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b Facultad de Ingenierı́a, Universidad Nacional de Entre Rı́os, CONICET, Oro Verde (E.R.), Argentina
c Facultad de Ingenierı́a y Ciencias Hı́dricas, Universidad Nacional de Litoral, CONICET, Santa Fe, Argentina

A R T I C L E I N F O

Article history:

Received 13 June 2008

Received in revised form 18 November 2008

Accepted 14 January 2009

Available online xxx

Keywords:

Data visualization

Dimensionality reduction

Kernel methods

Pathological voice analysis

A B S T R A C T

For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such

as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal

representation is difficult to understand, even for expert voice therapists and physicians. Data visualization

of a high-dimensional dataset can provide a useful first step in its exploratory data analysis, facilitating an

understanding about its underlying structure. In the present paper, eight dimensionality reduction

techniques, both classical and recent, are compared on speech data containing normal and pathological

speech. A qualitative analysis of their dimensionality reduction capabilities is presented. The transformed

data are also quantitatively evaluated, using classifiers, and it is found that it may be advantageous to

perform the classification process on the transformed data, rather than on the original. These qualitative

and quantitative analyses allow us to conclude that a nonlinear, supervised method, called kernel local

Fisher discriminant analysis is superior for dimensionality reduction in the actual context.

� 2008 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journa l homepage: www.e lsev ier .com/ locate /bspc
1. Introduction

Several feature extraction techniques have been proposed for
pathological voice analysis and classification [1–5]. Most of them
use measures that characterize different aspects of the voice
signal, such as frequency perturbations and noise content. In these
cases, a vector representation of the data is often chosen whose
size impedes the data’s visualization. Moreover, the ‘curse’ of the
dimensionality is a well-known problem arising in classical
pattern recognition. This situation is exacerbated when the data
available are limited in quantity. Data visualization techniques
can help alleviate this situation.

Data visualization can provide a practical tool in exploratory
data analysis, which may enable us to gain a useful first insight into
the information hidden in high-dimensional data. Techniques
which transform a high-dimensional space into a space of fewer
dimensions – often one, two or three – are collectively known as
dimensionality reduction techniques. Dimensionality reduction
techniques are not clustering tools, however, they can provide
clues about clusters within the data, or they may be performed
* Corresponding author.
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Rı́os, CONICET, Oro Verde (E.R.), Argentina.
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before applying a clustering or classification algorithm. Further-
more, the intrinsic structure of the data, such as its intrinsic
dimensionality, may well be revealed after mapping the data to a
lower dimensional space.

The most commonly used classical method for dimensionality
reduction is perhaps principal component analysis (PCA), also
known as the Karhunen–Loève transform, or singular value
decomposition [6]. PCA performs an unsupervised linear map-
ping of the data to a lower dimensional space in such a way, that
the variance of the data in the low-dimensional representation is
maximized. A disadvantage of PCA is that the embedded
subspace has to be linear. For example, if the data are located
on a circle in a three-dimensional Euclidean space, R3, PCA will
not be able to identify this structure. Another disadvantage is
that PCA depends critically on the units in which the features are
measured.

Sammon’s mapping [7] is a classical nonlinear method, that
performs a mapping such that the interpoint distances of the data
are approximately preserved in the lower dimensional space.

In recent years, a number of other unsupervised visualization
techniques have become available, and their application to data
sets, such as those involving speech, is just being conducted [8–10].
Among these methods, those of kernel PCA (KPCA) [11], Gaussian
process latent variable model (GP-LVM) [12] and local linear
embedding (LLE) [13] are particularly relevant for our purposes in
the present paper.
duction for visualization of normal and pathological speech data,
01
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9.
KPCA is a (usually) nonlinear extension of PCA using kernel
methods. Kernel methods have been successfully applied in the
fields of pattern analysis and pattern recognition [14], often
providing better classification performance than other methods,
and frequently playing a vital part in the nonlinear extension of
classical algorithms. GP-LVM is a probabilistic, nonlinear, latent
variable model that generalizes PCA. LLE, on the other hand,
provides low-dimensional, neighborhood-preserving embeddings.
This means that points which are ‘close’ to one another in a data
space will also be close when mapped onto the low-dimensional
space.

Often class information about the data in a given problem is
known, and in this case, supervised dimensionality reduction
techniques can be used. Fisher discriminant analysis (FDA) is one
such classical supervised linear technique. However it tends to give
undesired results if the samples in a class are multimodal. To
overcome this drawback Sugiyama proposed the Local Fisher
discriminant analysis (LFDA). This method maximizes between
class separability and preserves within class local structure at the
same time. FDA and LFDA are both linear methods, and the latter
may be extended to kernel local Fisher discriminant analysis
(KLFDA), a nonlinear dimensionality reduction technique, obtained
by applying the kernel trick [15].

