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Abstract1

In this work we propose a novel method to analyze and recognize automatically2

sound signals of chewing and biting. For the automatic segmentation and classi-3

fication of acoustical ingestive behaviour of sheep the method use an appropriate4

acoustic representation and statistical modelling based on hidden Markov models.5

We analyzed 1813 seconds of chewing data from four sheep eating two different for-6

ages typically found in grazing production systems, orchardgrass and alfalfa, each7

at two sward heights. Because identification of species consumed when in mixed8

swards is a key issue in grazing science, we tested the possibility to discriminate9

species and sward height by using the proposed approach. Signals were correctly10

classified by forage and sward height in 67% of the cases, whereas forage was cor-11

rectly identified 84% of the time. The results showed an overall performance of 82%12

for the recognition of chewing events.13

Key words: Acoustic modeling; Hidden Markov models; Grazing sheep; Ingestive14

behaviour.15

1 Introduction16

Accurate measurement of feeding behavior are essential for a reliable manage-17

ment and investigation of grazing ruminants. An indication of animal health18

and welfare can be obtained by monitoring grazing and rumination activities,19

because ruminants have a daily chewing requirement to maintain a healthy20

rumen environment.21

∗ Corresponding author.
Email address: d.milone@ieee.org (D. H. Milone).
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Grazing ruminants spend a large part of their lives biting (grasping and sev-22

ering the herbage in the field) and chewing (grinding of the herbage inside23

the mouth). They expend quite a lot of energy in eating behavior. When con-24

suming high quality roughage, roughly 10% of the energy content of the feed25

is consumed in the eating process. On low quality feed, such as wheat straw,26

that figure jumps to about 25% of energy content (Susenbeth et al., 1998).27

Other methods for chewing behavior studies rely on direct observation or on28

the use of switches and jaw strap adjustment (Stobbs and Cowper, 1972; Pen-29

ning, 1983; Matsui and Okubo, 1991; Rutter et al., 1997). Direct observation30

is costly and frequently infeasible. Both direct observation and methods based31

on jaw movements cannot detect the overlap between chewing and biting.32

Acoustic biotelemetry has been proposed for animal behavior studies because33

of the rich information contained in sounds (Alkon et al., 1989) and because34

sound can be recorded and collected without affecting animal behaviour (Laca35

et al., 1992; Klein et al., 1994; Nelson et al., 2005).36

Acoustic analysis has been proved useful to discriminate a combined chew-bite37

during a single jaw movement (Laca et al., 1994), to identify some spectral38

differences of biting and chewing in cattle and it was shown to be a promis-39

ing method to estimate voluntary intake in different types of feed (Laca and40

Wallis DeVries, 2000; Galli et al., 2006).41

Nevertheless, this method requires further research and development to doc-42

ument the potential of acoustic monitoring of ingestive behavior of animals43

to yield a consistent automatic decoding of chewing sounds in a variety of44

conditions. Although discrimination of eating (Nelson et al., 2005; Ungar and45

Rutter, 2006) and ruminating (Cangiano et al., 2006) sounds appears to be46
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accurate, in the past, sound records have been analyzed manually which is47

an arduous task. A system for automatic processing and recognition of sound48

signals is needed to refine and speed up the method.49

Automatic speech recognition (ASR) has been an active field of research in50

the past two decades (Huang et al., 2001). The main blocks of a speech recog-51

nizer are: speech signal analysis, acoustic and language modeling. Statistical52

methods such as hidden Markov models (HMM) have performed well in ASR53

(Rabiner and Juang, 1986). It is likely that the methods and technologies de-54

veloped for ASR will be applicable to the analysis of sounds produced by the55

ingestive behaviour of ruminants. Recently, this type of tools has been used56

to study and characterize vocal sounds generated by vocalizations of other57

animals such as red deer (Reby et al., 2006). The objective of our research58

was to propose a novel method, based on an appropriate signal representation59

and HMM, to allow the automatic segmentation and classification of bites and60

chews in sheep grazing a variety of pastures.61

The general structure of the proposed system resembles to that of a speech62

recognition system, where phoneme models are replaced by masticatory sub-63

events and word models by complete events (such as a chew, bite or combined64

chew-bite event). As in the speech case, the language model (LM) captures65

the long-term dependencies and constrains the possible sequences.66

This paper was organized as follows. In the next section a brief introduction67

to hidden Markov models is provided. In Section 3, the sound registration68

procedure and the data employed for the experiments are presented. Then69

the statistical model of the acoustic signal is developed and the measures for70

evaluating its performance were presented. Next, the results of the proposed71
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Figure 1. A discrete hidden Markov model with 2 states and 3 output symbols: aij

are the transition probabilities and bi(k) is the probability of emitting the symbol
ok in state i.

experiments are presented and discussed. Finally the conclusions and sugges-72

tions for future work are posed.73

2 Hidden Markov models74

In this section we will introduce the main concepts behind hidden Markov75

models, through a simple numerical example. Suppose we want to model se-76

quences of discrete symbols X = x1, x2, . . . xT , where xt ∈ O, the set of possible77

symbols, and t ∈ N stands for the time order in the sequence. For example,78

with the symbols set O = {�,⊕,�} we can think of the graph of Figure 179

as a generative model for sequences like X. This is an instance of a discrete80

hidden Markov model (DHMM), with only 2 states (Q = {1, 2}), and the 381

symbols as the possible outputs. In a Markov chain, given present state qt, the82

next state qt+1 is independent of the past states qt−1, qt−2, . . . , q1. Therefore,83

the transitions between states can be defined with the matrix of probabil-84

ities A = [aij = Pr (qt+1 = j|qt = i)], where i, j ∈ Q. For the generation of85

sequences, each state i is related to the symbols ok by an emission distribu-86

tion bi(k) = Pr (x = ok|q = i). Using all these components, the DHMM can be87

defined with the structure Θ = {O,Q, A,B}.88
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Consider the model Θ with the following probabilities:89

A =


9
10

1
10

0 1

 B =


1
10

1
10

4
5

9
10

1
20

1
20

 ,

where B is the emissions matrix, that specifies the probability of observing90

each symbol in the actual state. Given the output sequence X = ⊕,�,�,�, we91

now ask for the probability of X given that the model is fully specified. Since92

we do not know the sequence of states that generated this output sequence,93

we say that the model is hidden, and the states are often referred as latent94

variables of the model. Thus, to compute the probability of X given the model95

Θ, we need to consider all the possible sequences of states and sum up over96

all the cases (that is, the total probability formula).97

The model in Figure 1 is known as a left-to-right HMM, because there are only98

forward links and self loops (notice that a21 = 0). In this example, the first99

state in a sequence will always be the state 1, known as initial state. Similarly,100

state 2 is the terminal state and all the sequences of states should end with101

this state. Thus, once the terminal state is reached, the model must observe102

all the remaining symbols in the same state (that is, a22 = 1). For a sequence103

of four symbols, all the possible sequences of states are: q1 = 1→1→1→2,104

q2 = 1→1→2→2, and q3 = 1→2→2→2. In the first sequence of transitions we105

have: the emission of symbol ⊕ in state q1 = 1, b1(2) = 1
10

; the transition from106

the first state to itself at time 2, a11 = 9
10

; the emission of symbol �, b1(3) = 4
5
;107

the second transition a11 = 9
10

; the emission of symbol �, b1(1) = 1
10

; the third108

transition, now from state 1 to state 2, a12 = 1
10

; and the last emission, of109
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symbol � in state q4 = 2, b2(1) = 9
10

. By using all these probabilities we can110

obtain Pr(X|q1) = 1
10

9
10

4
5

9
10

1
10

1
10

9
10
≈ 0.0006. Similarly, we get Pr(X|q2) ≈111

0.006 and Pr(X|q3) ≈ 0.0004. Then, the probability of the emission sequence112

given the model is Pr(X) = Pr(X|q1) + Pr(X|q2) + Pr(X|q3) ≈ 0.007.113

For the classification tasks we build an HMM for each event to be recognized114

and then, given an emission sequence of unknown class, we classify it as that115

corresponding to the most probable model. As it can be seen in the previous116

example, the probability of the most probable sequence of states is a good117

approximation to the total probability.118

The training or parameter estimation problem remains unaddressed. That is,119

given a set of sequences of emissions, we are looking for the model probabilities120

