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Abstract

The determination of quality of the signals obtained by blind source separation is a
very important subject for development and evaluation of such algorithms. When
this approach is used as a pre-processing stage for automatic speech recognition, the
quality measure of separation applied for assessment should be related to the recog-
nition rates of the system. Many measures have been used for quality evaluation,
but in general these have been applied without prior research of their capabilities
as quality measures in the context of blind source separation, and often they re-
quire experimentation in unrealistic conditions. Moreover, these measures just try
to evaluate the amount of separation, and this value could not be directly related
to recognition rates. Presented in this work is a study of several objective quality
measures evaluated as predictors of recognition rate of a continuous speech recog-
nizer. Correlation between quality measures and recognition rates is analyzed for
a separation algorithm applied to signals recorded in a real room with different
reverberation times and different kinds and levels of noise. A very good correlation
between weighted spectral slope measure and the recognition rate has been verified
from the results of this analysis. Furthermore, a good performance of total relative
distortion and cepstral measures for rooms with relatively long reverberation time
has been observed.

Key words: Quality Measures, Blind Source Separation, Robust Speech
Recognition, Reverberation.
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1 Introduction

Blind source separation (BSS) of sound sources is a technique aiming at recover
the signals emitted by some sound sources, from records obtained by remote
sensors, without using any information about transfer characteristics or geo-
metrical location of sources and sensors [1]. BSS is a complex process because
the ambient may change the sound field due to sensors being remotely located
with respect to sources. As a consequence, the received signals at sensors are
not only mixed, but also modified in a way that can be assimilated to process-
ing by a linear time-invariant (LTI) system [2]. In free field conditions, impulse
response from each source to each sensor would be a delayed impulse, with
the amplitude related to energy decay of sound, and delay related to transmis-
sion time in the source-sensor path. In a closed environment, however, sound
is reflected in all free surfaces, returning to sensors from different directions.
So impulse responses have a complex structure, with many impulses located
at different delays, corresponding to echoes arriving from different directions.
This reverberation phenomenon produces echoes and spectral distortion af-
fecting the spatial perception of sound [2,3,4], intelligibility [5,6] and degrades
recognition rates in case of automatic speech recognition (ASR) systems [7],
even if the system is trained with reverberant signals recorded in the same
room [8].

Quality evaluation of the resulting separated signals is a complex problem
that depends on the application field. In some cases, the main interest is
not recovering the original signal but preserving some characteristics that are
required for the task concerned. For example, when retrieval of a voice to be
used in a hearing aid device is desired, perfect reconstruction of the original
waveform is not as important as a good perceptual quality. In the same way,
for ASR systems, auditory perception is not as important as preserving some
acoustic cues that are used by the system to perform the recognition. On
the contrary, in other situations the aim is to recover the original signal as
exactly as possible, such as a waveform coder. So far, few works have been
presented with specific proposals for quality evaluation in the field of BSS.
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Particularly, in the context of automatic speech recognition, the only available
way to evaluate the performance of some blind source separation algorithm is
through a speech recognition test.

The objective of the present work is to find objective quality measures that
correlates well with automatic speech recognition rate, when using blind source
separation as a mean to introduce robustness into the recognizer. To fulfill this
objective, first some set of potentially good measures need to be selected. In
the next section a brief review on quality evaluation in the context of BSS
and speech processing will be given. Based on this review, in Section 3 specific
quality measures will be selected for the evaluation in our experimental frame-
work. Next, a detailed description of the experimental design for determining
the relation between speech recognition rates and the obtained measures re-
sults will be given. Results and discussion will be presented in Sections 5 and
6 respectively, followed by conclusions in Section 7.

2 Brief review of quality evaluation

2.1 Quality evaluation for BSS

In the particular case of evaluating BSS algorithms, many different alternatives
have been used, generally derived from other areas of signal processing. Those
methods can be classified into two main areas: subjective assessment, where
some appreciation is used regarding subjective perceived quality of result-
ing sound [9,10], or visual differences between waveforms of separated signal
and original ones [10,11,12], or visual differences of spectrograms of separated
signals and original ones [9]; and objective evaluation, where some numeri-
cal quantity directly associated to separation quality is used, permitting an
objective comparison between different algorithms.

Regarding objective measures that have been applied to BSS problem, these
can be divided into three kinds:

(1) Measures that require knowledge about transmission channels: These
measures use information about impulse responses between each sound
source and each microphone, or require knowledge of individual signals
arriving at each microphone. These kinds of measures are hard to apply
to realistic environments as they depend on factors that may vary from
one experiment to another. Among them, it can be mentioned: Multi-
channel inter symbol interference (MISI) [1]; Signal to interference ratio
(SIR) [13,14,15] and Distortion - Separation [16].

(2) Measures that use information about sound sources: In this case some
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measures of discrepancy between the separated signal and the original
source signal is used. One drawback of these measures is that, by com-
paring with original sources, the algorithms that perform separation but
not reverberation reduction will yield poorer results as the resulting sig-
nal will be always distorted, even for perfect separation. Some measures
of this kind commonly used in BSS are: Total relative distortion (TRD),
proposed in [17,18], and segmental Signal to noise ratio (segSNR) [15,19].