In this paper we extend a previous work [16]. Our aim here is to
compare and discuss supervised and unsupervised dimensionality
reduction techniques applied to normal and pathological speech
data, which allow their visualization in lower dimensions. In
Section 2, we present the real-world speech dataset employed and
briefly describe the techniques which are applied to it. In Section 3,
results are presented and discussed through qualitative and
quantitative analysis. The conclusions are presented in Section 4.

2. Data and methods

In Section 2.1, we give a description of the speech data
considered in the paper and the preprocessing applied to it in order
to obtain a suitable vector representation. This is followed, in
Section 2.2, by a brief review of the dimensionality reduction
methods which will be compared here.

2.1. Normal and pathological data

The data used in this paper consisted of real voice samples of the
sustained vowel /a/ for both normal and pathological voices.
Among the pathological voice samples, we considered two voice
disorders: dysphonia and paralysis. The voice samples were taken
from the ‘Disordered Voice Database’, from the Massachusetts Eye
and Ear Infirmary Voice and Speech Laboratory [17] and
distributed by Kay Elemetrics [18]. The clinical information
includes diagnostic information along with patient identification,
age, sex, smoking status, and more.

In total there were 34 patients with dysphonic speech
disorders, 61 with paralysis and a further 53 normal speakers.
For each subject, a 14-features vector ~x was associated. These
features were chosen using similar criteria to those in [2,3],
namely: number and degree of voice breaks, fraction of locally
unvoiced frames, three variables related to jitter (local, relative
average perturbation and five-point period perturbation quo-
tient), five related to shimmer (two local estimations, three-point
amplitude perturbation, five-point amplitude perturbation and
eleven-point amplitude perturbation) and three measures
related to noise content. In previous work, this set of features
provided the best performance in several classification tasks
[2,3]. Moreover, a similar vector of features has been reported as
the one providing the best results in [19], where different sets of
characteristics and classification methods were compared. In
Please cite this article in press as: J. Goddard, et al., Dimensionality re
Biomed. Signal Process. Control (2009), doi:10.1016/j.bspc.2009.01.0
what follows, for completeness, we include their definitions (cf.
[2,3] for more details).

2.1.1. Features

(1) Number of voice breaks. Any period of time, between two
consecutive pitch detections, longer than 1.25 over a selected
pitch floor (usually 75 Hz), is considered as a voice break.

(2) Degree of voice breaks. It is the total duration of the breaks in
the voiced parts of the signal, divided by its total length.
Silences at the beginning and at the end of the signal are not
considered breaks.

(3) Fraction of locally unvoiced frames. This is the fraction of
frames analyzed as unvoiced.

(4) Jitter or period perturbation quotient.
(a) Jitter ratio (local) or jitt is defined as:

jitt ¼ 1000
ð1=ðn� 1ÞÞ

Pn�1
i¼1 Pi � Piþ1

ð1=nÞ
Pn

i¼1Pi

; (1)

where Pi is the period of the ith cycle, in ms, and n is the

number of periods in the sample.
(b) Relative average perturbation (RAP) is defined as:

RAP ¼ ð1=ðn� 2ÞÞ
Pn�1

i¼2 jððPi�1 þ Pi þ Piþ1Þ=3Þ � Pij
ð1=nÞ

Pn
i¼1Pi

; (2)

where Pi and n are as above.
(c) Five-point period perturbation quotient (ppq5) is defined

as:

p pq5 ¼
ð1=ðn� 4ÞÞ

Pn�2
i¼3 jðð

P2
j¼�2Piþ jÞ=3Þ � Pij

ð1=nÞ
Pn

i¼1Pi

; (3)

where Pi and n are as above.
(5) Shimmer or amplitude perturbation quotient.

