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Abstract—The wavelet transform is a consolidated tool for
signal analysis. However, it has limitations for processing on-
line and long duration signals. In this paper we applied three
alternatives for on-line processing based in the wavelet transform
which are suitable for biomedical signals. The methods for on-
line wavelet processing was compared with the off-line DWT as
baseline reference. The output for each methods was analyzed
in detail by using the mean square error and the normalized
maximum amplitude error. We concluded that the best perfor-
mance is obtain with Hamming windows and overlap-and-add
for reconstruction. As an application example, we show good
results for the on-line processing of ECG signals.

Index Terms—DWT, reconstruction error, on-line processing.

I. INTRODUCTION

Wavelets have been used in different areas of biomedical
signal processing such as feature extraction, compression and
noise removal [1]. This tool differ from traditional Fourier
analysis in that it localize the information in the time-scale
plane, and this is useful for the study of nonstationary signals.

Researchers have used wavelets for the analysis of ECG
[2], EEG [3], evoked potentials [4], gastrointestinal movement
[5], speech [6] signals, and noise reduction, enhancement
and detection of diseases in biomedical images [7]. Moreover
signal compression with wavelet is important for applications
in telemedicine [8].

Traditionally the wavelet transform (WT) has been used for
off-line signal analysis and processing. This is an important
limitation for long duration signals or for applications that
require real time processing. In this work some methods which
are classical signal processing are adapted, to overcame this
limitation in the wavelet transform. The proposed methods
are windowing with: overlap-and-add, padding with zeros and
overlap-and-save, the first one was adapted from the STFT and
the rest were adapted from long term filtering.

In the next sections we will detail the methods, first intro-
ducing some generalities about wavelet transforms and then
presenting the windowing and the reconstruction methods.
Next, we compare those methods with respect to the off-line
wavelet processing for the whole signal using the mean square
error and the normalized maximum amplitude error. As an

example application, the methods which produced best results
was used for baseline wander removal of the ECG. A final
section presents conclusions of the work.

II. METHODS

A. Dyadic Wavelet Transform

In this section we will introduce some generalities about
wavelet transform. The WT is a time-scale representation that
decompose a signal x into a basis of time and scale functions
which are dilated and translated versions of a basic function
ψ which is called mother wavelet [9]. A dyadic wavelet
transform is generated from a dyadic translation and dilatation
of the mother function

ψ j,k[m] =
1
2 j ψ

[
m− k

2 j

]
, (1)

where j is the decomposition level and k the translation.
A discrete dyadic WT (DWT) can be designed and imple-

mented as a filter bank [9]. In this case one never has to
deal directly with the wavelet, only the coefficients of the
associated filters are needed. A highpass filter ḡ give the detail
coefficients d, and a lowpass filter h̄ give the approximation
coefficients a. This operation can also be written in matrix
form, using a matrix operator W that implements the filtering
and subsampling at each scale:

w = Wx,

where w represent the DWT coefficients vector.

B. Windowing with overlap and add

The first method for short time analysis and synthesis is
called windowing with overlap and add (WOAA). Suppose we
have a digital signal x and its windowed and shifted version
given by

xτ [m] = φ [m]x[m+ τNs], (2)

where φ [m] is a window (e.g. Hamming, boxcar, etc.) of length
Nw, and Ns is the frame shifting for the analysis. Consider the
DWT of a signal as an orthonormal transform. Let {w[n] : n =
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Fig. 1. Diagram of the algorithm

0,1, ...,N − 1} represent the DWT coefficients, we can write
wτ = Wxτ , where W is a Nw×Nw matrix defining the DWT.

After applying this transform to each of the frames of
our windowed signal, some processing in the wavelet domain
can be applied. The processing (Fig. 1) can be, for example,
a simple thresholding operation to eliminate some noise or
zeroing the coefficients associated with some scale. After
processing, we apply an inverse discrete wavelet transform
(IDWT) zτ = WT wτ to each frame, to obtain the processed
windowed signal. Using each reconstructed frame we use the
overlap-and-add method [10] to resynthesize the signal,

z∗[m] =
L−1

∑
τ=0

zτ [m− τNs]

=
L−1

∑
τ=0

φ [m− τNs]z[m− τNs + τNs]

= z[m]
L−1

∑
τ=0

φ [m− τNs]

= z[m]Φ[m],

(3)

where z∗[m] denotes the sum of all reconstructed frames and
Φ[m] the shifted sum of the windows. From (3) the signal can

be reconstructed as z[m] =
z∗[m]
Φ[m]

.

In this way, the signal can be processed frame by frame,
which is a suitable method for on-line processing of long data,
where a buffer is filled until the required number of samples
are acquired, and then processed, without the need of waiting
for full acquisition before starting the analysis.