(3) Indirect measures: In this case the processed signal is used as input to
another system with which the result can be evaluated in an objective
way. The most typical example of this is an ASR system with which
evaluation is made on recognition rate obtained after separation 3 [20,21].

All of these show an important lack of experimentation in the area of quality
evaluation for algorithms of BSS in realistic environments. Problems for qual-
ity measure proposals came mainly from two aspects that must be taken into
account for a correct evaluation of such algorithms: reality level required in
experiments, which is necessary for the results to be directly extrapolated to
practical situations, and task complexity, as for example, some BSS algorithms
search only for separated signals, while others try to eliminate reverberation
effects too. These aspects also need to be considered carefully for choosing a
suitable kind of evaluation.

2.2 Quality measures applied to other areas

In applications where the final result will be listened by humans, the ideal
way for quality assessment is by means of subjective evaluation of percep-
tual quality [22]. Many standardized tests allow the evaluation with subjective
measures. For example, the composite acceptability (CA) of diagnostic accept-
ability measure (DAM) [23] consists of a parametric test where the listener
has to evaluate acceptability of sound based on 16 categories of quality. Other
widely used subjective measure is the mean opinion score (MOS), a measure
where each subject has to evaluate the perceived quality in a scale of 1 to 5.
This kind of tests has high cost both in time and resources.

Several objective quality measures have been proposed to overcome this draw-
back [24,25,26]. In [27] the correlation between a large number of objective
measures and the subjective measure CA-DAM is studied, evaluated over sev-
eral speech alterations, contamination noises, filters and coding algorithms. In
that work, weighted spectral slope measure (WSS) was the best predictor of
subjective quality.

3 This case is opposite to the objective of the present work, where we are not
evaluating the separation itself, but its impact on an ASR system.
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Table 1
Performance of quality measures for different tasks (see full explanation in text). Sec-
ond column: |ρ| DAM, correlation as predictor of CA-DAM. Third column: WER%,
word error rate in isolated word recognition. Fourth column: rerr, prediction error
as predictor of recognition rate in robust continuous ASR

Measure |ρ| DAM WER% rerr

segSNR 0.77 – 4.71

IS – 11.35 0.41

LAR 0.62 – 0.88

LLR 0.59 8.45 –

LR – 8.63 –

WLR – 9.15 –

WSS 0.74 8.45 1.72

CD – 8.88 –

LSD 0.60 – –

In the last years, some objective measures that use perceptual models have
been introduced. The first widely adopted was perceptual speech quality mea-
sure (PSQM) [28] and more recently, the audio distance (AD) based on mea-
suring normalizing blocks (MNB) was proposed [29]. This measure present a
correlation with MOS of more than 0.9 for a wide variety of coding algorithms
and languages [30].

Regarding ASR, these measures have been used at two different levels. In
template-based isolated word recognizers, a measure of distance between the
test signal and the stored templates is needed [31]. Several objective measures
originally proposed for speech enhancement or coding have been successfully
used within this context [32,33,34]. On the other hand, the capability of those
measures to predict recognition rate of a robust speech recognizer has been
studied [35].

As a summary of the background available for our work, Table 1 shows a com-
parison of results obtained by various researchers in different tasks 4 . First
column lists the objective quality measures used: segmental signal to noise ra-
tio (segSNR), Itakura-Saito distance (IS), log-area ratio (LAR), log-likelihood
ratio or Itakura distance (LLR), likelihood ratio (LR), weighted likelihood

4 As the application fields and contexts are different respect to this work, these
results are not directly applicable to our research, but can give some cues on po-
tentially interesting measures to evaluate.
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ratio (WLR), weighted spectral slope (WSS), cepstral distortion (CD), and
log-spectral distortion (LSD) [24,25,26,32,36].

The second column presents the absolute value of correlation coefficient be-
tween quality measures and subjective test CA-DAM [22], evaluated over a
set of speech modified with 322 different distortions. It should be noted that
correlation for segSNR was calculated using only a subset of 66 distortions
produced by waveform coders, for whom a measure based in waveform sim-
ilarity has sense. Excluding this case, a high correlation between subjective
quality level and WSS can be noted.

The third column presents the percentage of word error rate (WER%) for
an isolated word recognition system, in which the measures where applied as
selection criteria for classification, for a set of 39 word of a telephone recording
database [34]. A good performance for recognizers based on LLR and WSS
measures can be noted.

Finally, the fourth column shows the performance of measures as predictors of
recognition rate in a continuous speech recognition system using a robust set
of features, on speech contaminated with additive noise [35]. The presented
value (rerr) is the mean squared prediction error, averaged over all sentences in
the database of processed speech. In this case the best performance is obtained
by LAR and IS measures.