(a) Local shimmer (shimm) is defined as:

shimm ¼ ð1=ðn� 1ÞÞ
Pn�1

i¼1 jAi � Aiþ1j
ð1=nÞ

Pn
i¼1Ai

; (4)

where Ai is the amplitude of the ith cycle and n is the

number of periods in the sample.
(b) Local shimmer (dB). It is defined as the previous one, but

expressed in dB.
(c) Three-point amplitude perturbation quotient (apq3) is

defined as:

a pq3 ¼ ð1=ðn� 2ÞÞ
Pn�1

i¼2 jððAi�1 þ Ai þ Aiþ1Þ=3Þ � Aij
ð1=nÞ

Pn
i¼1Ai

; (5)

where Ai and n are as above.
(d) Five-point amplitude perturbation quotient (apq5) is

defined as:

a pq5 ¼
ð1=ðn� 4ÞÞ

Pn�2
i¼3 jðð

P2
j¼�2Aiþ jÞ=3Þ � Aij

ð1=nÞ
Pn

i¼1Ai

; (6)

where Ai and n are as above.
(e) Eleven-point amplitude perturbation quotient (apq11) is

defined as:

a pq11 ¼
ð1=ðn� 10ÞÞ

Pn�5
i¼6 jðð

P5
j¼�5Aiþ jÞ=11Þ � Aij

ð1=nÞ
Pn

i¼1Ai

; (7)

where Ai and n are as above.
(6) Noise-content parameters. These measures quantify the

amount of glottal noise in the vowel waveform. In contrast
to perturbation measures, they attempt to resolve the vowel
waveform into signal and noise components, computing their
duction for visualization of normal and pathological speech data,
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9.
energies ratio, considering only the voiced parts of the signal.
The three selected parameters are mean autocorrelation, mean
harmonics-to-noise ratio (in dB) and mean noise-to-harmonics
ratio [20].

2.2. Dimensionality reduction methods

Here we present a brief review of the dimensionality reduction
methods which will be compared in the paper. The features vector
will be denoted by~x2RP and the dimensionally reduced vector by
~y2RQ , with Q < P ¼ 14. X ¼ f~x1; . . . ;~xNg denotes the data set of
features vectors used for each dimensionality reduction technique.
The matrix with N-columns given by the features vectors in X will
be notated as X.

2.2.1. Principal component analysis

PCA is a dimensionality reduction method that attempts to
efficiently represent the data by finding orthonormal axes which
maximally decorrelate the data. The data are then projected onto
these orthogonal axes. The principal components are precisely this
set of Q orthonormal vectors, where Q is often chosen to be 2 or 3.

There are several equivalent ways to find the principal
components, one being that of finding the Q eigenvectors ~v of
the covariance matrix C of the data set, corresponding to the Q

largest eigenvalues l. If X is a zero mean data set in the Euclidean
space RP , then the covariance matrix is given by:

C ¼ 1

n

XN

j¼1

~x j~x
T
j ; (8)

where ~x
T
j indicates the vector transpose and the corresponding

eigenvalue equation is C~v ¼ l~v.
PCA provides a linear mapping of the data onto the lower Q-

dimensional space, but suffers from several problems previously
mentioned in the introduction. In order to define a nonlinear
extension of PCA, KPCA has been introduced.

2.2.2. Kernel principal component analysis

KPCA uses the notion of a kernel to modify the corresponding
PCA algorithm. Generally, a positive semidefinite kernel k onX � X
is defined as a real-valued function:

k : X � X !R;

such that:

(1) k is symmetric: kð~xi;~x jÞ ¼ kð~x j;~xiÞ 8 i; j ¼ 1; . . . ;N.
(2) k is positive semidefinite, i.e.

Xn

i; j¼1

aia jkð~xi;~x jÞ�0; (9)

holds for 8 ai; a j 2R and for n ¼ 1; . . . ;N.

It can be shown that given a kernel k, there exists a
(Reproducing Kernel) Hilbert space H and a transformation f :

X !H such that

kð~xi;~x jÞ ¼ hfð~xiÞ;fð~x jÞi; (10)

holds.H is often referred to as the feature space and can be infinite-
dimensional.

The most commonly used kernels are the polynomial and radial
basis function kernels defined on RP � RP by:

kð~xi;~x jÞ ¼ ðh~xi;~x ji þ 1Þd; (11)
Please cite this article in press as: J. Goddard, et al., Dimensionality re
Biomed. Signal Process. Control (2009), doi:10.1016/j.bspc.2009.01.0
kð~xi;~x jÞ ¼ exp
�k~xi �~x jk2

2 s2

 !
; (12)

respectively, where d ¼ 1;2; . . . and s 2Rþ. For these kernels the
transformation f is not explicitly defined, and the kernels are
directly applied in the original data space. This is known as the
‘kernel trick’.

