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Short-time multifractal analysis: application to biological 
signals 

Roberto F. Leonarduzzi1, Gastón Schlotthauer1 and María E. Torres1,2 
1Lab. Signals and Nonlinear Dynamics, Faculty of Engineering,  
Universidad Nacional de Entre Ríos, Argentina 

Abstract. Some signals obtained from biological systems evince a great complexity. Recently, 
new tools which allow the extraction of information from them have been proposed. In 
particular, multifractal analysis gives a quantification of the degree and distribution of 
irregularities in a signal. A possible approach for this analysis is the one based on wavelet 
leaders. In this work, the use of wavelet leader based multifractal analysis in short-time 
windows is proposed in order to analyze the evolution of the multifractal behavior of biological 
signals. In particular, applications of this technique to the detection of ischemic episodes in 
heart rate variability signals and to voice activity detection are examined. It is shown that the 
study of the time evolution of indexes obtained with the proposed new method gives useful 
information hidden in the signals. 

1.  Introduction 
Some biological systems show a great complexity. Signals from these systems are generally nonlinear 
and nonstationary, and show complex and irregular fluctuations even under resting conditions. This 
fact defies the traditional concept of homeostasis, according to which healthy biological systems are in 
equilibrium and self-regulated to reduce variability [1]. On the contrary, these systems show erratic 
fluctuations resembling those of systems operating far from equilibrium. Moreover, these fluctuations 
contain hidden information about the control systems operating in this non equilibrium state [2]. 

In the 1990s, tools from statistical physics were first used to cope with this complexity in order to 
extract this hidden information coded in the fluctuations of time series (TS). In particular, the 
multifractal formalism (MFF) allows to study scaling phenomena and long-range correlations in TS, 
providing a quantification of its singularities distribution. A statistical approach based on the 
continuous wavelet transform gave rise to a unified multifractal description [3]. Variants were 
proposed, based on the wavelet transform modulus maxima (WTMM) [4], the discrete wavelet 
transform (DWT) [5] and, more recently, the wavelet leaders (WLs) [6],[7]. 

Multifractal analysis has been successfully applied to the analysis of numerous biological signals: 
DNA sequences [4], heart rate variability [5], EEG [9], human gait [10] and speech [11], amongst 
others. 

In the present work, we propose the application of WLs based multifractal analysis in short-time 
windows in order to analyze the evolution of the multifractal behavior of the signal. The selection of 
the window length is discussed using artificial signals. Two applications of this technique to real 
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biological signals are presented: detection of ischemic episodes in HRV signals and voice activity 
detection (VAD.) 

2.  Materials and methods 
In this section a brief review of the tools used in the present work is given. The definitions of Hölder 
exponent and the singularity spectrum are presented. The WLs and the corresponding multifractal 
formalism are described, following [7]. Finally the short-time multifractal analysis proposed in the 
present work is presented. The signals used for the experiment are described in the last subsection. 

2.1.  Hölder exponent and singularity spectrum 
Given a point 0t ∈  and a real constant 0α ≥ , a function :f →  is said to be 0( )C tα  if there exists 
a constant K > 0 and a polynomial 

0t
P  of degree less than α, such that 

0 0| ( ) ( ) | | |tf t P t C t t α− ≤ − . The 

Hölder exponent hf(t0) of f in t0 is defined as 0 0( ) sup{ : ( )}fh t f C tαα= ∈  [6]. It measures the local 
regularity of f in t0. Small (close to 0) values of the Hölder exponent denote strong and sharp 
singularities, whereas large values denote smooth ones. 

When analyzing a singular almost everywhere signal, it might be useful to know the distribution of 
the singularities with a given Hölder exponent. This information is provided by the singularity (or 
multifractal) spectrum (SS): it measures the amount of singularities with a given Hölder exponent. 
Formally, it is defined as the Hausdorff dimension of the set of points whose Hölder exponent is h: 

{ }H( ) dim : ( )fD h t h t h= ∈ = . 

2.2.  Multifractal formalism 
The determination of the SS of a signal is important to analyze the singularities present in a given 
signal. However, it can not be numerically determined from its definition because of the limitations 
imposed by finite resolution and the sampling of signals [7]. In order to cope with this situation, a 
multifractal formalism (MFF) was introduced. The MFF provides an alternative way to compute the 
SS based on easily computable quantities: the structure functions (SFs). As already mentioned, a new 
MFF, based on WLs, was recently proposed [7]. This approach solves many of the drawbacks of 
previous methods. Its main features are the fact of being based on the DWT, which allows an efficient 
implementation in terms of filter banks, and its numerical stability. 