A and B that best fit the data. An intuitive process can be: obtain the best121

sequences of states for each sequence of emissions and then count the number of122

transition between states. Thus, probabilities in A can be approximated by the123

relative frequencies of transitions. In the same way, by counting the times that124

each state emit a symbol, we can estimate the emission probabilities in B. This125

algorithm is known as the forced-alignment training and it is based in the fast126

algorithm proposed by Viterbi (1967). A more complete estimation that uses127

all the sequences of states (weighted by its probabilities) can be done with the128

Baum-Welch training method. The forward-backward algorithm provides an129

efficient way to compute the probabilities for all the sequences and reestimates130

the parameters in an acceptable processing time for real applications (Huang131

et al., 1990).132

In the case of the acoustic modeling, the sequences of symbols are indeed133

sequences of spectra. Acoustic models of sounds have evolved from vector134
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quantization with DHMM to more direct models of spectral information with135

continuous observation density hidden Markov models (CHMM). In the former136

systems, acoustic features are mapped to a finite set of discrete elements, that137

is, the outputs of a vector quantizer (Gray, 1984). Thus, it was possible to use138

DHMM to model sequences of spectral representations. However, in CHMM139

it is possible to model continuous observation densities in the HMM itself –140

instead of vector quantization, taking advantage of modeling selected features141

through Gaussian mixtures (Rabiner and Juang, 1993). To train these mod-142

els, Liporace (1982) defined the auxiliary function to use in the expectation-143

maximization (EM) algorithm. He proved that using Gaussian mixtures in the144

HMM states, this auxiliary function has a unique global maximum as function145

of the model parameters. The Baum-Welch training uses this EM algorithm146

and can reach the global maximum given that, as proved in the same work,147

the sequence of reestimates obtained in produce a monotonic increase in the148

likelihood of the data given the model.149

3 Materials and methods150

3.1 Sound registration151

Acoustic signals were obtained from a grazing experiment performed at Uni-152

versity of California, Davis. The experiment consisted of a factorial of two153

forages and two plant heights grazed by sheep. The forages were orchardgrass154

(Dactylis glomerata) and alfalfa (Medicago sativa) in a vegetative state. Al-155

falfa and orchardgrass were offered in two plant heights, tall (not defoliated,156

29.8 ± 0.79 cm) and short (clipped with scissors to approximately 1/2 the157
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height of the tall treatment, 14.1 ± 0.79 cm). Pots were firmly attached to a158

heavy wooden board that held them in place when grazed. We used four tame159

crossbreed ewes that were 2-4 years old and weighed 85± 6.0 kg.160

The order of all combinations of species, plant height and ewe was randomized,161

and each day (between 12 and 16 h) 8-9 of these combinations (sessions) were162

observed during six consecutive days. Randomization was restricted such that163

each of the four combinations of species and plant height and the three ewes164

were observed at least in one session each day. Animals were fed alfalfa hay165

and spent the rest of the day in an adjacent yard.166

Sounds were recorded using wireless microphones (Nady 155 VR, Nady Sys-167

tems, Inc., Oakland, California) protected by a rubber foam and placed on168

the animal’s forehead fastened to a halter where the transmitter was attached169

(see Figure 2). Sound was recorded on the sound track of a digital camcorder.170

A watch alarm was set to go off next to the microphone every 10 s as standard171

sound. Recordings contain various types of natural environmental noises, like172

bird songs. However, denoising was not applied, signals were fed to the recog-173

nizer as recorded in natural environment. Sounds were originally digitized into174

uncompressed PCM wave format, using a mono channel with a resolution of175

16 bits at a sampling frequency of 44100 Hz. Due to the low-frequency nature176

of signals they were re-sampled to 22050 Hz after processing by an appropriate177

low-pass filter.178

A preliminary comparison of the typical waveforms and spectrograms illus-179

trates the differences between a chew, a bite and a chew-bite of grazing sheep.180

Figure 3 shows the temporal sound wave and spectrogram of a sequence of181

chews, bites and chew-bites of grazing sheep. Bites appear as a sequence of182
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Pots with plants attached

to a wooden board

Wireless microphone on

animal’s forehead

Figure 2. Schematic illustration of the experimental device for sound recording.