For the kernels of Eqs. (11) and (12), it can be shown that KPCA
is conceptually the same as performing standard PCA with the data
set ffð~x1Þ; . . . ;fð~xNÞg in the feature space H (with the above
notation). Fortunately, the kernel trick, referred to above, can also
be applied in this case, and the explicit use of f avoided. Instead,
the N � N kernel matrix K ¼ fki jg, with ki j ¼ kð~xi;~x jÞ, is introduced,
and the equation:

K~v ¼ Nl~v; (13)

is solved for l2R and ~v ¼ ðv1; . . . ; vNÞT 2RN .
A projection of a new pattern ~x in data space onto the q-th

principal component in feature space can be found using:

yq
~x
¼
XN

i¼1

vq
i kð~x;~xiÞ: (14)

Observe that yq
~x

represents the q-th component of the dimension-
ally reduced vector ~y associated with ~x. In order to use KPCA, we
have to choose a kernel function and, as in the case of PCA, decide
on the number of dimensions on which to project.

2.2.3. Sammon’s mapping

Sammon’s mapping [7] is a classical method for producing a
nonlinear mapping of a set of P-dimensional vectors to a lower-
dimensional space, usually of 2 or 3 dimensions. The mapping is
constructed such that the interpoint distances of the vectors are
approximately preserved by the corresponding interpoint dis-
tances of their images in the lower-dimensional space; as such,
Sammon’s mapping is a form of multidimensional scaling. We
denote by di j the distance between the vectors ~xi and ~x j (usually
taken as the Euclidean distance measure). We wish to find N Q-
dimensional vectors ~yi, i ¼ 1; . . . ;N, with Q ¼ 2 or 3, such that the
error function E (often referred to as Sammon’s stress) is
minimized, where:

EðX;YÞ ¼ 1PN�1
i¼1

PN
j¼iþ1di j

XN�1

i¼1

XN

j¼iþ1

ðdi j � di jÞ
2

di j
; (15)

and di j denotes the Euclidean distance between the vectors ~yi and
~y j. Sammon proposed a steepest descent procedure to search for a
minimum of the error function, although it is computationally
inefficient for large data sets. Another, well-known, disadvantage
of the mapping is that it has to be recalculated when new points are
added.

2.2.4. Gaussian process latent variable model

GP-LVM is a recent addition to dimensionality reduction
techniques proposed by Lawrence [12,21]. GP-LVM is a probabil-
istic, nonlinear, latent variable model that generalizes PCA. GP-
LVM implicitly learns a Gaussian process mapping between a low-
dimensional latent space, Y, and the usually high-dimensional
data space, X , in such a way that the points which are ‘close’ in
latent space are mapped to points which are also ‘close’ in data
space. GP-LVM can discover low dimensional manifolds in high-
dimensional data with small data sets [21]. We may briefly
describe the technique in terms of the following optimization
problem [21]: Let X be the N � P matrix in which each row is a
single training datum. Let Y denote the N � Q matrix whose
rows represent the corresponding positions in latent space. Given

sing and Control xxx (2009) xxx–xxx 3
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9.
a covariance function for the Gaussian process, kð~yi;~y jÞ, the
likelihood of the data, given the latent positions, is

pðXjY; ~b
0
Þ ¼ 1

ð2pÞPN=2jK~b
0 jP=2

exp �1

2
trðK�1

~b
0 XXTÞ

� �
; (16)

where K~b
0 is known as the kernel matrix and ~b

0
denotes the kernel

hyperparameters. The kernel matrix K~b
0 ¼ fki jg is defined by the

covariance function, where ki j ¼ kð~yi;~y jÞ.
Learning in the GP-LVM consists of maximizing Eq. (16) with

respect to Y and the ~b
0

components. Whilst this also tends to be
computationally inefficient for large data sets, Lawrence proposes
a practical algorithm for finding Y with GP-LVM. It should be noted
that the Y found will not be unique.

2.2.5. Local linear embedding

LLE is an unsupervised learning algorithm that computes low-
dimensional, neighborhood-preserving embeddings of high-
dimensional inputs. LLE is performed in three steps. First, for
each point in the data, it’s k nearest neighbors in the data are found
(usually using Euclidean distance). Then, each point is approxi-
mated by convex combinations of it’s k nearest neighbors, to
obtain a matrix of reconstruction weights, W. Finally, low-
dimensional embeddings (usually in a space of one or two-
dimensions) are found such that the local convex representations
are preserved. More precisely, for each vector ~xi 2X let N i denote
the set of indices of it’s k nearest neighbors. In order to find the
reconstruction weights, W ¼ fwi jg, the objective function:

EðWÞ ¼
X

i

~xi �
X
j2N i

wi j~x j

������
������
2

; (17)

has to be minimized, subject to
P

j2N i
wi j ¼ 1.