2.3.  Wavelet leaders 
Let ψ0 be a mother wavelet with compact support and a number N ≥ 1 of vanishing moments. Let 

{ }, 0( ) 2 (2 ), ,j j
j k t t k j kψ ψ− −= − ∈ ∈  be the orthonormal basis of 2 ( )L  formed by templates of ψ0 

dilated by scales 2j and translated to time positions 2jk. The DWT coefficients of f are obtained by 
means of the inner products: 0( , ) ( )2 (2 )d .j j

fd j k f t t k tψ− −= −∫  

A special notation is introduced for dyadic intervals. Let ), 2 , ( 1)2j j
j k k kλ λ ⎡= = +⎣  so that 

( , )fd d j kλ ≡ . Finally, let 3λ be the union of the dyadic interval λ and its two adjacent intervals: 

, , 1 , , 13 j k j k j k j kλ λ λ λ− += ∪ ∪ . 
The WLs are defined as: 

 '
' 3

( , ) sup .fL j k L dλ λ
λ λ⊂

≡ =  (1) 

In other words, the computation of the WLs for a given time and scale involves the search of the 
greatest wavelet coefficient in a narrow time neighborhood, for all finer scales. 

2.4.  Wavelet leader based multifractal formalism 
SFs are computed from WLs: 
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1

1( , ) ( , ) .
jn

q

L f
kj

S q j L j k
n =

= ∑  (2) 

If the signal f shows some form of self-similarity, SFs decay as power laws of the scales. The 
exponents of these power laws are called scaling exponents (SEs): 

 2

0

log ( , )( ) liminf .L
L j

S q jq
j

ς
→

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3) 

In practice, SEs are obtained as the slopes of the linear regressions of SFs vs. scales, in a 
logarithmic graph. 

Finally, the SS can be obtained from the SEs via a Legendre transform (LT): 
 ( )

0
( ) inf 1 ( ) .Lq

D h qh qς
≠

= + −  (4) 

2.5.  Short-time multifractal analysis 
MFA of a signal provides global information concerning its singularities distribution. However, in 
some cases local information is required, e.g. in the detection of transient states that cause changes in 
the singular behavior of signals. With this in mind, in the present work we propose the application of 
MFA in short-time windows to analyze the evolution of the multifractal behavior of signals. Avoiding 
the study of the whole SS, we propose to use multifractal indexes to summarize the information in a 
few coefficients and to analyze their evolutions. 

As first index we propose to use the dominant regularity hmax, which is defined as the Hölder 
exponent for which the spectrum has its maximum: max max( ) ( ),D h D h h h> ∀ ≠ . Small (close to zero) 
values of this index denote signals with predominantly sharp singularities, whereas large values 
correspond to signals that mainly have smooth singularities. 

As second index we consider the spectrum's width at 80% of its height, W80. It measures the 
multifractality of the signal. Given 1 max 2h h h< <  such that 1 max( ) 0,8 ( )D h D h= , 1 maxh h< , and 

2 max( ) 0,8 ( )D h D h= , 2 maxh h> , then  80 2 1W h h= − . This last index measures the local regularity 
distribution. Large values reflect that the signal has singularities of very different Hölder exponent 
(wide spectrum). Small values reflect signals with singularities that have similar Hölder exponents 
(narrow spectrum). When all the singularities of a signal have the same Hölder exponent, the SEs is a 
line with slope equal to this Hölder exponent and the SS is a point. These kinds of signals are called 
monofractals. 

With these two indexes, we propose to perform a short-time multifractal analysis, meaning to 
compute each index in a sliding window applied to the signal. The values obtained in each window are 
assigned to its middle point. 

2.6.  Signals and databases 
We have considered a synthetic signal and two types of real signals: RR time series and speech 
signals. 

In order to analyze the influence of the window length, artificial signals formed by the 
concatenation of three segments of fractional Brownian motion (fBm) with different Hurst parameters 
were used: s=(s1|s2|s3). fBm is monofractal: it is singular in almost every point and all singularities 
have the same Hölder exponent, which is equal to the Hurst parameter [7]. Segments s1 and s3 
consisted in 218 samples of fBm with  the same Hurst parameter H1. Segment s2 consisted in 219 
samples of fBm with Hurst parameter H2 (figure 1.a.) Different combinations of H1 and H2 and 100 
realizations of each combination were analyzed. 