Figure 3. Sound wave (top) and narrow band spectrogram (bottom) of a sequence
of chews, bites and chew-bites of grazing sheep.

short bursts of high frequency (Figure 4). Chewing has a relative high energy183

in the lower half of the spectrum, sustained during a large proportion of its184

duration (Figure 5). The chew-bite is a composite signal, relatively difficult to185

be distinguished from the isolated chew signal (Figure 6). Sounds of all events186

have non-stationary behaviour and their relative frequency contents overlap.187

The corpus was formed by the original sound recordings of sheep grazing188

short alfalfa, tall alfalfa, short orchardgrass and tall orchardgrass. Chews,189
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Figure 4. Sound wave (top) and narrow spectrogram (bottom) of an artificially
isolated bite of grazing sheep.

Figure 5. Sound wave (top) and narrow band spectrogram (bottom) of an artificially
isolated chew of grazing sheep.

bites and chew-bites were identified and labeled by animal behaviour experts190

through direct vieweing and listening of the video files. The total lengths of191

the registered sound data base were 563 and 457 seconds for tall and short192
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Figure 6. Sound wave (top) and narrow band spectrogram (bottom) of an artificially
isolated chew-bite of grazing sheep.

alfalfa and 420 and 373 seconds for tall and short orchardgrass.193

3.2 Signal analysis and recognition model194

Signal preprocessing consisted of a preemphasis filter and mean subtraction.195

Because of the non-stationarity of the signal, the next step is to apply short-196

time analysis techniques. This type of analysis consists in split the whole197

signal record in short segments called frames (Cohen, 1995). These frames are198

extracted with some periodicity named step and have a characteristic time199

width. If the frame width is greater than the step, two consecutive frames will200

share some samples from the signal record. Each frame was smoothed with a201

Hamming window to avoid the border effects of the splitting process, and then202

it was analyzed with several standard spectral estimation techniques, such203

as: linear prediction coefficients (LPC), linearly spanned filter-bank (FB), log204

spanned FB, mel FB, cepstrum and mel cepstrum (Oppenheim and Schafer,205
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1989).206

In the recognition model design, each event (bite, chew and chew-bite) was207

modeled as a concatenation of sub-events (bite = [b1 ↪→ b2], chew = [c1 ↪→208

c2 ↪→ c3] and chew-bite= [cb1 ↪→ cb2 ↪→ cb3]) and, each sub-event as an HMM.209

Also, one sub-event could have several states and each state could observe one210

or more frames. The silence was also modeled as a sil event 1 . Finally, the211

individual event models were associated by a language model (LM) into a212

compound model for every possible sequence of events.213

In Fig. 7 we can see the compound model used for the recognition experiments214

(expanded with more detail for the event chew). Each HMM has its states,215

transition probabilities and probability density functions for the emissions.216

In our case, gaussian mixtures were used at each state to model the spectral217

features (i.e., CHMM). We used the above mentioned Baum-Welch algorithm218

in order to train the HMM transition and observation probabilities.219

The LM allows concatenating large sequences of events to model the whole220

signal record (in a statistical way). In a simple bigram LM, the a priori prob-221

ability that an event occurs given a previous event is used (Jelinek, 1999).222

For example, a bite is frequently followed by a chew, thus, the probability223

for the sequence [bite chew] is greater than the probability for the sequence224

[bite bite]. In the same sense the probability for the sequence [chew chew]225

would be greater than the probability for the sequence [chew bite]. Figure 8226

shows the general bigram LM used in this work.227

Once trained, we used the model to recognize unknown sounds by means of228

standard Viterbi algorithm (Rabiner and Juang, 1993). All the experiments229

1 In some experiments the sil event was modeled as a sub-event of the others events.
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s1 s2 s3 s1 s2 s3s1 s2 s3

