
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Dottorato in Dispositivi Elettronici – XVIII ciclo

Tesi di Dottorato

Nonlinear RF/Microwave device
and system modeling using neural

networks

Georgina S. Stegmayer Machado

Tutore Coordinatore del corso di dottorato
prof. Carlo Naldi prof. Carlo Naldi

Dicembre 2005

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

; "
N

on
lin

ea
r 

R
F/

M
ic

ro
w

av
e 

de
vi

ce
 a

nd
 s

ys
te

m
 m

od
el

in
g 

us
in

g 
ne

ur
al

 n
et

w
or

ks
"

Po
lit

ec
ni

co
 d

i T
or

in
o,

 d
ec

, 2
00

5.



Summary

The aim of this PhD thesis is to highlight the relevance of the neural network
paradigm application as a very useful tool inside the new behavioral approach for
modeling RF/Microwave devices or (sub)systems. This thesis proposes a model
that has the capability to learn and predict the dynamic behavior of nonlinear
devices based on a Time-Delayed Neural Network (TDNN) model. This model
can be trained with input/output device measurements and a very good accuracy
can be obtained in the device simulation easily and rapidly. The TDNN model has
been validated with transistor and Power Amplifier(PA) time-domain measurements.
The properties of this kind of model make it specially suitable for new wireless
communications components modeling and is of particular interest for the industry,
because it allows fast device model development and characterization.

Furthermore, a new method has been found for the identification of Volterra
kernels in the time domain, suitable for representation of a nonlinear electronic
device. This new algorithm allows extraction of the Volterra kernels directly from
the neural network model parameters, and the resulting model represents a very
good approximation of the nonlinear behavior, also for strong nonlinearities, with a
limited number of kernels.

In summary, the purposes of this thesis are, on the one hand, the proposal
of a new behavioral model neural network-based and a simple approach for the
obtention of its corresponding Volterra series, which can be applied even in the case
of a nonlinearity that depends on more than one variable, and that allows to obtain
a general model independent of the physical circuit under study. On the other hand,
a prototype of a software toolbox that has been developed as result of this research
work, with an intuitive interface for creation and use of neural network-based models
for RF/Microwave devices and that could be implemented inside a commercial RF
simulator.
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Chapter 1

Introduction

Radio-Frequency (RF) and Microwave Engineering are growing rapidly in impor-
tance, stimulated in particular by the exceptional world-wide growth in digital mo-
bile communication systems and wireless applications.

Modern communications systems composed by RF/Microwave electronic devices
or sub-systems generally have nonlinear behavior, rich in high-frequency dynamics.
For analysis and design purposes, they have to be replaced by realistic models, which
must particularly take into account the nonlinearity, which may influence the whole
systems performance. The wireless communications market is commercially very
important and therefore there is a big interest in finding good suitable models to
use in the RF system design process.

Models have to fulfill two main requirements: first, they should be built in
an efficient way and should represent a device or system with a sufficient accuracy.
Second, they could be developed to replace existing too much detailed (and therefore,
costly to build and hard to simulate) models.

The first requirement holds particularly for the semiconductor industry, subject
to continuous technological improvements which lead to new or significantly modified
technologies. In the second case, the objective is to improve model efficiency without
sacrificing too much model accuracy. Moreover the model should be predictive, that
is to say, it should not only closely match the device behavior, but also yield a
response for situations not specified in the dataset near to the real behavior of the
element studied.

This PhD thesis proposes a new model which tries to fulfill both these require-
ments. The proposed model can be applied for the modeling of electronic compo-
nents of a communication system (devices or sub-systems), reproducing accurately
their nonlinear and dynamic behavior using a neural network-based approach. More-
over, this thesis proposes a prototype of a software toolbox for the creation and use
of the proposed model and later implementation inside a commercial circuits simu-
lator.
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1 – Introduction

The structure of this PhD thesis is the following:

Chapter 2 Introduces existing and new modeling techniques for RF/Microwave
nonlinear devices analysis.

Chapter 3 Discusses in detail the approach followed in this thesis, behavioral mod-
eling, and the different techniques that can be used for building such models,
i.e. neural networks.

Chapter 4 Presents the novel behavioral model neural network-based for nonlinear
electronic device modeling and how it can be used to obtain a Volterra series
representation.

Chapter 5 Presents the results obtained from the application of the proposed
model for the modeling of electronic devices and circuits.

Chapter 6 Shows examples of the application of the proposed software toolbox
prototype to support the creation and use of behavioral models neural network-
based for electronic devices simulation.