The embeddings, f~y1; . . . ;~yNg, of the original data are obtained
by minimizing the following objective function:

OðYÞ ¼
X

i

~yi �
X
j2N i

wi j~y j

������
������
2

: (18)
Fig. 1. Selection of the number of neighbors, k. Average percentage of correct classificati

Q ¼ 2 (a) and Q ¼ 3 (b).

Please cite this article in press as: J. Goddard, et al., Dimensionality re
Biomed. Signal Process. Control (2009), doi:10.1016/j.bspc.2009.01.0
An advantage of LLE is that it has few free parameters to set and a
non-iterative solution, thus avoiding convergence to a local
minimum.

Interesting relationships have recently been found between
KPCA and LLE, as well as other well-known dimensionality
reduction techniques cf. [22].

2.2.6. Fisher discriminant analysis

FDA is a linear, supervised dimensionality reduction method
applied to a dataset, whose elements each have a class label
assigned to them.

Let C ¼ f1;2; . . . ;Cg denote the set of possible classes, and for
each ~xi 2X , let ci 2C be its associated class label. Let Nc be the
number of elements of X belonging to class c.

The within-class scatter matrix SðwÞ 2RN�N and the between-class

scatter matrix SðbÞ 2RN�N are defined by [15]:

SðwÞ ¼
XC

c¼1

X
i:ci¼c

ð~xi � ~mcÞð~xi � ~mcÞ
T
;

SðbÞ ¼
XC

c¼1

Ncð~mc � ~mÞð~mc � ~mÞ
T
;

(19)

where
P

i:ci¼c denotes the summation over i such that ci ¼ c, ~mc is
the mean of the samples in class c and ~m is the mean of all the
samples. The FDA transformation matrix TFDA is defined as follows:

TFDA� argmax
T2RP�Q

½trððTT SðwÞTÞ
�1

TT SðbÞTÞ�: (20)

In this way FDA seeks a transformation matrix T such that SðbÞ is
maximized whilst SðwÞ is minimized. This problem is solved by
means of a generalized eigenvalue problem.

2.2.7. Local Fisher discriminant analysis

FDA performs poorly if the samples in a class form several
separate clusters (i.e. for multimodal classes). This undesired
behavior is caused by the non-local nature of scatter matrices. So,
we can reformulate FDA in a pairwise manner in order to include
local information [15]. Define the local within-class scatter matrix
ons obtained using 1000 realizations of a LDA classifier on the transformed data for

duction for visualization of normal and pathological speech data,
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Fig. 2. Reduction to dimension Q ¼ 2. (a) PCA, (b) KPCA, (c) Sammon, (d) GP-LVM, (e) LLE, (f) FDA, (g) LFDA and (h) KLFDA applied to the voice data: normal (diamonds),

dysphonia (stars) and paralysis (circles).
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9.
S̃
ðwÞ

and the local between-class scatter matrix S̃
ðbÞ

by:

S̃
ðwÞ ¼ 1

2

XN

i; j¼1

w̃ðwÞi j ð~xi �~x jÞð~xi �~x jÞ
T
;

S̃
ðbÞ ¼ 1

2

XN

i; j¼1

w̃ðbÞi j ð~xi �~x jÞð~xi �~x jÞ
T
;

(21)

where

w̃ðwÞi j �
ai j=Nc if ci ¼ c j ¼ c;
0 if ci 6¼ c j;

�

w̃ðbÞi j �
ai jð1=N � 1=NcÞ if ci ¼ c j ¼ c;
1=N if ci 6¼ c j;

�

and A is an affinity matrix, that is an N � N matrix whose element ai j

corresponds to the affinity between ~xi and ~x j. We assume that
ai j 2 ½0;1�, with ai j large if~xi and~x j are ‘close’ and ai j is small if~xi and
~x j are ‘far apart’. This means that, sample pairs in the same class
which are far apart, have less influence on S̃

ðwÞ
and S̃

ðbÞ
. In this work

the value of each ai j was taken as:

ai j ¼ exp
� ~xi �~x j

�� ��2

s2

 !
: (22)

Then we obtain the LFDA transformation matrix TLFDA in an
analogous way to that of TFDA, but replacing SðwÞ and SðwÞ with S̃

ðwÞ

and S̃
ðbÞ

, respectively.
Please cite this article in press as: J. Goddard, et al., Dimensionality re
Biomed. Signal Process. Control (2009), doi:10.1016/j.bspc.2009.01.0
2.2.8. Kernel local Fisher discriminant analysis

As previously mentioned, LFDA can be extended to nonlinear
dimensionality reduction. By using the kernel trick, a regularized
version of the LFDA generalized eigenvalue problem can be
expressed as [15]:

KL̃
ðbÞ

K~̃v ¼ l̃ðKL̃
ðwÞ

Kþ eINÞ~̃v; (23)

where K is the kernel matrix with elements ki j ¼ kð~xi;~x jÞ, L̃
ðbÞ

and
L̃
ðwÞ

are the so called graph-Laplacian matrices of dimension N � N,
e is a small constant and IN is the identity matrix. For further details
see Appendix C in [15].

Let f~̃vkgN
k¼1 be the generalized eigenvectors associated with the

generalized eigenvalues l̃1� l̃2� . . . � l̃N of Eq.(23). Then the
embedded image of fð~xÞ in H is given by:

ffiffiffiffiffiffi
l̃1

q
~v1j

ffiffiffiffiffiffi
l̃2

q
~v2j . . . j

ffiffiffiffiffiffi
l̃q

q
~vq

� �T

kð~x1;~xÞ
kð~x2;~xÞ

..

.

kð~xN;~xÞ

0
BBB@

1
CCCA; (24)

where ð~j1j � � � j~jNÞ stands for a matrix with column vectors~ji 2RN .
This kernelized variant of LFDA is called KLFDA.

3. Results and discussion

The eight methods described in the previous section were
applied to the voice samples introduced in Section 2.1, trans-
forming them, in different experiments, to easily visualized
vectors in Euclidean spaces with two and three dimensions. All
duction for visualization of normal and pathological speech data,
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Fig. 3. Reduction to dimension Q ¼ 3. (a) PCA, (b) KPCA, (c) Sammon, (d) GP-LVM, (e) LLE, (f) FDA, (g) LFDA and (h) KLFDA applied to the voice data: normal (diamonds),

dysphonia (stars) and paralysis (circles).
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the experiments were conducted using Matlab and publicly
available implementations of KPCA,1 GP-LVM,2 LLE,3 LFDA and
KLFDA.4 In KPCA and KLFDA different kernels were tested, and
we present the best results, which were obtained using a radial
basis function kernel given in Eq. (12). Also, given its better
performance in preliminary tests, a multi-layer perceptron was
selected for the kernel in GP-LVM. For each method the
parameters have been selected ad hoc as the ones that provide
the best discrimination.

In order to select the number of neighbors, k, to be used in the
dimensionality reduction, we applied multiple linear discriminant
analysis (LDA) [23] on the mapped data, with Q ¼ 2 and Q ¼ 3,
respectively, for a number of k neighbors which varied from 1 to
30. In this way we fitted a multivariate normal density function to
each group, with a pooled estimate of covariance. The transformed
data were randomly split 1000 times into training and test sets,
with sizes of 67 and 33% of the full dataset, respectively. Fig. 1
shows the average percentage of correct classifications obtained
for each test set. For both values of Q we can see that the LLE
method is unstable up to k ¼ 15. Moreover, for k>15, no
noticeable effect on the performance of these methods is observed.
A similar analysis was conducted for selecting the parameter s in
Eq. (12) for KPCA, yielding s ¼ 4:6 for Q ¼ 2 and s ¼ 2:5 for Q ¼ 3.
For KLFDA the same kernel was chosen with s ¼ 1:949 for both
1 http://www.cs.unimaas.nl/l.vandermaaten.
2 http://www.dcs.shef.ac.uk/�neil/fgplvm.
3 http://www.cs.toronto.edu/�roweis/lle/code.html.
4 http://sugiyama-www.cs.titech.ac.jp/�sugi/software/LFDA.

Please cite this article in press as: J. Goddard, et al., Dimensionality re
Biomed. Signal Process. Control (2009), doi:10.1016/j.bspc.2009.01.0
values of Q. For LLE, LFDA and KLFDA the number of chosen
neighbors was 7, 33 and 23, respectively.

Fig. 2 shows the data mapped into a two-dimensional Euclidean
space by each of the eight dimensionality reduction techniques. In
the case of PCA for two dimensions, the amount of variance
explained was 97.69%. However, as we can appreciate in Fig. 2(a),
PCA did not provide an appropriate visual discrimination between
the three different voice groups. Also, whilst KPCA (Fig. 2(b)), LLE
(Fig. 2(e)), and LFDA (Fig. 2(g)) suggest a separation between
normal and pathological voices, these methods do not seem to
distinguish between the two voice disorders. Further, neither
Sammon (Fig. 2(c)), GP-LVM (Fig. 2(b)) nor FDA (Fig. 2(f)) provide a
clear clustering of the data. Finally, we can appreciate in Fig. 2(h)
that KLFDA is the only one that provides a visual discrimination of
the data into the three classes. This result is consistent with
Fig. 1(a).