c1 c2 c3

Event
level

Sub-event
level

Acoustic
level

Language
model

Compound
level

chew chew-bite

bite sil

Figure 7. Schematic diagram of the compound model used for the recognition exper-
iments. The different states represent the events at the acoustic level, while individ-
ual HMMs have been used to represent the sub-event level. Each sub-event model
was merge into an event model by a dictionary and all this events are associated in
a compound model by a language model.

S Esil sil

bite

chew

chew-bite

Figure 8. General language model used for the experiments. S means “start” and
E means “end”.

were implemented using the HTK toolkit 2 . The configuration details will be230

given in the next section.231

The before mentioned compound model was used for the experiments with232

only one species and height of pasture. In this case the model had three possible233

output classes of events for the sequence (bite, chew and chew-bite). It was234

a pasture dependent model (for one species and one height). Four different235

pasture dependent models were trained: tall alfalfa (MTA), short alfalfa (MSA),236

tall orchardgras (MTO) and short orchardgrass (MSO).237

In order to construct the pasture independent model (Mind) we followed a238

2 http://htk.eng.cam.ac.uk
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similar way but using twelve events classes (and silence): one bite, chew and239

chew-bite different model for every one of each four pasture conditions. For240

example for tall alfalfa we had biteTA, chewTA and chew-biteTA events, for241

short alfalfa we had biteSA, chewSA events and chew-biteSA, and so on. All242

these events were associated in an overall model, extending the LM to include243

12 events.244

3.3 Recognition performance measures245

In order to achieve statistically representative results, all the tests were con-246

ducted according to the averaged leave-k-out method (Michie et al., 1994).247

The complete data set was randomly split 10 times in train/test sets, using248

the 80% of total signals for training and the remaining 20% for recognition.249

For each test partition, the performance was evaluated by using the recognition

rate and the recognition accuracy, respectively as follows:

Cj =

Nj∑
i=1

Tji −Dji − Sji

Nj∑
i=1

Tji

Aj =

Nj∑
i=1

Tji −Dji − Sji − Iji

Nj∑
i=1

Tji

where:250

Nj : total number of sequences in test partition j251

Tji : total number of events in the sequence i of the test partition j252

Dji : deleted events in the recognized sequences i of the test partition j253

Sji : substituted events in the recognized sequences i of the test partition j254

Iji : inserted events in the recognized sequences i of the test partition j255

256
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In all the counts, silence events are ignored and the final results are computed257

as the average among all test partitions. To obtain the Dji, Sji and Iji counts,258

a dynamic programming alignment between the hand labeled reference se-259

quence (Refseq) and the recognized sequence (Recseq) was performed (Young260

et al., 2000). An example of the recognizer output is reproduced here with the261

corresponding hand-labeled reference:262

Refseq: [ bite chew chew chew chew bite chew chew ]

Recseq: [ bite chew chew bite chew chew chew chew ]

263

The second bite from the recognized sequence is an insertion and the fifth264

chew is a substitution. The last event from the reference sequence has not265

been recognized so it is a deletion. From this example it can be seen that Aj266

is a much more exigent measure since it considers insertions while Cj does267

not. Aj is very useful to make decisions about the overall system performance,268

because if Iji is greater than Tji, Cj can be high (near 100%) while Aj will269

be negative. However, once a system has reached a reasonable Aj (say, 80%)270

then Cj can be used to select the best system configuration.271

We also used the confusion matrix as another method to evaluate classification272

performance. In confusion matrices, each column represents a predicted event273

class, while each row represents the actual class. One benefit of a confusion274

matrix is that it is easy to see if the system is confusing two classes.275

4 Experiments and Results276

For the feature extraction the best recognition rates among parametric tech-277

niques were for LPC. For non-parametric techniques best results were for278
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linearly spanned FB. We employed 10 linearly spanned bands between 0 and279