Chapter 7 Finalizes this thesis with the conclusions an analysis of the results.

Appendix A The appendix explains in detail the procedure that allows calculating
the Volterra kernels from the parameters of a neural network model and shows
the codification of the algorithm.

A list of references and an index complete the presented work.
Results of this PhD thesis are the following publications and awards:
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Chapter 2

Modeling approaches

This chapter introduces existing classical and new modeling approaches in the
RF/Microwave field. It underlines and exemplifies the differences between old and
new modeling techniques, at both device and system-level.

2.1 Introduction

No general theory is available for modeling. The classical (and generally followed)
approach for modeling an electronic device is building a representation for it in the
form of a circuit derived from a physical model, whose internal relationships (i.e.
current-voltage, charge-voltage) and elements topology (connections between them)
have to be determined according to the formalisms of the Electronics Circuit Theory,
as illustrates figure 2.1.

This procedure is based on the known physical behavior of the modelled element
that dictates the model topology [68]. The physical circuit is measured and the
measured parameters are mathematical quantities which have to be related to the
circuit model through equations. For this reason, not only the model must be
tailored to the device, but also the extraction of its parameters strongly depends
on the device or system under study. Parameter extraction is the procedure of
comparing the values of some parameters of interest obtained from the circuit model,
against those actually measured in the physical circuit. If they do not compare
satisfactorily, a more adequate model must be found.

A different approach, that claims to be able to represent any general device or
system, is referred to as a behavioral modeling. A behavioral model tries to esti-
mate both the functional form of the relations between variables and the numerical
parameters in those functions.

Neural Networks are nowadays being used as black-box behavioral models, be-
cause they usually do not make assumptions regarding the data they represent
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2 – Modeling approaches

Figure 2.1. Classical modeling approach.

[77][93]. As an analytical behavioral model, the Volterra series expansion approach
has been proposed since many years for nonlinear electronic devices modeling [85][95].
However, due to the difficulties and complexity in identifying the terms of the
Volterra series through experimental data, this approach has not been effectively
exploited within commercially available circuit simulators.

Figure 2.2. Novel behavioral neural network-based (NN) approach for modeling.

The objective of this thesis is to propose a solution to this last problem in
the Volterra series building, and at the same time to present a general behavioral
model, independent of the physical circuit modelled and of the number of controlling
variables, receiving only simple and standard device measurements used to train a
neural network-based model (a black-box model), able to generate the corresponding
Volterra series model, as shows schematically figure 2.2.

In the next sections, both physical-circuit and behavioral modeling approaches
are briefly described. In the second part of the chapter, some examples of these
techniques are given.

2.2 Physical and circuit approach

In the traditional approach to the design of RF/microwave devices, they are mod-
eled by electrical models characterized through standard or on-chip measurements
performed on manufactured prototypes. Some steps must be followed when devel-
oping the model [10]. First of all, the important physical variables and phenomena
must be identified through a careful low-level analysis of the device physics. Then,
the next step consists in formulating the relevant physical equations which relate
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2 – Modeling approaches

the internal physical variables to each other and to the external terminal currents
and voltages. These (generally nonlinear) equations must be solved.

Physics-based device modeling relates the physical parameters set β of a given
semiconductor device (e.g. β = activated doping profile, actual gate length, gate
depth, surface or substrate state density, etc.) to its electrical parameters set γ (i.e.,
γ = frequency-dependent S-parameters, DC characteristics, transconductance, junc-
tion capacitances, noise parameters, etc.). Circuit analysis finally provides the link
between the electrical device parameters and the corresponding circuit performance
within the framework of an integrated CAD1 environment (i.e. a circuits simulator)
[21].

Figure 2.3. Two-port equivalent-circuit model.

To obtain a suitable compact model for circuit simulation, available physical
knowledge has to be used to obtain a numerically well-behaved circuit model. The
relationship of the circuit with the underlying device physics and physical structure is
a key point when building such models. Assuming that a satisfactory mathematical
model of a device D is obtained, the final step consists in synthesizing a circuit
model, which uses both lumped2 and distributed3 components. A circuit model is
often called an equivalent-circuit of D. Depending on the application (e.g. amplitude
and frequency of operation) a given device may have many distinct models. An
example of an equivalent-circuit model for a two-port4 device is shown in figure 2.3.