Though one might expect better results from the supervised
methods (FDA, LFDA and KLFDA), due to the additional information
available, this is not always the case. It is important to observe that
even if KPCA and LLE are unsupervised methods, their transformed
data can visually distinguish between normal (diamonds) and
pathological (stars and circles) data. This is not the case for the
supervised method of FDA (cf. Fig. 2(d)), probably because the
distributions of the classes are multimodal.

In Fig. 3, we display the data mapped into a three-dimensional
Euclidean space using the same dimensionality reduction techni-
ques as in the previous figure. We can appreciate that no further
information can be extracted from visual inspection. In the case of
PCA (Fig. 3(a)), even though the explained variance was 98.78%, the
duction for visualization of normal and pathological speech data,
01
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Table 1
Classification with 3-NN. The results of Tukey’s multiple comparison test based on

the non-parametric Kruskal–Wallis test. Original 14-dimensional vector vs. data

transformed to two (2d) and three (3d) dimensions. The averaged percentages of

correct classifications are presented in the second column. In the third column,

those methods not significantly different at a significance level a ¼ 0:05, are shown.

Correct. Class. (%) Not S.D. from

Original 63.46 GP-LVM 2d, LFDA 2d, PCA 3d,

Sam 3d, LFDA 3d

PCA 2d 59.38 LLE 2d, KPCA 3d

KPCA 2d 60.91 Sam 2d, LLE 2d

Sam 2d 61.84 KPCA 2d, GP-LVM 2d, PCA 3d,

LFDA 3d

GP-LVM 2d 62.46 Original, Sam 2d, GP-LVM 2d,

PCA 3d, Sam 3d, LFDA 3d

LLE 2d 60.17 PCA 2d, KPCA 2d

FDA 2d 47.65 FDA 3d

LFDA 2d 64.39 Original, Sam 3d

KLFDA 2d 88:39 KLFDA 3d

PCA 3d 62.83 Original, Sam 2d, GP-LVM 2d,

Sam 3d, LFDA 3d

KPCA 3d 58.38 PCA 2d, LLE 3d

Sam 3d 63.36 Original, GP-LVM 2d, LFDA 2d,

PCA 3d, LFDA 3d

GP-LVM 3d 66.04 –

LLE 3d 57.57 KPCA 3d

FDA 3d 47.65 FDA 2d

LFDA 3d 62.91 Original, Sam 2d, GP-LVM 2d,

PCA 3d, Sam 3d

KLFDA 3d 88.36 KLFDA 2d
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9.
method cannot differentiate between the voice groups. It is worth
observing that the image of the data under KPCA appears to
approximate a one-dimensional curve for Q ¼ 2 (Fig. 3(b)), and it
appears to correspond to the folding of the one in Fig. 3(b). As in the
two-dimensional case, KLFDA is the method that provides the best
visual discrimination of the three classes.

In order to obtain a quantitative comparison between the eight
methods, two simple classifiers were applied to the transformed
data: k-nearest neighbor (k-NN) with k ¼ 3 and LDA. This value for
k was chosen after performing the test, varying its value from 1 to
Table 2
LDA classification. The results of Tukey’s multiple comparison test based on the

non-parametric Kruskal–Wallis test. Original 14-dimensional vector vs. data

transformed to two (2d) and three (3d) dimensions. The averaged percentages of

correct classifications are presented in the second column. In the third column,

those methods not significantly different at a significance level a ¼ 0:05, are shown.