C. Windowing with overlap and save
The method of windowing with overlap and save (WOAS)

consist in adding M − 1 zeros at the begging of the signal,
and a boxcar window of length Nw was used to segment
the signal, where M is the length of the wavelet filter. This
block is transformed with the DWT and processed. The next
block overlap the previous block in M− 1 samples. For the
reconstruction the IDWT is used, discarding the M − 1 first
samples of each block and save the rest as Fig. 2 show.

D. Windowing and padding with zeros
The third proposed method is the windowing and padding

with zeros (WPZ). The signal is segmented with a boxcar
window of length Nw, without overlap. Then a block of Nw
zeros is added at the end of each segment

x1 = {x[0], ...,x[Nw−1],0, ...,0}

Fig. 2. Diagram of the algorithm windowing with overlap and save

...

x j = {x[( j−1)Nw], ...,x[ jNw−1],0, ...,0}.

The DWT is applied to each x j and in the wavelet domain
the signal can be processed. Note that x j has length of 2Nw.
For the reconstruction the IDWT is used to obtain z j. The last
part of z j of length Nw, which correspond to the transform of
the zero pads, is added to the first part of z j+1 of Nw samples
to reduce borders effects.

III. COMPARATIVE STUDY

The experiments consist of transforming a signal using
either of the windowing methods, applying some processing
to the wavelet coefficients, and reconstructing the signal using
the corresponding reconstruction method. Also, the signal is
analyzed using the standard off-line method for the wavelet
transform of the whole signal using the same decomposition
level. The same processing of the wavelet coefficient is ap-
plied, and the signal is reconstructed by an IDWT. Then a error
measure is applied to quantify the difference of the signals
processed by the three short-time methods with respect to the
signal processed by the standard DWT.

Two error measurement were used: the mean square error,

eMSE = 1
P

P

∑
m=1

(s[m]− s[m])2, which gives an idea of the error

in all the signal, and the normalized maximum amplitude error
[11]

eNMAE =
max(s− s)

max(s)−min(s)
, (4)

which emphasize the maximum peak of the error instead of
average error over all signal. In both definitions, s is the
reference data and s is the processed data.

A first experiment was the analysis of the errors by transfor-
mation and reconstruction of a signal, without any processing
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Fig. 3. An extract of Block signal processed by zeroing the detail coefficient
at the first scale by both the off-line DWT in solid line and by WPZ in circles
with mother wavelet Daubechies 8. In dotted we observed the step of the
moving window, and in the circle in dash dot the border effect.

TABLE I
ERROR BETWEEN THE CLASSICAL OFF-LINE DWT PROCESSING WITH

RESPECT THE METHODS ANALYZED WITH MOTHER WAVELET
DAUBECHIES 8 AND ZEROING THE APPROXIMATION COEFFICIENT IN

WAVELET DOMAIN AT LEVEL 8

Blocks Doppler
eMSE eNMAE eMSE eNMAE

WOAA Hamming, Ns = 32 0.2743 0.1392 0.0049 0.1066
WOAA Boxcar, Ns = Nw 0.5359 0.2104 0.0271 0.3448
WOAA Boxcar, Ns = 32 0.2329 0.1189 0.0067 0.1095
WZP 0.1923 0.2647 0.0109 0.2202
WOAS 0.2712 0.1277 0.0151 0.3050

in the wavelet domain. The eNMAE and eMSE are in the order
of 10−12 and 10−23 respectively, showing that all methods
are suitables for reconstruction. The problem is when some
modification is applied in the wavelet domain, as an example
we can see in Fig. 3, an extract of the Blocks signal [12]
processed by zeroing the detail coefficients at the first scale
to eliminate the high frequency contents, by both the off-line
DWT is in solid line and by WPZ in points. In solid gray we
observed the step of the moving window, where we observed
a pseudo-gibbs phenomena introduced by the border of the
processing window.

Next, the reconstruction of the three methods described in
previous sections is compared. For the WOAA method nine
different sets of parameters were used:

• Hamming window with steps of 32, 64, 128 and 256
samples

• Boxcar window with steps of 32, 64, 128 and 256 samples
• Boxcar window without overlap.

We compared those methods with the eNMAE and eMSE , by
zeroing the approximation coefficients at scale 8 and the
details coefficients at scale 1 in wavelet domain with mother
wavelet Daubechies 8, and we concluded that the methods
with steps of 32 samples had the best performance, so we use
those for the following comparison.

In Tables I and II we compare the methods for the on-
line processing, where we zeroed the approximation and detail

TABLE II
ERROR BETWEEN THE CLASSICAL OFF-LINE DWT PROCESSING WITH

RESPECT THE METHODS ANALYZED WITH MOTHER WAVELET
DAUBECHIES 8 AND ZEROING THE DETAIL COEFFICIENT IN WAVELET

DOMAIN AT DECOMPOSITION LEVEL 1

Blocks Doppler
eMSE eNMAE eMSE eNMAE

WOAA Hamming, Ns = 32 4.76x10−5 0.0062 7.11x10−7 0.0059
WOAA Boxcar, Ns = Nw 0.0142 0.2062 0.0003 0.2444
WOAA Boxcar, Ns = 32 0.0021 0.0417 3.23x10−5 0.0399
WZP 0.0048 0.1314 6.52x10−5 0.1267
WOAS 0.0076 0.1815 2.70x10−5 0.1110

TABLE III
COMPARISON BETWEEN THE WOAA AND THE SYMMETRIC PADDING

WITH MOTHER WAVELET SYMLET 4 AND ZEROING THE APPROXIMATION
COEFFICIENT IN WAVELET DOMAIN AT LEVEL 8

Blocks Doppler
eMSE eNMAE eMSE eNMAE MT (ms)

WOAA Hamming, Ns = 32 0.198 0.150 0.007 0.166 0.1
Symm. pad, spin=0 0.414 0.234 0.065 0.454 4.5
Symm. pad, spin=16 0.414 0.234 0.065 0.454 66.7

coefficient respectively, with the eMSE and the eNMAE using
as reference data s the off-line DWT processing with mother
wavelet Daubechies 8. In those Tables we used two different
signals proposed by Donoho [12]: Blocks and Doppler, which
are typical test signals. We are interested at the border effect
between middle blocks of the signal and we do not study the
border effect at the first and last window, which will always
show large distortions due to the circular convolutions involved
in the DWT calculation, so those windows are ignored for
the error measures. More over, we compare at first with
eNMAE because we are interested in eliminate the pseudo-gibbs
phenomena at the border of the windows, then we compare
with the eMSE .

Tables I and II, show that the WOAA with Hamming
window and Ns = 32 have the minimum eNMAE for all cases,
except in Table I where the Hamming window adds noise to
the Blocks signal because the bandwidth of this window is
larger than that of the boxcar window.

At last, in Table III, we compare the WOAA with Hamming
window and Ns = 32 with a method for on-line processing
with mother wavelet Symlet 4, with no spin and 16 spin shift,
symmetric padding proposed in [13]. We used the eMSE , eNMAE
and mean time for computing a sample (MT ) for the analysis.
We observed that the WOAA Hamming window method is
better and faster.

IV. APPLICATION TO REAL DATA

As an application example, we have used the tool ECGsyn
from the ECGtoolkit of physionet1 to produce a realistic ECG
signal sampled at 256Hz, but we modified the method to

1http://www.physionet.org/
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Fig. 4. a) ECG synthetic, b) ECG plus sine noise, c) Clean ECG by WOAA
with hamming window, Ns = 32 and mother wavelet Symlet 4.

generate a signal without baseline wander. Thus we have
a simulated ECG without changes in baseline, that will be
our desired target signal. After that, a pure sine noise of
low frequency (0.25 Hz) was added simulating the chest
move noise relative to the respiration. Figure 4 shows the
synthetic ECG, the ECG plus sine noise and the filtered ECG
with WOAA method with the wavelet Symlet 4 at scale 8
and zeroing the approximation coefficient to obtain a cutoff
frequency of approximately 0.5 Hz [14].

We have applied the method WOAA with hamming window
and Ns = 32 to eliminate the baseline wander with mother
wavelet Daubechies 8 and Symlet 4. There is no difference in
errors between the original signal and the filtered one between
Symlets 4 and Daubechies 8, but the first one has shorter filters
and thus is faster than the second one.

As an application on real signals, a segment of the signal
111 of the MIT-BIH Arrhythmia Database was analyzed (see
Fig 5), with the WOAA with Hamming window and Ns = 32,
with a Symlet 4 at scale 8, and the approximation coefficient
were fixed to zero to eliminate the baseline wander.

V. CONCLUSION

In this paper, three methods for on-line processing were
adapted and tested for on-line wavelet denoising with applica-
tion to ECG. However, the circular convolution of the DWT
produce pseudo-gibb noise in the reconstructed signal. This ar-
tifact was analyzed in terms of objective measurement (eNMAE
and eMSE ). From the comparative study, it can be concluded
that the WOAA with Hamming window and Ns = 32 has the
best performance. This window reduce the error because is
smoother in the borders than the other windows methods,
which could had discontinuities at the border

This method proposed shows good performance on real data
application of the elimination of the baseline wander of ECG.
As this DWT can be efficiently implemented, allows to use
wavelet processing in embedded systems which usually have
small storage capabilities and need numerically efficient tools.
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Fig. 5. a) ECG 111 of MIT-BIH with baseline wander b) ECG 111 after the
proposed filter
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