Lumped equivalent electrical circuits offer the advantage of being computation-
ally efficient and accurate, but at the expense of very complex model parameter
extraction carried through numerical fitting and optimization, for which no phys-
ical insight is available [33]. The physics-based design approach makes direct use
of physical and geometrical input data as the variables to be tuned during circuit

1Abbreviation for Computer Aided Design”.
2A discrete component, that is self-contained, i.e. capacitors, resistors, inductors.
3An electrical property that is spread throughout a circuit or device, rather than being concen-

trated at one point, as in a discrete component, i.e. a transmission line.
4In a circuit, device, or system, a port is a point at which energy or signals can be introduced

or extracted.
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2 – Modeling approaches

optimization. Accurate physical modeling of semiconductor devices cannot usually
be achieved through computationally efficient analytical, or quasi-analytical, mod-
els. Instead, a numerical implementation of the models is often needed to accurately
foresee the device performances in DC5, AC6 small signal and large-signal operation
[5].

A model able to provide complete device performance prediction (DC charac-
teristics, bias-dependent small-signal AC parameters, large-signal response, noise,
temperature dependence) in terms of physical parameters alone, must be based on
fundamental semiconductor equations. Accurate and general-purpose algorithms
for the solution of these equations require the numerical discretization of sets of
partial differential equations over a two or three-dimensional domain. As a conse-
quence, numerical physics-based models are computationally intensive and therefore
unsuitable for direct inclusion into CAD tools for circuit analysis and optimization.
Moreover, an excellent agreement shown for a specific device does not guarantee that
the physical model is able to accurately reproduce the variations in the electrical
characteristics caused by variations in the physical input parameters [21].

A major disadvantage of the physical modeling approach is that it usually takes a
lot of time to develop a good model for a new device. A quite detailed description of
the device internal structure is needed, and then the construction of the equivalent-
circuit components and its topology is a complex and time-consuming task, which
not only requires experience but also is a difficult trial-and-error process.

It is less justifiable nowadays when new devices and technologies are constantly
introduced into the market, which have to be characterized in a reasonable amount
of time and with an acceptable accuracy. This is particularly true in the semiconduc-
tor industry, where continuous technological improvements lead to the appearance
of new devices built with new technologies. As a result of rapid changes in semi-
conductor technology, development of models to represent the new transistor has
become a continuous activity. These are besides the major reasons to explore al-
ternative modeling techniques, such as the behavioral approach introduced in the
following lines.

2.3 Behavioral approach

Behavioral modeling has appeared as an alternative to the traditional circuit-based
approach. A behavioral model relies on directly measured data of a device D or
system S, allowing to completely forget a circuit model topology. The only concern
in this kind of model is the description of the element behavior that is observed at

5Abbreviation for Direct Current.
6Abbreviation for Alternating Current.
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2 – Modeling approaches

its accessible terminals or ports, that is to say, the model is simply built as a black-
box from input/output measurement data or simulations. A block representation of
such behavioral model for a two-port element is depicted in figure 2.4.

Figure 2.4. Two-port black-box model.

Behavioral models are particularly suited for nonlinear devices and systems mod-
eling, whose internal operation, mechanism and composition are not well understood,
but could be measured. The difficult and fundamental problem with this approach
is to determine the model structure that best describes the real device or system
under study. In other words, the key question that has to be answered for building a
behavioral model is: from input/output measurements only, is it possible to identify
a unique model topology or structure to represent the device behavior?

The answer to this question is clearly no for a linear element, because i.e. given
any linear one-port device D, there exist many equivalent one-port models having
distinct circuit topologies but the same behavior, which are not distinguishable from
input/output measurements alone. However, this lack of uniqueness does not hold in
the presence of nonlinearities. The same complexity which makes nonlinear systems
difficult to represent, analyze and design, also allows much more information about
the internal structure to be extracted from input/output measurements [11].

Behavioral models are considered as a black-box in the sense that no knowledge
of the internal structure is required for model building, and the modeling information
is completely included in the device external response [95]. The main advantage of
this measurement-based modeling approach is that a low-order model of a complex
circuit or system can be derived, without prior knowledge of its internal topology.
A behavioral model is a simplified model of the essential behavior of an element
at a given level of abstraction hierarchy (e.g. device or sub-system level), for use
in simulation at the next highest level (e.g. system level) [65]. At a device-level,
it is often possible to obtain discrete behavioral data from measurements or device
simulations, such as a list of applied voltages and corresponding device currents, bias
conditions, etc. At a system-level, power levels and input/output waveforms can also
be measured or estimated. