolutionary

computation to find better signal representations.

The organization of this paper is as follows. In Section II,

brief descriptions of the speech corpora and baseline system

are given. Next, our method for the automatic selection of

acoustic features is described. Section III presents the results

along with a discussion about the natural class grouping and

further ideas on classification. Finally, Section IV gives the

general conclusions and outlines future work.

II. MATERIALS AND METHODS

A. Speech data and baseline system

The dataset used consists of three sets of the Child Patho-

logical Speech Database (CPDS): train, development and test
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partition [18]. It provides 2.5 k instances of speech recordings

from 99 children aged 6 to 18 years. 35 of these children show

Pervasive Development Disorders either of autism spectrum

condition (PDD, 10 male, 2 female), specific language im-

pairment such as dysphasia (DYS, 10 male, 3 female) or PDD

Non-Otherwise Specified (NOS, 9 male, 1 female) according

to the DSM-IV criteria [19]. A monolingual control group

consists of 64 further children (TYP, 52 male, 12 female).

The French speech includes prompted sentence imitation of

26 sentences representing different modalities (declarative,

exclamatory, interrogative, and imperative) and four types of

intonations (descending, falling, floating, and rising). Record-

ings were collected in two university departments of child

and adolescent psychiatry, located in Paris, France (Université

Pierre et Marie Curie/Pitié- Salpêtière Hospital and Université

René Descartes/Necker Hospital).

This database contains a total of 6373 acoustic features

calculated with the openSMILE feature extractor [20]. The set

includes energy, spectral, cepstral (MFCC) and voicing related

low-level descriptors (LLDs) as well as a few LLDs including

logarithmic harmonic-to-noise ratio, spectral harmonicity, and

psychoacoustic spectral sharpness [21].

The baseline system provided for both classification tasks

consists of linear kernel Support Vector Machines (SVM)

[18]. The system was trained with the Sequential Minimal

Optimisation algorithm [22].

B. Evolutionary approach

This work presents an evolutionary method, based on evo-

lutionary algorithms, for selecting the best features of speech

[23]. Genetic algorithms are meta-heuristic optimization meth-

ods motivated by the process of natural evolution.

A classic GA consists of three kinds of operators: selection,

variation and replacement. They operate on a population of

individuals, which are represented as chromosomes (possible

solutions) [24]. The selection operator, as in natural evolution,

assigns more chance to reproduce to the fittes individuals in

some task. Variation is carried out by crossover and mutation

of information from different individuals, maintaining the pop-

ulation diversity. The replacement strategy defines the number

of individuals that are substituted in the next generation. Each

individual is assigned a value of fitness, measured by an

objective function which is specific to the given problem. In

each epoch of the learning process, the population is evolved

until a desired criterion is reached. Then, the best individual

in the population is taken as the solution for the problem.

The proposed method uses the 6373 features provided.

Due to the high dimensionality of the data, if each feature

is represented in the chromosome, the evolution process to

find a near optimal solution would be excessively expensive.

Thus, in order to reduce the size of the search space, the

features were selected by groups. This means that each gene

within the chromosome represents a group of features. The

groups of features were defined based on the given hierarchical

structure of the provided labels, which denote the secuence of

processes applied to the signals. In this way, we grouped all the

Fig. 1. Example illustrating the four levels feature groups (L1, L2, L3 and
L4).

TABLE I
EXAMPLE ILUSTRATING THE FEATURE GROUPS AT DIFFERENT LEVELS

(SEE FIGURE 1).

L1 L2 L3 L4

1-4 1-4 1-2 1-1
5-12 5-8 3-4 2-2

9-12 5-8 3-4
9-12 5-8

9-9
10-10
11-12

features that match the first processing stage (MFCC, auditory

spectrum, etc.) in a single gene to define the chromosomes

of level 1 (GAlevel1). Likewise, we defined the chromosome

of level 2 by grouping all the features that match the first

and second processing stages (first derivative of MFCC, etc.).

In addition, we defined the levels 3 and 4 in the same way.

As a result, the length of the chromosomes (according to the

number of groups) is 37 for level 1, 67 for level 2, 975 for

level 3 and 2223 for level 4. Fig. 1 shows an example of the

level grouping in WEKA format (line numbers on left side)

[25], while Table I shows the line numbers of the atributes

selected for each group.