3 Selected measures

As mentioned in Section 1, only objective measures that make use of sound
source information will be used in this work. This kind of measures attempt
to evaluate some “distance” or “distortion” of separated signal with respect
to original signal and have been selected for three reasons. First, by using
this approach experiments can be performed with mixtures recorded in real
rooms (this gives the experiment a high level of realism) and there is no need
to know any information about transmission channels between sources and
sensors. Second, as the sources must be available, the experiments could be
extended to other mixing conditions. Third, as in general the ASR systems are
trained with clean speech, using a method that permits to compare algorithm
output with the “ideal” clean one is reasonable.

Based on the analysis presented in Section 2 of previous works, a set of 9
objective quality measures was selected for this study 5 :

5 Detailed equations and parameters used are listed with unified notation in Ap-
pendix A
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(1) Segmental signal to noise ratio (segSNR): This measure is included be-
cause it is widely used due to its simplicity. Besides this, it has been used
in the context of BSS to evaluate separation algorithms, as mentioned in
Section 2 [22].

(2) Itakura-Saito distortion (IS): This measure is derived from linear predic-
tion (LP) analysis [37,31]. Its good performance as predictor of recogni-
tion rate for signals with additive noise in continuous speech recognition
systems makes this measure a good candidate for the present research.

(3) Log-area ratio distortion (LAR): It is also derived from LP coefficients
[22,37]. This measure has been selected given its good performance as
predictor of recognition rate in continuous speech recognition systems, as
can be seen in Table 1.

(4) Log-likelihood ratio distortion (LLR): This measure is calculated sim-
ilarly to IS distortion [37,32]. Its good performance as a dissimilarity
measure in isolated word recognition systems, makes interesting its ap-
plication in the context of this research.

(5) Weighted spectral slope distortion (WSS): This measure is mainly related
to differences in formant locations [24], and was selected because of its
relative good performance in all cases presented in Table 1.

(6) Total relative distortion (TRD): It is based on an orthogonal projection
of the separated signal on the original signal [18]. As this measure is
specific for performance evaluation of BSS algorithms, it was considered
appropriate to include it in this work.

(7) Cepstral distortion (CD): This measure is also known as truncated cep-
stral distance [25]. As ASR systems for continuous speech make use of
cepstral-based feature vectors, it is reasonable to include some measures
using distances calculated in the cepstral domain.

(8) Mel cepstral distortion (MCD): This measure is calculated in a similar
way as CD, but the energy output of a filter bank in mel scale is used in-
stead of spectrum of signals. Also, as many ASR systems use mel cepstral
coefficients, it is reasonable to use a distance measure based on them as
a predictor of recognition rate.

(9) Measuring normalizing blocks (MNB): This technique applies a simple
model of auditory processing but then evaluates the distortion at multiple
time and frequency scales with a more sophisticated judgment model [29].
It is a modern approach including perceptual information and, due to his
high correlation with MOS scores, was considered as a good candidate
for this study.

With the exception of MNB, all the selected measures are frame based, there-
fore each of them yields a vector (see Appendix A). However, for the evaluation
a unique value for each sentence is needed. To achieve this, median value has
been employed, as suggested in [37], because in general the measures are af-
fected by outliers corresponding to silence segments at the beginning and the
end of each original sentence, in which only noise is observed.
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4 Experimental setup

In order to evaluate the performance of selected measures as predictors of
recognition rate, an experimental setup was designed. This consists of the
reproduction in a room of pre-recorded clean speech sentences and noise, to
obtain the mixtures to be used in the evaluation. Reproduction was made
through loudspeakers with frequency range from 20 Hz to 20 kHz. In all ex-
periments, two sources where used and the resulting sound field was picked-up
at some selected points by two Ono Sokki MI 1233 omnidirectional measure-
ment microphones, with flat frequency response from 20 Hz to 20 kHz and with
preamplifiers Ono Sokki MI 3110. In the following sections, brief descriptions
of the speech database, spatial location of sources and microphones, separation
algorithm and speech recognizer employed in this work will be given.

4.1 Speech Database

In this study a subset of a database generated by the authors is used. It
consists of recordings of 20 subjects, 10 male and 10 female, each pronouncing
20 sentences selected for a specific task (remote controlling of a TV set using
voice commands). These sentences, in Japanese language, were recorded in an
acoustically isolated chamber using a close contact microphone with sampling
frequency of 44 kHz, later downsampled to 16 kHz with 16 bit quantization.
From this database, one male and one female speakers were selected for this
study. In consequence, the original sources consist of 40 utterances, 20 from a
male speaker and 20 from a female speaker. The corpus contains an average
of 1.4 words/sentence, with average duration of 1.12 s.

Three kinds of interfering signals were selected. One is a signal obtained from
recording the noise in a room with a large number of computers working.
Spectral and statistical characteristics of this noise source can be seen in Fig.
1. The second kind of noise is a speech signal, pronouncing a sentence different
from those used as desired sources. In the case of sentences spoken by female
speakers, utterances from male speakers were used as noise and vice versa. The
third noise employed is a recording of sound emitted by a TV set. This noise
includes speech simultaneously with music. The same TV sound was used to
interfere with spoken sentences of both speakers.