Correct. Class. (%) Not S.D. from

Original 64.16 PCA 2d, LLE 2d

PCA 2d 64.89 Original, LFDA 3d

KPCA 2d 69.23 KPCA 3d

Sam 2d 61.96 GP-LVM 2d, LLE 2d, PCA 3d,

Sam 3d, LLE 3d

GP-LVM 2d 61.17 Sam 2d, Sam 3d, LLE 3d

LLE 2d 63.06 Original, Sam 2d, PCA 3d,

Sam 3d, LLE 3d

FDA 2d 67.46 LFDA 2d, GP-LVM 3d

LFDA 2d 66.77 FDA 2d, GP-LVM 3d, LFDA 3d

KLFDA 2d 92:26 KLFDA 3d

PCA 3d 62.81 Sam 2d, Sam 3d, LLE 2d, LLE 3d

KPCA 3d 68.68 KPCA 2d

Sam 3d 62.03 Sam2d, GP-LVM 2d, LLE 2d,

PCA 3d, LLE 3d

GP-LVM 3d 66.99 FDA 2d, LFDA 2d, LFDA 3d

LLE 3d 62.33 Sam 2d, GP-LVM 2d, LLE 2d,

PCA 3d, Sam 3d, GP-LVM 3d

FDA 3d 47.65 –

LFDA 3d 65.96 LFDA 2d, GP-LVM 3d

KLFDA 3d 92.22 KLFDA 2d

Please cite this article in press as: J. Goddard, et al., Dimensionality re
Biomed. Signal Process. Control (2009), doi:10.1016/j.bspc.2009.01.0
15. The data were randomly split into training (67%) and test (33%)
sets as above. The mean classification results for the test sets are
presented in Tables 1 and 2 for k-NN and LDA, respectively. In each
Table, the first row corresponds to the classification of the original
14-dimensional data; in the first column we present the method’s
name, followed by ‘2d’ or ‘3d’, depending on the reduced data
dimension. Finally, in the second column, the averaged percentage
of correct classifications – over the 1000 randomly split test sets –
is displayed for each reduction technique. The highest results are
highlighted in bold. The last column indicates the methods that
were not significantly different from the method in that row;
significance was decided using Tukey’s multiple comparison test
based on the non-parametric Kruskal–Wallis test (KWT) [24], at a
significance level of a ¼ 0:05. KWT has been selected, given that it
does not assume a normal distribution of the population, which is
in agreement with the obtained results.

As can be observed in the second column of both tables, the best
performance was provided by KLFDA (in Table 1, KLFDA-2d:
88.39% and KLFDA-3d: 88.36%; in Table 2: KLFDA-2d: 92.26%,
KLFDA-3d: 92.22%), with no significant differences between the
dimensions (2d and 3d). This is in agreement with the visual,
qualitative results, already discussed in previous Figures.

In the case of k-NN classification (Table 1) we can appreciate
that LFDA 2d, KLFDA 2d, GP-LVM 3d and KLFDA 3d provided higher
correct classifications than using the original 14-dimensional
feature vectors. However, only GP-LVM 3d and KLFDA (2d and 3d)
are significantly different from the other methods. We can
therefore conclude that they have better capabilities for the
discrimination tasks considered here, in agreement with the
visualization of speech data previously shown in Figs. 2 and 3.

On the other hand, in the case of LDA classification, KPCA (2d
and 3d), GP-LVM 3d, FDA 2d, LFDA (2d and 3d) and KLFDA (2d and
3d) have a higher percentage of correct classifications than that for
the original feature vectors. It is important to observe that PCA 2d
and LLE 2d are not significantly different from the classification
obtained using the original feature vectors.

After comparing the results obtained using the unsupervised
techniques, we can observe that for both of the classification
methods, GP-LVM 3d improves on the classification in the original
space. Nevertheless, the superiority of KLFDA 2d and 3d is evident.
Again, all these quantitative results confirm the intuition gained by
visual inspection of the previous figures.

4. Conclusions

In the present paper, we have compared the visualization
capabilities of eight dimensionality reduction techniques, when
they are applied to pathological and normal speech data. The
pathological data included two different speech disorders:
paralysis and dysphonia.

Supervised and unsupervised methods have been considered:
PCA, KPCA, Sammon, GP-LVM, LLE, FDA, LFDA and KLFDA. The data
were mapped by these methods to both two- and three-
dimensional Euclidean spaces. Qualitative and quantitative
analyses were conducted. Whilst dimensionality reduction was
performed using all the data, classification was applied to 1000
randomly chosen training and test sets.

The qualitative analyses of the visual results indicate that
discrimination using two or three dimensions is similar. However,
almost all the methods could only distinguish two groups. An
exception was provided by the KLFDA method, which gave a clear
visual separation of the three classes: normal, paralysis and
dysphonia.

A quantitative study was also performed using two different
classifiers. The results indicate that the KLFDA reduction method
also provides the best percentage of correct classification, in both
duction for visualization of normal and pathological speech data,
01
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9.
cases. In fact, there is a difference of over 28% between these latter
results and those obtained with the original 14 dimensional data.

In the case of a patient with paralysis or a dysphonic voice, this
type of low dimensional data visualization could help a voice
therapist or physician to better understand a patient’s condition by
considering the relative localization of the patients voice samples
in a bidimensional space. Furthermore, the patients’ evolution
during a given therapy could also be visually monitored.
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