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Abstract. The use of biologically inspired, feature extraction methods
has improved the performance of artificial systems that try to emulate
some aspect of human communication. Recent techniques, such as in-
dependent component analysis and sparse representations, have made it
possible to undertake speech signal analysis using features similar to the
ones found experimentally at the primary auditory cortex level. In this
work, a new type of speech signal representation, based on the spectro-
temporal receptive fields, is presented, and a problem of phoneme classi-
fication is tackled for the first time using this representation. The results
obtained are compared, and found to greatly improve both an early au-
ditory representation and the classical front-end based on Mel frequency
cepstral coefficients.

1 Introduction

The development of new techniques in the signal analysis and representation
fields promises to overcome some of the limitations of classical methods for solv-
ing real problems with complex signals, such as those related to human speech
recognition. Furthermore, novel techniques for signal representation, for example
those using overcomplete dictionaries, provide an important new way of thinking
about alternative solutions to problems such as denoising or automatic speech
recognition. Significant connections have been found between the way the brain
processes sensory signals and some of the principles that support these new
approaches [1,2].

In the process of human communication, the inner ear –at the cochlea level–
carries out a complex time-frequency analysis and encodes a series of meaning-
ful cues in the discharge patterns of the auditory nerve. These early auditory
representations, or auditory spectrograms, have been widely studied and mathe-
matical and computational models have been developed that allow them to be
estimated approximately [3].
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Auditory Cortical Representations of Speech Signals 1005

In spite of the knowledge available about early auditory representations, the
principles that support speech signal representation at higher sensorial levels,
as in the primary auditory cortex, are still the object of research [4]. Among
these principles two can be singled out, namely, the need for very few active
elements in a signal’s representation, and the statistical independence between
these elements. Using these principles, it is then possible to establish a model for
cortical representations that displays important correlations with experimentally
obtained characteristics from their physiological counterparts [5,6].

In order to obtain this cortical model, techniques related to independent com-
ponent analysis (ICA) and sparse representations (SR) are used [7,8]. These
techniques can emulate the behavior of cortical neurons using the notion of
spectro-temporal receptive fields (STRF) [9]. STRF can be defined as the re-
quired optimal stimulus so that an auditory cortical neuron responds with the
largest possible activation. Different methods, such as inverse correlation, are
used to estimate them from mammal neuronal activity data [10].

In this work, by making use of the time-frequency representations of the au-
ditory spectrograms of speech signals, a dictionary of two-dimensional optimal
atoms is estimated. Based on this STRF dictionary, a sparse representation that
emulates the cortical activation is computed. This representation is then ap-
plied to a phoneme classification task, designed to evaluate the representation’s
suitability.

This work is organized as follows: Section 2 presents the method for the speech
signal representation that is used in the paper. In particular, 2.3 explains how this
representation can include one involving the primary auditory cortex. Section 3
details the data used in the phoneme classification experiments as well as the
steps used to obtain the cortical representation patterns. Section 4 presents the
experimental results together with a discussion. Finally, Section 5 summarizes
the contributions of the present paper and outlines future research.

2 Sparse and Factorial Representations

2.1 Representations Based on Discrete Dictionaries

There are different ways of representing a signal using general discrete dictio-
naries. For the case where the dictionary forms a unitary or orthogonal trans-
formation, the techniques are particularly simple. This is because, among other
aspects, the representation is unique. However, in the general, non-orthogonal
case, a signal can have many different representations using a single dictionary.
In these cases, it is possible to find a suitable representation if additional criteria
are imposed. For our problem, these criteria can be motivated by obtaining a
representation with sensorial characteristics which are sparse and independent
[11], as mentioned in the introduction. Furthermore, it is possible to find an
optimal dictionary using these criteria [12].

A sparse code is one which represents the information in terms of a small
number of descriptors taken from a large set [12]. This means that a small
fraction of the elements from the code are used actively to represent a typical
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1006 H.L. Rufiner et al.

pattern. In numerical terms, this signifies that the majority of the elements are
zero, or ’almost’ zero, most of the time [13,14].

It is possible to define measures or norms that allow us to quantify how sparse
a representation is; one way is using either the �0 or the �1 norms. An alternative
way is to use a probability distribution. In general one uses a distribution with
a large positive kurtosis. This results in a distribution with a large thin peak at
the origin and long tails on either side. One such distribution is the Laplacian.
In the statistical context it is relatively simple to include aspects related to the
independence of the coefficients, which connect this approach with ICA [7].

In the following subsection a formal description is given of a statistical method
which estimates an optimal dictionary and the corresponding representation1.

2.2 Optimal Sparse and Factorial Representations

Let x ∈ R
N be a signal to represent in terms of a dictionary Φ, with size N ×M ,

and a set of coefficients a ∈ R
M . In this way, the signal is described as:

x =
∑

γ∈Γ

φγaγ + ε = Φa + ε , (1)

where ε ∈ R
N is the term for additive noise and M ≥ N . The dictionary Φ

is composed of a collection of waveforms or parameterized functions (φγ)γ∈Γ ,
where each waveform φγ is an atom of the representation.

Although (1) appears very simple, the main problem is that for the most
general case Φ, a and ε are unknown, thus there can be an infinite number of
possible solutions. Furthermore, in the noiseless case (when ε = 0) and given Φ,
if there are more atoms than there are samples of x, or if the atoms don’t form
a base, then non-unique representations of the signal are possible. Therefore, an
approach that allows us to select one of these representations has to be found.
In this case –although this is a linear system– the coefficients chosen to be part
of the solution generally form a non-linear relation with the data x. For the
complete, noiseless case the relationship between the data and the coefficients is
linear and it is given by Φ−1. For classical transformations, such as the discrete
Fourier transform, this inverse is simplified because Φ−1 = Φ∗ (with Φ ∈ C

N×M

and Φ∗(i, j) = Φ(j, i)).
When Φ and x are known, an interesting way to choose the set of coefficients

a from among all the possible representations, consists in finding those ai which
make the representation as sparse and independent as possible. In order to obtain
a sparse representation, a distribution with positive kurtosis can be assumed for
each coefficient ai. Further, assuming the statistical independence of the ai, a
joint a priori distribution satisfies:

P (a) =
∏

i

P (ai) . (2)

1 Although two-dimensional patterns are used, for clearness we only describe the one-
dimensional case.
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Auditory Cortical Representations of Speech Signals 1007

The system appearing in (1) can also be seen as a generative model. Following
the customary terminology used in the ICA field, this means that signal x ∈ R

N

is generated from a set of sources ai (in the form of a state vector a ∈ R
M ) using

a mixture matrix Φ (of size N × M , with M ≥ N), and including an additive
noise term ε (Gaussian, in most cases).

The state vector a can be estimated from the posterior distribution:

P (a|Φ, x) =
P (x|Φ, a)P (a)

P (x|Φ)
. (3)

Thus, a maximum a posteriori estimation of a would be:

â = argmax
a

[log P (x|Φ, a) + log P (a)] . (4)

When P (a|Φ, x) is sufficiently smooth, the maximum can be found by the
method of gradient ascent. The solution depends on the functional forms as-
signed to the distributions for the noise and the coefficients, giving rise to dif-
ferent methods for finding the coefficients. Lewicki and Olshausen [15] proposed
the use of a Laplacian a priori distribution with parameter βi:

P (ai) = α exp (−βi |ai|) , (5)

where α is a normalization constant. This distribution, with the assumption of
Gaussian additive noise ε, results in the following updating rule for a:

Δa = ΦT Λεε − βT |a| , (6)

where Λε is the inverse of the noise covariance matrix E
[
εT ε

]
, with E [·] denoting

the expected value.
To estimate the value of Φ, the following objective function can be maximized

[15]:
Φ̂ = argmax

Φ
[L(x, Φ)] , (7)

where L = E [log P (x|Φ)]P (x) is the likelihood of the data. This likelihood can be

found by marginalizing the following product of the conditional distribution of
the data, given the dictionary and the coefficients, together with the coefficients
a priori distribution:

P (x|Φ) =
∫

RM

P (x|Φ, a)P (a) da , (8)

where the integral is over the M -dimensional state space of a.
The objective function in (7) can be maximized using gradient ascent with

the following update rule for the matrix Φ [16]:

ΔΦ = ηΛε E
[
εaT

]
P (a|Φ,x) , (9)

where η, in the range (0, 1), is the learning rate.
In this iterative way, the dictionary Φ and the coefficients a were obtained.
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Fig. 1. Schematic diagram of the method used for estimating the auditory cortical
representation

2.3 Auditory Cortical Representations

The properties of sensorial systems should coincide with the statistics of their
perceived stimuli [17]. If a simple model of these stimuli is assumed, as the one
outlined in (1), it is possible to estimate their properties from the statistical
approach presented in the previous section.

The early auditory system codes important cues for phonetic discrimination,
such as the ones found in the auditory spectrograms. In these representations –of
a higher level than the acoustic one– some non-relevant aspects of the temporal
variability of the sound pressure signal that arrives at the eardrum have been
eliminated. Among these superfluous aspects, for example, is the relative phase
from some acoustic waveforms [18]. Hence, following this biological simile, this
representation forms a good starting point to attain more complex ones.