4.2 Spatial Setup

All the mixtures were performed in an acoustically isolated chamber as shown
in Fig. 2. This setup includes two loudspeakers and two microphones with or
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Figure 1. Computer noise characteristics. a) shows power spectral density (psd)
estimated by Welch method, and b) shows an estimation of probability density
function (pdf)(the line is a normal fit for histogram)

without two reflection boards (used to modify reverberation time). As can be
seen in the figure, there are three locations for microphones, a, b and c. In
addition, the speech source and noise can be reproduced by loudspeakers in
the way shown in Fig. 2, named “position 1”, or they can be exchanged to
“position 2” (that is, playing the source in the speakerphone labeled “noise”
and vice versa). Powers of reproduced signals were adjusted in such a way
to get a power ratio of speech and noise at loudspeakers output of 0 dB or
6 dB. Each of these spatial-power (SP) combinations will be referred as an
“SP-Case” in the following. Table 2 shows the codes assigned to each of the
SP-Cases, with explanation of the parameters used in each case.
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Figure 2. Room used for all recordings. All dimensions are in cm.
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Table 2
Signal-Power experimental case codes and their meanings

SP-Case Microphones Source-Noise Power ratio

a10 a position 1 0 db

a16 a position 1 6 db

a20 a position 2 0 db

a26 a position 2 6 db

b10 b position 1 0 db

b16 b position 1 6 db

b20 b position 2 0 db

c10 c position 1 0 db

c20 c position 2 0 db

c26 c position 2 6 db

In order to analyze the changes in reverberation properties of the room, with
the same positions explained before, there was one or two reflection boards
added. Without reflection boards, measured reverberation time 6 was τ60 =
130 ms, whereas with one reflection board this time increased to τ60 = 150
ms, and with two reflection boards the time was τ60 = 330 ms. The same
10 SP-Cases previously mentioned were repeated in each of the reverberation
conditions, giving three sets of experiments which would be referred from now
on as Low (τ60 = 130 ms) , Medium (τ60 = 150 ms) and High (τ60 = 330 ms) 7 .

Briefly, there are three reverberation conditions. For each of them, 10 SP-Cases
were performed, with different combinations of microphone and source loca-
tions and different power ratios. Each of these cases consists of 20 utterances
from a male and 20 from a female speaker, mixed with each of the three
kinds of noise employed, adding to a total of 120 utterances for each SP-Case.
In total, separation and recognition over 3600 experimental conditions was
evaluated.

6 The reverberation time τ60 is the time interval in which the sound pressure level
of a decaying sound field drops by 60 dB, that is to one millionth of its initial value
[38].
7 This naming convention is just to distinguish relative duration of reverberation
times in this set of experiments, but this does not imply that the case named “High”
actually corresponds to very long reverberation time.
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4.3 Separation algorithm

The BSS algorithm is based on independent component analysis (ICA) in the
frequency domain [1,39]. Given a number M of active sources and a number
N of sensors (with N ≥ M), and assuming that the environment effect can
be modeled as the output of an LTI system, the measured signals at each
microphone can be modeled as a convolutive mixture model [1]:

xj (t) =
M∑
i=1

hji (t) ∗ si (t) (1)

where xj is the j-th microphone signal, si is the i-th source, hji is the impulse
response of the room from source i to microphone j, and ∗ stands for convo-
lution. This equation can be written in compact form as x (t) = H (t) ∗ s (t).

Taking a short-time Fourier transform (STFT) of the previous equation, the
convolution becomes a multiplication, and assuming that the mixture filters
are constant over time (that is, impulse responses does not vary in time), this
can be written as:

x(ω, τ) = H(ω)s(ω, τ). (2)

Thus, for a fixed frequency bin ω this means that a simpler instantaneous
mixture model can be applied. Under the assumption of statistical indepen-
dence of the sources over the STFT time τ , the separation model for each
frequency bin can be solved using one of the methods for independent com-
ponent analysis (ICA) [39]. In this context, for each frequency bin ω a matrix
W (ω) is searched such as y(ω, τ) = W(ω)x(ω, τ), where resulting separated
bins y (ω, τ) should be approximately equal to the original s (ω, τ). This fre-
quency domain algorithm is a standard formulation for convolutive mixtures,
that is known to produce good results for short reverberation times [8].

We have used a STFT with a Hamming window of 256 samples. In order to
have enough training data to perform ICA on each frequency bin, a window
step of 10 samples was used. For each frequency band, a combination of JADE
[40] and FastICA [41] algorithms are used to achieve separation. FastICA is
sensitive to initial conditions, because it is a Newton-like algorithm. For this
reason, JADE was applied to find an initial approximation to separation ma-
trix, and then FastICA was employed to improve the results (with the JADE
guess as initial condition). For FastICA we have used the nonlinear function
G(y) = log(a + y) with its derivative g(y) = 1

a+y
. Both complex versions of

JADE and FastICA were obtained from the websites of their authors.
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One problem of this approach is that the ICA algorithms can give arbitrary
permutations and scalings for each frequency bins. So in two successive fre-
quency bins, extracted source i can correspond to different original sources,
with arbitrary scaling in amplitude. Permutation and amplitude indetermi-
nacies are solved by the algorithm proposed in [19]. Permutation is solved
using the amplitude modulation properties for speech: at two near frequency
bins, the envelope of the signal in that band should be similar for bins orig-
inated by the same source. Using correlations with accumulated envelopes of
already separated bins, one can classify new frequency bands. To estimate the
envelopes, we used a 20 milliseconds averaging lowpass filter. The amplitude
indetermination is solved by applying the obtained mixing matrix to only one
of the separated sources. After the separation and the solution of the indeter-
minacies, the overlap-and-add method of reconstruction was used to obtain
the time-domain signals [42].