The GA uses the tournament selection and the classic

mutation and one-point crossover operators [26]. Also, an

elitist replacement strategy was applied, which maintains the

best individual to the next generation and accelerates the

convergence of the algorithm. The chromosomes are binary

strings and the value of each gene indicates whether the

corresponding group of features is used for classification or

not.

The fitness function evaluates the unweighted classification

accuracy (UAR) obtained by a SVM. The UAR is defined as

the accuracy per class divided by the number of classes without

considerations of instances per class [27]. A validation set to

evaluate the GA evolution was extracted from the training set

and so, the development set was preserved for evaluating the

system performance after the evolution.

The whole approach, also known as wrapper [28], [29], is
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Fig. 2. Representation of the evolutionary approach proposed for feature
selection.

widely used as it allows to obtain good solutions in comparison

with other techniques [30]. Fig. 2 shows a schematic represen-

tation of the proposed method. It illustrates a representation

optimization by genetic wrapper. The ’Genetic Algorithm’

block performs the operations described before, based on the

results obtained by the ’SVM Classifier’ block on the complete

population. Finally, in the ’Optimised feature set’ block the

individual with the best solution is obtained.

III. EXPERIMENTS AND RESULTS

This section describes the details of the experiments car-

ried out in this framework. We first present the tuning and

evaluation of the system for the diagnosis task, along with a

discussion of the obtained results. Then, the best individual

given by the GA was tested on the test set. Finally, the results

on the typicality task are also presented.

In order to obtain the best performance in the diagnosis

task, four experiments considering the described chromosomes

were done. For each case, the evolution of GA was stopped

after a proper number of iterations and the best performance

was kept for the validation set. The number of feature-

groups selected by the best chromosomes were 20 of 37,

34 of 67, 465 of 975 and 1115 of 2223, for levels 1, 2, 3

and 4 respectively. As result, the actual number of features

considered in these chromosomes were 3886 (arranged in 20

groups), 2311 (arranged in 34 groups), 3835 (arranged in 465

groups) and 3592 (arranged in 1115 groups) for levels 1, 2,

3 and 4 respectively. These chromosomes were then used for

evaluating the system on the development set.

Table II shows, on one side, the best performance reached

for each level on the development set, and on the other side

the results on the test set. The two figures of merit used were

the Accuracy (ACC) calculated as the recognition rate and the

UAR. As can be observed, the results on the development

partition with the optimised feature sets are always better than

baseline for ACC, while GAlevel1 and GAlevel2 improved

also the UAR rate. The chromosome of level 2, which is

the best optimization found for this task, provided a relative

improvement of 6.3% in ACC and 3.1% in UAR, which

demonstrates the good learning performed by the GA. The

test partition was evaluated and the method achieved 78.66%

TABLE II
CLASSIFICATION RESULTS OBTAINED FOR THE DIAGNOSIS TASK (RATES

IN [%]), WITH THE BEST PERFORMANCE IN BOLD FACE.

development partition test partition
ACC UAR ACC UAR

baseline 69.80 51.70 — —
GAlevel1 75.60 54.30 77.68 54.88
GAlevel2 76.10 54.80 78.66 55.41

GAlevel3 73.90 46.20 77.19 51.31
GAlevel4 72.50 45.00 76.95 51.72

TABLE III
RECALL RESULTS FOR DIAGNOSIS TASK ON THE DEVELOPMENT SET

(RATES IN [%]). THE BEST RATES FOR EACH CLASS ARE UNDERLINED.

TYP PDD NOS DYS

baseline 85.45 19.23 50.00 51.92
GAlevel1 92.82 30.77 39.71 53.85
GAlevel2 92.08 33.65 25.00 68.27
GAlevel3 95.95 24.04 23.53 41.35
GAlevel4 94.47 21.15 22.06 42.31

TABLE IV
CONFUSION MATRIX OF BASELINE FOR THE DEVELOPMENT PARTITION.

TYP PDD NOS DYS
TYP 464 44 31 4
PDD 3 20 46 35
NOS 8 16 34 10
DYS 2 33 15 54

for ACC and a 55.41% for UAR, also using the GAlevel2

chromosome. These results, together with the previous ones,

reveal a great generalization ability of our approach.

The Recall rates on the development set, exhibited in

Table III, show that GAlevel2 improves the baseline for all

classes except for NOS class. Tables IV and V introduce

the confusion matrices using the development partition for

baseline and GAlevel2, respectively. These matrices give a

good representation of the results per each class allowing to

make a detailed analysis of performance and to find the main

classification errors. The rows symbolize the actual class labels

and the columns have the predicted labels; therefore, the main

diagonal shows the classes correctly recognized. Comparing

both tables, it can be observed the increment in the number

of well-classified patterns for classes TYP (464 → 500), PDD

(20 → 35) and DYS (54 → 71), and the reduction for class

NOS (34 → 17). This reduction in the performance could be

attributed to the fact that class NOS is the least numerous in the

database, which affect the learning capabilities of the system.

Almost all cases reflect less confusion than baseline except the

increment of cases classified as TYP (numbers in first column

of Table V for classes PDD, NOS and DYS). Nevertheless, it

is important to mention that the length of this chromosome is

only near to 36% (2311 features) of the original size.

The corresponding confusion matrix for test set is presented

in Table VI. As can be seen, some errors arise due to patterns

classified as TYP (gray shaded) and confusions between two

classes: PDD-NOS and PDD-DYS (underlined). These results

could guide the exploration of specific features for different
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TABLE V
CONFUSION MATRIX OF GALEVEL2 FOR THE DEVELOPMENT PARTITION.

TYP PDD NOS DYS
TYP 500 36 0 7
PDD 12 35 25 32
NOS 15 22 17 14
DYS 7 21 5 71

TABLE VI
CONFUSION MATRIX OF GAlevel2 FOR TEST PARTITION.

TYP PDD NOS DYS
TYP 527 9 3 3
PDD 14 42 16 27
NOS 24 25 24 2
DYS 8 43 1 52

TABLE VII
CLASSIFICATION RESULTS FOR TYPICALITY TASK (RATES IN [%]), WITH

THE BEST PERFORMANCE IN BOLD FACE.

development partition test partition
ACC UAR ACC UAR

baseline 92.60 92.80 — —
GAlevel1 92.40 92.30 93.41 91.78
GAlevel2 91.50 92.20 93.66 92.66
GAlevel3 93.30 93.30 93.17 91.68
GAlevel4 91.60 91.20 91.32 90.51

groups of classes in a scheme of hierarchical classifiers struc-

tured from non-supervised clustering [31]. We consider our

results on the development and the test set very encouraging.

This is especially true given the increase in the rates obtained

on the test set with respect to the development set, shown in

Table II.

In the typicality task, the experiments were carried out using

the same optimised chromosomes for the diagnosis task. The

performance reached for the four levels on the development

and test set are presented in Table VII. The best result on the

development set was achieved with the chromosome of level

3, for which the obtained ACC and UAR rate are better than

baseline. For the test set, the best performance was obtained

–as in the diagnosis task– with the same chromosome of level

2. In this case, the ACC and UAR were, respectively, 93.66%

and 92.66%. As can be seen, the results are even better than

those obtained with the development set, which is also pointing

out the good generalization abilities of our system.

IV. CONCLUSIONS

In this paper we presented an evolutionary method for

automatic selection of features of speech in a classification

task. It is based on a genetic algorithm that selects the

best combination of acoustic features using support vector

machines as classifier. The approach is applied to the diagnosis

task of typically developing children or the presence of speech

disorders in autism.

Results showed an unweighted classification accuracy

(UAR) of 54.80% on the development set, which represent

a relative improvement of 6% with respect to the baseline.

On the test set, the UAR obtained was 55.41%. The pro-

posed method optimizes the number of features, reducing the

complexity of the classifiers. Our approach outperform the

baseline system and also results in an improvement of the

generalization capabilities.

The analysis of the confusion matrices suggests further work

in order to find and model natural groupings between classes.

They could lead to the proposal of hierarchical classifiers, with

specialized features and classifiers at each stage.
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