The obtention of a dictionary of two-dimensional atoms Φ, corresponding to
time-frequency features estimated from data x of the auditory spectrogram, is
equivalent to the STRF of a group of cortical neurons. Therefore, the activation
level of each neuron can be assimilated with the coefficients aγ in (1). Figure 1
shows a schematic diagram of the method adopted for estimating the cortical
representation.

Kording et al carried out a qualitative analysis of dictionaries obtained in a
similar way, and they found that their properties compared favorably with those
of the natural receptive fields [5].

3 Experiments and Data

According to the previous considerations an experiment of phoneme classifica-
tion was designed to evaluate the performance of a system that uses a cortical
representation for this task. The speech data, corresponding to region DR1 of
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Auditory Cortical Representations of Speech Signals 1009

Table 1. Distribution of patterns per class for training and test data

Phoneme TRAIN TEST

# (%) # (%)

/b/ 211 (3.26) 66 (3.43)
/d/ 417 (6.45) 108 (5.62)
/jh/ 489 (7.56) 116 (6.04)
/eh/ 2753 (42.58) 799 (41.63)
/ih/ 2594 (40.13) 830 (43.25)

Total 6464 (100.00) 1919 (100.00)

TIMIT corpus [19] for the set of five highly confusing phonemes /b/, /d/, /jh/,
/eh/, /ih/, were used (See Table 1).

For each one of the emissions, sampled at 16 KHz, the corresponding audi-
tory spectrogram was calculated from an early auditory model [20]. Then, the
frequency resolution of the data was reduced so as to diminish its dimensions.
After that, auditory spectrograms with a total of 64 frequency coefficients per
time unit were obtained. Finally, by means of a sliding window of 32 ms in length
at intervals of 8 ms, the set of spectro-temporal patterns that served as a base
for the estimation of the dictionaries were obtained. In Figure 2, the main steps
in this process, as well as the corresponding signals are shown.

A
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File: “/TIMIT/TRAIN/DR1/FCJF0/SA1.WAV”

Fig. 2. Main steps in the process used to generate the spectro-temporal patterns that
serve as a basis for obtaining the STRF: sonogram (top), original auditory spectrogram
(center) and low-resolution spectrogram (bottom). In this last representation, a section
corresponding to the sliding window, from which each spectro-temporal pattern is
generated, has been marked.
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1010 H.L. Rufiner et al.

From these spectro-temporal patterns, different dictionaries of two-dimensio-
nal atoms were trained using (9) [21]. Several tests for both the complete and
overcomplete cases of each configuration were conducted.

Once the STRF were obtained, the activation coefficients were calculated in
an iterative form using (6) from the auditory spectrograms. For comparison
purposes the mel frequency cepstral coefficients (MFCC) with an energy coeffi-
cient (MFCC+E) were calculated in the usual way for two consecutive frames,
resulting in patterns in R

28 [22].
The classification was carried out for each experiment using an artificial neu-

ral network, namely a multi-layer perceptron (MLP). The network architecture
consisted of one input layer, where the number of input units depended on the
dimension of the patterns, one hidden layer, and one output layer of 5 units. The
number of units in the hidden layer was varied, depending on the experiment.

4 Results and Discussion

An example of some of the STRFs obtained is shown in Figure 3. This case
corresponds to the complete dictionary Φ ∈ R

256x256, using patterns of 64x4.
Several typical behaviors can be observed, which are useful for discriminating
between the different phonemes used. The relative position of each element in the
dictionary is related to its similarity with the other elements in the dictionary
(in terms of the �2 norm of their differences). It is possible to observe that some
STRF seem to act like detectors of diverse significant phonetic characteristics,

Fig. 3. Some spectro-temporal receptive fields as obtained from the patterns of 64x4
points of the early auditory representations. Each STRF has 4 KHz height and 32 ms
width. The speech utterances were taken from five phonemes of TIMIT corpus, region
DR1.
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Auditory Cortical Representations of Speech Signals 1011

Table 2. Recognition rates of phoneme classification experiments with MLP using
the representations generated by means of the early auditory models, the cortical rep-
resentation obtained from the activation of the STRF, and MFCCs (best results in
bold)

N
o

Experiment Network TRN TST /b/ /d/ /jh/ /eh/ /ih/

1 Auditory 64x4 256/4/5 45.84 44.76 0.00 0.00 6.90 100.00 6.27
2 256/8/5 44.35 43.25 0.00 0.00 4.31 100.00 3.13
3 256/16/5 64.28 65.03 0.00 0.00 9.48 94.99 57.59
4 256/32/5 68.92 69.67 0.00 0.00 100.00 95.87 54.82
5 256/64/5 70.70 72.69 0.00 0.00 83.62 72.34 86.75
6 256/128/5 70.50 72.17 4.55 0.00 62.93 84.73 76.14
7 256/256/5 72.15 73.74 0.00 0.00 97.41 85.23 74.82
8 256/512/5 69.21 71.76 0.00 0.00 100.00 94.49 60.96