2000 Hz for the FB and 20 coefficients for LPC. In addition, an estimation of280

the derivatives and total energy in the spectral estimation was used. Frame281

width ranged from 10 ms to 100 ms in steps of 10 ms and overlapping ranged282

from 0% to 75% in steps of 25%. Best results were obtained with a frame283

width of 20 ms and an overlapping of 25%.284

In the tuning of the HMM architecture, we first made tests using one model per285

event, where the number of emitting states ranged from 2 to 8. These results286

were useful as a baseline for the following stage. Based on visual inspection of287

the sound signal, chews and chew-bites were modeled by three sub-events, bites288

with two and silence with only one. This division in sub-events is justified by289

the different spectral evolution between ingestive events but not for the silence290

that should remain almost stationary.291

Using the Gaussian means of the trained models, one can build the estimated292

spectra that HMM holds in each state. This could provide some insights about293

the internal model representation of spectral signal dynamics, remarking the294

important characteristics that it takes into account. As an example we used295

the MTA trained. The spectral dynamic for bite is modeled by two sub-events296

(b1 and b2) each with three states (Figure 9). Chew is modeled by three sub-297

events (c1, c2 and c3) each with three states (Figure 10). Chew-bite is also298

modeled by three sub-events (cb1, cb2 and cb3) each with three states (Figure299

11). Bite spectra for the first state of b1 has an important peak around 1300

kHz, alternating between narrow and broad-band spectra for the rest of the301

states. It also finishes the last state of b2 with a peaked spectrum again. If302

we carefully inspect Figure 4, this is compatible with the sequence of short303

duration bursts (naturally broad-band) and low energy regions (which presents304
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Figure 9. Spectra of bite estimated by the tall alfalfa model after the training
process, computed from the Gaussian means of LPC parameters of each model
state. Columns: sub-events; Rows: states.
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Figure 10. Spectra of chew estimated by the tall alfalfa model after the training
process, computed from the Gaussian means of LPC parameters of each model
state. Columns: sub-events; Rows: states.

relative concentration of energy around 1 kHz) displayed in it. Chew spectra305

varies from one with a relative flatness for c1 to one more concentrated around306

the bottom half in c2, finishing with spectra in c3 similar to c1 (but in reverse307
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Figure 11. Spectra of chew-bite estimated by the tall alfalfa model after the training
process, computed from the Gaussian means of LPC parameters of each model state.
Columns: sub-events; Rows: states.

order). This is clearly related with the example of chew presented in Figure308

5. As expected, spectrum of the first sub-events of chew-bite were similar to309

those of chew while the last (cb3 state 3, Figure 11) was similar to those of310

bite. This is associated with the composite signal nature observed in Figure311

6.312

Our preliminary results (not shown here for brevity) revealed that, for all the313

cases, the models that used LPC as parameterization performed better than314

those that used FB. Also, the use of more than one model per event obtained315

higher recognition rates, compared to the baseline of one model per event.316

After extensive trials, the best recognition results were obtained with a window317

of 20 ms and an overlapping 15 ms, using 3 emitting states per HMM. In this318

case, the system yielded an average Aj of 81.60% and an average Cj of 89.47%.319

This analysis was carried out using the tall alfalfa files and MTA model, and320

it set the basic system configuration that was employed afterwards.321
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Table 1
Recognition results classifying pasture species and height, by relabeling Mind model
(see details in text).

Average Aj (%) Average Cj(%)

Mdir−sil
ind species and height 51.59 58.11

M sub−sil
ind species and height 61.63 66.53

M sub−sil
ind species only 80.54 83.78

We will first present the detailed results of the pasture independent model322

Mind. In this case we employed the previous described configuration and the323

extended LM for 12 events. We used two different models for these exper-324

iments: modelling the sil event directly (Mdir−sil
ind ) or as a sub-event of the325

others events (M sub−sil
ind ): chew = [c1 + c2 + c3 + sil] and bite = [b1 + b2 + sil].326

As explained before, the model was trained with the different pastures condi-327

tions.328

The grazing behaviour and diet selection by sheep are influenced by the sward329

height and the relative species content of pastures (Illius et al., 1992). Conse-330

quently it would be useful for reseachers to obtain an accurate classification of331

ingestive sounds for different species and different heights within species. In or-332

der to obtain different recognition results once trained we re-labelled the final333

classes or events in the model. The first case was for the recognition of species334

and height of pasture, that is a four classes problem. For example for tall alfalfa335

class we replace biteTA → TA, chewTA → TA and chew-biteTA → TA. The336

second required result was the recognition of species only, that is a two classes337

problem. For example for alfalfa class we replace biteTA → A, chewTA → A,338

chew-biteTA → A, biteSA → A, chewSA → A and chew-biteSA → A. The339

results for this problems are shown in Table 1. When dealing with mixtures of340

pastures, the system turned on recognizing the species and height of pasture341

with a performance of 66.53%, while on the recognition of only the species the342
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Table 2
Confusion matrix for classifying bites, chews and chew-bites, by relabeling Mind

model (values in parenthesis are %).

bite’s chew’s chew-bite’s

bite’s 438 (58) 160 (21) 154 (21)

chew’s 182 (4) 4658 (89) 380 (7)

chew-bite’s 90 (13) 222 (31) 402 (56)

result grew up to 83.78%.343

Another case is to use M sub−sil
ind to recognize the event without taking into344

account the pasture conditions (i.e. for bite class we replace biteTA → bite,345

biteSA → bite, biteTO → bite and biteSO → bite). The results are displayed346

in Table 2. Overall classification performance of events was 82%, where we347

obtained 58% for bites, 89% for chews and 56% for chew-bites (see confusion348

matrix diagonal, Table 2). Chews were classified as chew-bites in 7% of the349

cases, chew-bites were partially misclassified as bites in 13% and chews in 31%.350

In the pasture dependent models, where only one species and height were351

considered, recognition values were generally higher than the previous ones.352

The results for tall alfalfa M sub−sil
TA were 74, 96 and 61% of bites, chews and353

chew-bites, respectively. Similar results were obtained for short alfalfa M sub−sil
SA354

(68, 94 and 49 %). Tall orchardgrass M sub−sil
TO resulted in 66, 90 and 39% and355

short orchardgrass M sub−sil
SO performed slighty worse with 18, 77 and 74%,356

probably due to a relative lower signal to noise ratio for this type of sounds.357

5 Discussion358

To our knowledge this is the first time an automatic recognition of ingestive359

chewing of ruminants is done and it extends the use of HMM beyond vocal-360
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izations studies in wild animals (Clemins et al., 2005; Reby et al., 2006).361

The systems was effective and robust for the automatic segmentation and362

classification of chewing behaviour in sheep. It speed-up the processing of363

data and leaving the real time factor from hours to minutes, including the364

analysis of other useful variables such as energy of chews (Galli et al., 2006)365

while (Laca and Wallis DeVries, 2000) took nearly of 120 hours to manage366

nearly 1000 bites and chews of steers.367

The individual recognition models for each species have better performance368

than using a unique overall model. These last ones had a high error rate mainly369

because of event substitution. Nevertheless, they could be useful for prelimi-370

nary segmentation of signals with unknown species and height of pasture.371

The values obtained for window width and overlapping are indicators of the372

signal stationarity, in the sense that its spectral characteristics (LPC or the373

spectrum itself) do not show significant variation in the interval, so one frame374

can be distinguished from another using a spectral distance measure. The375

3-state models have demonstrated to be sufficient to model human speech376

phonemes, so we consider reasonable that best results have been obtained377

with models of few states. Carefully inspection of Figures 9, 10 and 11 seems378

to indicate that the proposed number of states and sub-events allows the model379

to correct follow the spectral dynamic of the events. A priori, chewing sounds380

do not exhibit the complexity of speech, at least when considering the sound381

generation mechanisms and the information content of both signals.382

The surrounding noise such as animal vocalization and scratching against the383

ground are difficult to filter out automatically. The overall system performance384

is being altered because this sounds are generally classified as masticatory385
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events (they are not strictly silence) and this yields an error by insertion.386