For the analysis of HRV, the European ST-T database (ESDB) [12] was used. It comprises two-
channel ECG records, two hours long each, of patients suffering from myocardial ischemia. Each 
record contains at least one ischemic episode. Records are digitized with a sampling frequency of 250 
Hz. For each record, the ESDB has one annotations file with information provided by experts. It 
includes the position of each beat, the beginning and end of each ischemic episode (obtained from the 
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deviation of the ST segment and T wave of the ECG) and the characteristics of each beat (normal, 
ectopic, noisy, etc). 

From the annotations file, RR interval series were obtained considering the difference between two 
consecutive beats. All intervals corresponding to abnormal beats were eliminated. This procedure 
prevents the inclusion of artifacts, avoiding in this way the need of a filtering stage. Finally, the signals 
were uniformly interpolated with cubic splines and a sampling frequency of 4 Hz, given that an 
uniformly sampled signal is required for the DWT computation. 

For the study of voice activity detection, the database BEPPA [13] was used. This database 
comprises a set of words and sentences of argentinean Spanish. Records are digitalized with a 
sampling frequency of 48 kHz. In this preliminary work, only the subset of monosyllabic words 
MW02 was used. This list comprises 10 monosyllabic words. 

3.  Results 

3.1.  Influence of window´s length 
In order to study the influence of the window´s length, we consider the synthetic signals described in 
Sec. 2.6.  Given that the signal to be analyzed is a concatenation of monofractals, almost constant 
values of hmax, close to the corresponding Hurst parameter, and small values of W80 are expected for 
each of the time segments corresponding to the concatenated signals. 

Figure 1 shows one realization, with H1=0.3 and H2=0.7 (a), and the evolutions of the multifractal 
indexes for two window lengths: 215 samples (b-c) and 211 samples (d-e). 

 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
−2

0

2

s

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0.5

1

h
m

a
x

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0.5

1

W
8
0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0.5
1

1.5

h
m

a
x

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0.5
1

1.5

t (UA)

W
8
0

c)

b)

a)

d)

e)

 

Figure 1. One realization of the artificial signals described in section 2.6, with 
H1=0.3 and H2=0.7 (a) and time evolutions of hmax and W80 for window´s 
lengths of 215 samples (b-c) and 211 samples (d-e). 

 
It can be appreciated that when the window length is large (215 samples), hmax assumes values close 

to the expected value. On the contrary, when a small window (211 samples) is used, the evolution 
shows wider fluctuations around it. A similar phenomenon can be observed in the evolutions of W80. 
This loss of precision when a small window is used is due to the fact that the number of samples limits 
the number of scales that can be obtained to perform the DWT. On one hand, this causes a loss of 
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precision in the estimation of the WLs, which requires the search of the largest wavelet coefficient in a 
wide range of scales. On the other hand, the range of scales over which the linear regressions are 
performed to obtain the SEs from the SFs is also reduced, causing an additional loss of precision. 

The means and standard deviations (std), for both window´s lengths considered and 100 
realizations of segments s1 and s2, are shown in figure 2 (a) and (b), respectively. Points corresponding 
to windows of 215 and 211 samples are shown in black and gray, respectively. Dots and crosses are 
used for segments with Hurst parameter H1 and H2, respectively. It can be seen that the mean of hmax is 
close to the Hurst parameter of the segment for both window sizes, while the std is larger when using 
the short windows. Similar results have been obtained in a more extensive study performed by the 
authors, using different values of H1 and H2 [14]. These experiments illustrate the loss of precision in 
the estimation of the multifractal indexes when using short windows. 
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Figure 2. Mean vs. std of indexes hmax (a) and W80 (b) for 100 realizations of the 
artificial signals described in the text. Dots: segments with Hurst parameter H1. 
Crosses: segments with Hurst parameter H2. Black: 215 samples long window. 
Gray: 211 samples long window. 

 
The use of short windows allows for a better temporal resolution. This can be seen clearly in figure 

1 (c) and (e), for the index W80. The transitions between segments cause A80 to show large values on a 
narrow region when the narrow window is used (c,) and on a wide one when the large window is used 
(e). 

These experiments suggest that the window length is a parameter that should be chosen carefully 
and as a tradeoff between temporal resolution and accuracy in the estimation of the SS. 