9 Cortical 64x4 256/4/5 77.04 75.72 40.91 56.48 97.41 84.86 69.16
10 256/8/5 79.64 77.64 46.97 62.96 93.97 84.86 72.77
11 256/16/5 75.60 76.08 65.15 51.85 97.41 89.99 63.73
12 256/32/5 79.72 74.73 65.15 67.59 98.28 79.22 68.80
13 256/64/5 87.27 76.86 74.24 66.67 95.69 88.24 64.82
14 256/128/5 100.00 78.37 72.73 70.37 96.55 78.35 77.35
15 256/256/5 98.10 77.07 65.15 71.30 91.38 87.11 67.11
16 256/512/5 99.92 79.16 71.21 69.44 92.24 80.35 78.07

17 Cortical 64x4x2 512/4/5 78.65 73.79 48.48 59.26 86.21 85.61 64.58
18 512/8/5 80.62 75.51 63.64 59.26 98.28 85.36 65.90
19 512/16/5 78.65 74.26 54.55 53.70 99.14 82.98 66.63
20 512/32/5 82.58 75.66 62.12 66.67 95.69 85.11 66.02
21 512/64/5 87.27 75.87 54.55 65.74 98.28 83.48 68.43
22 512/128/5 84.72 75.98 65.15 56.48 95.69 84.23 68.67
23 512/256/5 81.37 76.55 65.15 62.96 95.69 86.86 66.63
24 512/512/5 82.64 76.32 65.15 61.11 97.41 77.97 74.70

25 MFCC+E 14+14 28/28/5 77.39 77.28 46.51 75.38 91.11 80.56 74.40

e.g. unique frequencies, stable speech formant patterns, changes in the speech
formants, unvoiced or fricative components, and well-located patterns in time
and/or frequency.

The results of the experiments described in the previous section are detailed
in Table 2. As can be seen from this table, the results of classification on the
training and test data for the cortical representation are better than those ob-
tained when using the direct (or early) auditory representation. For the latter
representation, some of the classification results are apparently globally good,
however, when the individual phoneme classification rates (exhibited in the right-
most columns of the table) are examined, only two or three phonemes are in fact
correctly classified (see experiments No 1-8). This problem arises because of a
local minimum error solution that the cortical representation avoids (see the
uneven pattern distribution in Table 1).
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Moreover, the results for the cortical representation are better than those
obtained using the classical MFCC representation on this task (see experiments
No 16 and 25 in Table 2). Another important aspect is that the performance is
satisfactory for relatively small network architectures in relation to the pattern
dimensions. This aspect corroborates the hypothesis that the classes are better
separated in this new higher dimensional space, and therefore a simpler classifier
can complete the task successfully.

The statistical significance of these results was evaluated considering the prob-
ability that the classification error of a given classifier ε is smaller than the one
of the reference system εref . In order to make this estimation, the statistical
independence of the errors for each frame was assumed, and the binomial dis-
tribution of the errors was modeled by means of a Gaussian distribution (this is
possible because a sufficiently large number of test frames is given). Therefore,
comparing the MFCC with the best result of the cortical representation, the
Pr(εref > ε) > 92% was obtained.

Harpur [13] conducted some simple experiments of phoneme classification us-
ing low entropy codes, with only positive coefficients generated from a filter bank.
However, experiments using more complex models of the auditory receptive fields
– such as the ones that appear here – have not been previously reported.

5 Conclusions

In this work, a new approach to speech feature extraction, based on a biological
metaphor, has been proposed and applied to a phoneme classification task. This
approach first finds an early auditory representation of the speech signal at the
auditory nerve level. Then, based on analogies established with neuro-sensorial
systems, an optimal dictionary is estimated from the auditory spectrograms of
speech data.

The method finds a set of atoms which can be related to the spectro-temporal
receptive fields of the auditory cortex, and which prove capable of functioning
like detectors of important phonetic characteristics. It is worthwhile mentioning,
for example, the detection of events based on highly localized spectro-temporal
features, such as relatively stationary segments, different types of formant evo-
lution, and non-harmonic zones.

Using representations provided by the method as the input patterns, multi-
layer perceptrons were trained as phoneme classifiers. The results obtained im-
prove those of both early auditory and standard MFCC representations. The
objective was not to find the best possible classifier, but rather to demonstrate
the feasibility of the proposed method. Obviously, further experimentation is
called for.

Another interesting issue, that also remains to be explored in future works, is
the evaluation of the robustness of this type of representation in the presence of
additive noise.
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