For each of the reverberation conditions, mixture signals captured by micro-
phone in each combination of sentences and noises were processed with this
algorithm. From each pair of separated signals, the signal more likely to rep-
resent the desired source was selected by means of a correlation. In this way,
a database with separated signals corresponding to each of the sentences in
each experimental condition was generated. Before the application of qual-
ity measures, correlation was used to compensate any possible delay between
separated and original signal, and to detect possible signal inversions (if max-
imum correlation is negative, the signal is multiplied by -1). Also all signals
were normalized to minimize the effect of magnitude indeterminacies. This
was done by dividing both separated and original by their respective energy.

4.4 Recognizer

The recognizer used was the large vocabulary continuous speech recognition
system Julius [43], based on hidden Markov models (HMM). This is a standard
recognition system widely used for Japanese language. The decoder performs
a two-pass search, the first with a bi-gram and the second with a tri-gram lan-
guage model. This system was used with acoustic models for continuous den-
sity HMM in HTK [44] format. The models were trained with two databases
provided by the Acoustic Society of Japan (ASJ): a set of phonetically bal-
anced sentences (ASJ-PB) and newspaper article texts (ASJ-JNAS). Around
20000 sentences uttered by 132 speaker of each gender were used.

The recognizer use 12 mel frequency cepstral coefficients (MFCC) computed
each 10 milliseconds, with temporal differences of coefficients (∆MFCC) and
energy (∆E) for a total of 25 feature coefficients. Also cepstral mean nor-
malization was applied to each utterance. Phonetic tied-mixture triphones are
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Table 3
Word recognition rates (WRR%) with only one source in the real room. In this
case, there is only reverberation effect. This can be considered an upper limit of the
obtainable recognition rate in each case.

Mic. Low Rev. Med. Rev. High Rev.

1cm 83 80 79

a 80 75 53

b 75 66 66

c 56 49 44

used as acoustic models. The full acoustic model consists of 3000 states tying
64 gaussian from a base of 129 phonemes with different weights depending of
the context. For the language model, both bi-gram and tri-gram models were
generated from 118 million words from 75 months newspaper articles, which
were also used to generate the lexicon [45].

Word recognition rate was evaluated as:

WRR% =
T −D − S

T
100% (3)

where T is the number of words in the reference transcription, D is the number
of deletion errors (words present in the reference transcription that are not
present in the system transcription) and S is the number of substitution errors
(words that were substituted by others in the system transcription) [44].

To compare with obtained results, WRR by this system was evaluated on the
source sentences reproduced in the room but without any interfering noise,
with microphones in location a, b and c, and also with microphones located at
1 cm from source. This permits to evaluate the degradation effect caused on
the recognizer by reverberation, even without interfering noise. These results
are shown in Table 3. As the algorithm generally does not reduce –in great
amount– the reverberation effect, these values can be taken as a baseline limit
for obtainable recognition rate in each case 8 .

Word recognition rates for mixtures and for BSS separated signals was also
evaluated, as shown in Fig. 3. For this figure, the SP-Cases where grouped
according to location of microphones relative to sources, as equal distance
(a10+a20 and a16+a26), nearer to desired source (b10+c20 and b16+c26),
and nearer to noise source (b20+c10).

8 It must be noted that feeding the ASR system with the original clean sentences,
yielded a word recognition rate of 100%.
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Figure 3. Word recognition rates (WRR%) using mixtures and separated sources for
different reverberation conditions. White bars: mixed (recorded) sound; Gray bars:
sound separated by BSS. Label b20+c10 mean average of results of these SP-Cases
(with similar meaning for the other labels).

5 Results

For each of the reverberation conditions and for each SP-Case, quality mea-
sures have been calculated for all sentences and all noise types. Then, an
average of each measure for all utterances has been taken, grouping them for
noise kind. In this way, for each combination of reverberation condition/SP-
Case, three values of quality were generated corresponding to average quality
in each noise kind. In the same way, for each combination of reverberation
condition and SP-Case, recognition rate was also evaluated, separated by the
kind of noise, obtaining three values of recognition rate for each case.