However, these sounds can be discarded by a previous stage because in gen-387

eral are of short duration and low energy compared to those of the masticatory388

events. Studies to determine if these sounds are very frequent must be made,389

and a model for these events could be added to the system in order to im-390

prove the general performance. This fact does not imply a major deviation in391

the overall signal energy thus does not represent a problem when using the392

chew energy for dry matter intake prediction (Laca and Wallis DeVries, 2000;393

Galli et al., 2006). However, they represent an error when analyzing grazing394

behaviour because they introduce a bias in the chews per bite ratio. Several395

denoising techniques are also available, which could be used to improve signal396

quality previously the starting of the recognition process.397

The compound jaw movements, namely chew-bites and already detected in398

cattle by Laca and Wallis DeVries (2000) were acoustically confirmed in sheep399

and their spectra automatically recognized by trained HMM.400

Since much of the acoustic signal generated by mechanical interaction of teeth401

and food during occlusion is transmitted by bone conduction, the direct at-402

tachment of the microphone to the forehead of bovine (Laca et al., 1994) or403

head of mule deer (Nelson et al., 2005) picks up a wider range of sound than a404

free-standing (collar–mounted) microphone, and can more easily pick up the405

vibrations associated with mastication. The location is unobtrusive and proven406

acceptable in controlled applications but for grazing extensive conditions could407

be exposed to serious damage. The ear canal is one another possible place to408

locate the microphone as a more secure and insulated position as already409

proved in human (Amft et al., 2005). Furthermore, our system can be used410

for real-time monitoring, at short distances, with wireless microphones. For an411
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implementation in a wide area, we are planning to incorporate a transmission412

system over the cellular network or to use a recording system for several days413

and then to process the signals in an standard personal computer. Alterna-414

tively, a digital signal processor may be integrated with the microphone in the415

forehead of each animal, but this may be a quite expensive solution.416

6 Conclusions and future work417

We conclude that the automatic segmentation and classification of mastica-418

tory sounds by sheep is possible by modelling the acoustical signals with con-419

tinuous hidden Markov models. Models were tuned for optimal performance420

using a compound model with different levels of analysis, from the acous-421

tic of sub-events to the long-term dependence given by the intake language422

model. This study provides a basis for future work on the complete automa-423

tion of recording, segmentation and classification of masticatory sounds for424

intake and grazing animal behaviour studies and for a wide application of the425

acoustical method.426

The ultimate goal of a system that precisely and reliably determines the type427

and amount of food that the animal consumed is far. However, considering the428

rate at which new commercial technologies become available, and the develop-429

ment and analysis of larger sound data-bases, we can visualize an automated430

acoustic monitoring system for ingestive behaviour in ruminants.431

The novel approach we used has potential to be used no only as a technique432

to automatically record and classify ingestive sounds, but also as a new way433

to describe ingestive behaviour and to relate it to animal and forage char-434
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acteristics. We hypothesize that the parameters for the language models are435

synthetic descriptors of ingestive behavior that have the ability to integrate436

the characteristics of feeding bouts into a few numbers. These numbers, such437

as transition probabilities between behaviors and components of events could438

be used to gain insight in the ingestion process. Automatic acoustig moni-439

toring of ingestive behaviours is also valuable to assess animal welfare in a440

manner that cannot be achieved with other methods, not even by direct vi-441

sual observation. Ruminants can chew and bite within a single jaw movement.442

Thus, mechanical or visual methods cannot fully discriminate these events443

into simple bites or chew-bites. Chewing is a fundamental behavior for the444

maintenance of rumen function and animal well-being because it supplies the445

rumen with saliva, enzymes and buffering compounds. Acoustic monitoring446

provides the most accurate quantification of chewing, and could be developed447

into a routine method to monitor animals such as dairy cows that are subject448

to the stresses of extremely high productivity.449
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