3.2.  Analysis of ischemic episodes 
It was shown in [8] that multifractal analysis of HRV conveys useful information concerning the 
dynamic changes that take place during myocardial ischemia. The SEs and SS corresponding to a 
normal zone and an ischemic zone of record e0154 of the ESDB are shown in figure 3 (a) and (b), 
respectively. It can be seen that, in the presence of ischemia, the SS becomes wider and the 
predominant regularity hmax moves to higher values (singularities become smoother). This information 
can also be seen in the SEs. Indeed, the SEs corresponding to the ischemic zone shows a greater 
curvature and its least square approximation line shows a larger slope (smoother predominant local 
regularity) than those of the normal zone. 
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Figure 3. Scaling exponents ( )L qς  (a) and singularity spectrum ( )D h  (b) 
corresponding to a normal zone (gray circles) and an ischemic zone (black 
crosses). Also, the indexes hmax and W80 are illustrated. 

 
 
In the short-time analysis of RR signals, 211 samples (512 s) long windows and 128 samples time 

shifts were used. Figure 4 shows a RR signal, with an ischemic episode indicated by vertical gray lines 
(a), and the time evolutions of hmax (b) and W80 (c). It can be appreciated that, when approaching the 
ischemic zone, both indices show a sharp rise and that after the episode they move down to values 
similar to those obtained before the ischemic episode. While analyzing these evolutions, it must be 
taken into consideration that myocardial ischemia entails a series of alterations in which metabolic 
changes precede hemodynamic changes, which in turn precede electrocardiographic changes. As a 
consequence, the ischemic episode is reflected in the RR signal beyond the bounds indicated by the 
marks obtained from the ECG. 
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Figure 4. RR signal (a) with an ischemic episode indicated 
by vertical gray lines and the windowed time evolutions of 
hmax (b) and W80 (c). 

 

3.3.  Voice activity detection 
A fractal analysis of speech signals was proposed in [11] with the objective of obtaining useful 
information for voice activity detection and phoneme recognition applications. This analysis was 
justified by turbulence phenomena in the air flow during speech production and other nonlinear 
dynamics of the human vocal-tract system. This work was based on the concept of fractal dimension, 
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which characterizes the complexity and irregularity of a signal using, unlike multifractal analysis, only 
one index. 

This approach is extended in the present work to a multifractal analysis applied to VAD. The 
hypothesis that the regularity of voice signals is different than the one corresponding to the 
background noise is assumed. 

A short-time multifractal analysis was performed, using 211 samples (43 s) long windows and 256 
samples time shifts. 

As a comparison, the time evolution of the zero-crossing rate (ZC), a standard index in VAD, was 
computed. The same window size and time shift than in the multifractal approach were used. 

Figure 5 shows the sonogram of the Spanish word “flan” [flán] (a) and the time evolutions of the 
multifractal indexes and ZC (b-d). The evolutions of the multifractal indexes are shown in semi-log 
graphs to highlight structures that take place when the indexes’ values are small. It can be seen that 
hmax has a similar behavior than ZC, whereas W80 fails to properly detect the final portion of the word. 
If the interval between 0.3 s and 0.5 s, corresponding to the non-sonorant fricative phoneme /f/, is 
carefully examined, it can be observed that in figure 5 (d) ZC fails to recognize this phoneme whereas 
figure 5 (b-c) indicate that both multifractal indexes display a small rise in this region . On the other 
hand, both hmax and W80 show a small peak around 0.3 s (indicated by the circles and arrows in figure 
5, (b-c)), which is coincident with the beginning of the phoneme. During all the phoneme’s length, W80 
remains with a value slightly larger than the one corresponding to the noise that preceeds it.. 
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Figure 5. Sonogram of the Spanish word “flan” (a), with a manual 
segmentation performed by the authors indicated by vertical gray lines, and 
windowed time evolutions of indexes hmax, W80 (in a semi-log graph) and the 
zero-crossing rate ZC (b, c and d, respectively). 

 
 
These experiments suggest that the joint use of the proposed multifractal indexes might provide 

proper voice activity detection, even for the fricative phonemes where the zero-crossing rate is similar 
to the one of the background noise. This is an observation that should be taken into consideration in 
VAD in Spanish language, given the importance of this type of phonemes in this language. 

4.  Conclusions 
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In the present work we have proposed to use multifractal analysis based in wavelet leaders, in short-
time sliding windows to analyze biological signals. The application of this technique to two different 
kinds of real biological signals was examined. Results suggest that the study of the windowed time 
evolution of indexes derived from the SS is useful for the detection of transient alterations that cause 
changes in the regularity of the signal. 

The effect of the window´s lenght has been discussed with synthetic signals. . This parameter 
should always be chosen carefully as a tradeoff between temporal resolution and accuracy in the 
estimation of the SS. 
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