With these data three analyses were made. Table 4 presents Pearson correla-
tion coefficient (absolute value) for the analyses, defined as [46]:

ρxy =

∑
i [(xi − x̄) (yi − ȳ)][∑

i (xi − x̄)2∑
i (yi − ȳ)2

]1/2 (4)

where xi represents the quality measure to be used as predictor, yi the WRR%,
and x̄, ȳ the corresponding estimated mean values. First, for each reverberation
condition, correlation of quality measures as predictors of recognition rate was
evaluated, discriminated for each kind of noise, in such a way that the sample
consist of 10 pairs of quality measures/recognition rates (each pair is a SP-
Case). Second, the same analysis was performed considering all kind of noises,
that is taking in the sample the 30 pairs of quality measures/recognition rates,
considering all kinds of noise for a reverberation condition, giving as a result
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Table 4
Correlation coefficient |ρ| for all experiments. Best value for each case has been
marked in boldface. “All” includes in the sample all noise kinds for a given re-
verberation condition, and “ALL” includes all noise kinds and all reverberation
conditions. Last row shows the standard deviation of the regression residual.

Reverb. Noise segSNR IS LAR LLR WSS TRD CD MCD MNB

Low Comp. 0.80 0.44 0.70 0.70 0.92 0.88 0.81 0.87 0.90

TV 0.68 0.13 0.76 0.72 0.84 0.77 0.78 0.80 0.78

Speech 0.64 0.77 0.74 0.65 0.84 0.62 0.79 0.84 0.56

All 0.61 0.39 0.73 0.71 0.86 0.75 0.77 0.80 0.62

Medium Comp. 0.78 0.43 0.58 0.62 0.88 0.82 0.74 0.85 0.85

TV 0.76 0.31 0.92 0.91 0.90 0.86 0.91 0.85 0.85

Speech 0.78 0.76 0.82 0.85 0.66 0.85 0.76 0.62 0.64

All 0.76 0.46 0.75 0.74 0.77 0.83 0.74 0.72 0.78

High Comp. 0.77 0.53 0.74 0.75 0.83 0.85 0.81 0.80 0.83

TV 0.81 0.71 0.92 0.92 0.93 0.90 0.93 0.90 0.87

Speech 0.74 0.33 0.75 0.74 0.77 0.72 0.79 0.75 0.66

All 0.75 0.50 0.78 0.79 0.81 0.84 0.84 0.79 0.75

|ρ| ALL 0.74 0.43 0.73 0.71 0.83 0.84 0.76 0.77 0.75

σr ALL 5.94 9.70 6.68 7.36 4.98 5.74 6.42 5.77 7.86

one value of general correlation for each reverberation condition. Third, the
correlation was evaluated without data segregation, that is, including in the
sample all the kinds of noise and all the reverberation conditions.

Also, dispersion graphic for all data was made in Fig. 4 for the case of all
noise kinds and all reverberation conditions (last rows in Table 4). A dis-
persion graphic was drawn for each measure including a total least squares
regression line and two lines that mark regression value plus/minus two times
the standard deviation of residual. This standard deviation was estimated ac-
cording to σ2

r =
∑N
i=1 (yi − ŷi)2 / (N − 2) where yi is the true WRR% and ŷi

the predicted value by regression [46]. Also, this figure shows the values of |ρ|
and σr.

6 Discussion

Many interesting findings can be extracted from the analysis of Table 4. In
general, it can be said that the measure showing the maximum correlation
as predictor of recognition rate is WSS. This is because it is the best in 6 of
12 cases. In the cases where it has not been the one with largest correlation,
it can be seen that it is close to the maximum value. Regarding the global
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Figure 4. Regression analysis of quality measures for all experimental cases. WRR%,
word recognition rate.

value of correlation (|ρ| ALL), WSS is relegated to the second position, but
the difference (0.0063) is not significative 9 . Furthermore, in the global case it
is the measure that has lower residual variance.

For the lowest reverberation time, WSS is clearly superior to the other mea-
sures. In the intermediate reverberation case, the best performance is for TRD

9 This difference is not seen in Table 4 due to the two decimal precision used.
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but sharing the success for different noises with LAR, LLR and WSS. In the
High reverberation case, CD measure seem to behave better, but closely fol-
lowed by TRD.

One possible explanation for the lowering of correlation of WSS measure is the
following: as reverberation time increases, performance of separation algorithm
decreases, and so resulting separated signals will have increasing amount of
interfering signal. In this case, as the original signal is present at a high level,
measures that take into account preservation of special features (like formants
in WSS) would give good values, although the interfering level would be high
enough for the recognizer to fail. Conversely, those measures that have more
relation to whole spectral distances between signals would behave closer to
recognition rates.

Regarding the effect of different kinds of noise, in the case of computer noise,
the best measure is WSS showing the highest correlation for low and medium
reverberation times, while TRD is better for long reverberation times. The
algorithm used for separation can perform very well in this case of quasi-
stationary noise. Therefore, separated signal will have very similar spectral
contents to the original one, being mainly distorted due to reverberation ef-
fects. For TV noise the results show that, at low reverberation, WSS is a
better measure, at medium reverberation the best measure is LAR (although
all LLR, WSS and CD are very near), and for high reverberation WSS and CD
have a better performance. This can be also explained by a good performance
for the separation algorithm which can also manage this non-stationary noise.
In the case of speech noise, at low reverberations the best measure is WSS, for
medium reverberation TRD and LLR are the best, and at high reverberation,
CD is the best one. Speech noise is the hardest condition for the separation
algorithm, and this lowering of performance of WSS can be explained in a
similar way as before (related to degradation of WSS for long reverberation
times).

TRD is the second measure in global performance, particularly well correlated
at medium reverberation times. It also has the second lower global resid-
ual variance. This can be related to the fact that this measure was designed
specifically to evaluate blind source separation algorithms. This could show
an important relation (that was not necessarily obvious a priori) between the
evaluation of the separation algorithm itself and its performance for speech
recognition.

The relative good results of cepstral measures is not a surprise. Their quite uni-
form performance for all levels of reverberation can be related to the internal
representation of the recognizer based in cepstral coefficients. So, changes in
these coefficients are reflected directly in recognition rate, giving some uniform
behavior. Although one could expect a general better performance for MCD
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than for CD, the results not always agree. It would be interesting to perform
the same experiments with a recognizer based in different feature vectors, like
Rasta-PLP [47,48,49], to check whether the good performance is recognizer-
related or in fact can be generalized. Comparing only the cepstral measures,
MCD is very stable with reverberation, keeping high correlation levels in all
cases. CD presents better correlation than MCD at higher reverberation times.

In opposition to the expected results, MNB performance was rather poor,
compared to the previous ones. This measure was specially designed for speech
vocoders, and maybe that distortions are very different to the ones presented
in blind source separation.

It is also interesting to verify that segmental SNR has been outperformed
in all cases by almost all measures. This must be considered in all works
where improvement of algorithms is reported using this measure. According
to these results, improvements reported in terms of SNR will not be reflected
in recognition rates.

The results presented here were obtained for this separation algorithm and
this specific recognizer, so strictly speaking they are only applicable for these
cases. Nevertheless, we consider that as long as the separation algorithm uses
similar processing (i.e. frequency domain BSS) and the speech recognizer uses
the same paradigm (HMM with MFCC features) the results should not change
qualitatively. On the other hand, all the experiments here were made with
Japanese language. However, there are some studies, like [29] where it is shown
that the results of objective quality measures for different languages are quite
similar, and so we expect an objective measure not to change significantly
when applied to different languages (specially in the case of WSS, where both
good recognition rate and good perceptual quality are achieved).

7 Conclusions

From the analysis of the obtained results, the measure presenting more corre-
lation with word recognition rates is WSS. When reverberation time increases,
it has been proved that the performance of this measure degrades gradually,
meanwhile TRD and cepstral-based measures perform better than WSS. This
is an important guide at the time of choosing a suitable separation quality
measure for speech recognition.

On the other hand, remembering that WSS is a highly correlated measure with
subjective evaluation of quality (Table 1), one additional advantage of using
this measure becomes evident. If the algorithm under evaluation is designed
not only for the front-end of ASR, but also as an enhancement part of the
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system that would present their result to human listeners, it can be expected
that using WSS as a quality measure will allow to achieve both objectives: a
good recognition rate together with good perceptual quality of speech.

One of the possible practical applications of these results in the field of BSS
for ASR is in algorithm selection/tuning. In early research stages, where a
particular separation algorithm and its parameters should be selected, direct
evaluation by means of recognition rate would be prohibitive as a result of the
large amount of test over complete databases. The alternative is to use one of
the objective quality measures to select some candidate algorithms and their
parameters, and then perform a fine tuning with the complete ASR system.

A Quality measures details

The following notation will be used: let the original signal be s and separated
signal ŝ, both of M samples. Frame m of length N of original signal is defined
as sm = [s[mQ], . . . , s[mQ+N − 1]], where Q is the step size of the window in
a short-time analysis, and with analogous definition for corresponding frame
of the separated signal. In the case of measures derived from linear prediction,
a system order P is assumed. Using this notation, the evaluated measures are:

(1) SegSNR: Given a frame of original signal and corresponding frame of
separated signal, segSNR is defined as [22]:

dSNR(sm, ŝm) = 10 log10

‖sm‖2

‖ŝm − sm‖2 , (A.1)

where ‖·‖ is the 2-norm defined as usual, ‖x‖ =
(∑N

n=1 x[n]2
)1/2

.

(2) IS distortion: Given LP coefficients vector of original (clean) signal, am,
and LP coefficient vector for the corresponding frame of separated signal,
âm, IS distortion is defined as [31,37]:

dIS(am, âm) =
σ2
m

σ̂2
m

âTmRâm
aTmRam

+ log

(
σ̂2
m

σ2
m

)
− 1, (A.2)

where R is the autocorrelation matrix, and σ2, σ̂2 are the all-pole system
gains.

(3) LAR distortion: Given reflection coefficient vector for an LP model of a
signal, km = [κ(1;m), . . . , κ(P ;m)]T , the Area Ratio vector is defined as

gm = [g(1;m), . . . , g(P ;m)]T , where g(l;m) = 1+κ(l;m)
1−κ(l;m)

. These coefficients
are related to the transversal areas of a variable section tubular model
for the vocal tract. Using these coefficients, for a frame of original signal,
and corresponding frame of separated signal, LAR distortion is defined
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as [22,37]:

dLAR(gm, ĝm) =
{

1

P
‖log gm − log ĝm‖2

} 1
2

. (A.3)

(4) LLR distortion: Given LP coefficient vector of a frame of original and
separated signal, am and âm respectively, LLR distortion is given by
[32,37]:

dLLR(am, âm) = log
âTmRâm
aTmRam

, (A.4)

where R is the autocorrelation matrix.
(5) WSS distortion: Given a frame of signal, the spectral slope is defined as

SL[l;m] = S[l+ 1;m]−S[l;m], where S[l;m] is a spectral representation
(in dB), obtained from a filter bank using B critical bands in Bark scale
(with index l referring to position of filter in filter bank). Using this, WSS
between original signal and separated one is defined as [24,37]:

dWSS(sm, ŝm) =Kspl(K − K̂) +
B∑
l=1

w̄[l]
(
SL[l;m]− ŜL[l;m]

)2
, (A.5)

where Kslp is a constant weighting global sound pressure level, K and

K̂ are sound pressure level in dB, and weights w[l] are related to the
proximity of band l to a local maximum (formant) and global maximum
of spectrum, as w̄[l] = (w[l] + ŵ[l])/2, with:

w[l] =

(
Cloc

Cloc + ∆loc[l]

)(
Cglob

Cglob + ∆glob[l]

)
(A.6)

with a similar definition for ŵ[l], where Cglob and Cloc are constants and
∆glob, ∆loc are the log spectral differences between the energy in band
l and the global or nearest local maximum, respectively. This weighting
will have larger value at spectral peaks, especially at the global maximum,
and so it will give more importance to distances in spectral slopes near
formant peaks (for more details, see [24,31,34]).

(6) TRD: The separated source can be decomposed as ŝ = sD+eI +eN +eA,
where sD = 〈ŝ, s〉s/ ‖s‖2 is the part of ŝ perceived as coming from the
desired source, and eI , eN and eA the error parts coming from the other
sources, sensors noises and artifacts of the algorithm. For each frame m
of these components, TRD is defined as [17,18]:

dTRD(s, ŝ;m) =

∥∥∥eIm + eNm + eAm
∥∥∥2

‖sDm‖
2 . (A.7)

(7) CD: Given the vectors of cepstral coefficients cm and ĉm, corresponding
to a frame of original signal and corresponding separation result, CD for
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the first L coefficients is defined as [31]:

dCD(sm, ŝm) =
L∑
l=1

(cm[l]− ĉm[l])2 . (A.8)

(8) MCD: Given mel cepstral coefficients cmelm and ĉmelm corresponding to orig-
inal and resulting separated signal respectively, calculated using a filter
bank of B filters in mel scale, MCD for the first L coefficients is defined
as [22,31]:

dMCD(sm, ŝm) =
L∑
l=1

(
cmelm [l]− ĉmelm [l]

)2
. (A.9)

(9) MNB: This measure is more complex than the previous ones, so it will be
only outlined here. It includes first a time-frequency representation, that
is transformed to Bark scale to obtain a representation more closed to the
auditory mapping. After this transformation the auditory time-frequency
representations of the reference S(t, f) and test Ŝ(t, f) are analyzed by
a hierarchical decomposition of measuring normalizing blocks in time
(tMNB) and frequency (fMNB). Each MNB produces a series of measures
and a normalized output Ŝ ′(f, t). For a tMNB, the normalization is done
by:

e(t, f0) =
1

∆f

∫ f0+∆f

f0
Ŝ(t, f)df − 1

∆f

∫ f0+∆f

f0
S(t, f)df

Ŝ ′(f, t) = Ŝ(t, f)− e(t, f0) (A.10)

where f0 and ∆f define a frequency band for the integration. By inte-
gration of e(t, f0) over time intervals, a group of measures for this tMNB
is obtained. The same is used for each fMNB, with the roles of t and f
interchanged. So, the hierarchical decomposition proceeds from larger to
smaller scales, for frequency and time, calculating distances and remov-
ing the information of each scale. After this process, a vector of mea-
sures µ is obtained. Then a global auditory distance (AD) is built by
using appropriate weights AD =

∑J
i=1wiµi. Finally, a logistic map is ap-

plied to compress the measure and adjust it to a finite interval, given by
L(AD) = 1

1+eaAD+b . The authors have proposed two different hierarchical
decompositions, called structure 1 and 2, that use different tMNB and
fMNB decompositions. For more details, refer to [29].

For the analysis, the following parameters were used:

• Frame length N = 512 samples (32 ms of signal).
• Step size for analysis window Q = 128 samples (8 ms of signal).
• Order for LP models P = 10.
• WSS: B = 36, Kspl = 0, Cloc = 1 and Cglob = 20 as recommended by author

in [24].
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• CD: truncation at L = 50 coefficients.
• MCD: number of filters B = 36, number of coefficients L = 18.
• MNB (structure 1): a = 1.0000 and b = −4.6877 as suggested in [29]. The

signals were subsampled to 8000 Hz before applying this measure.
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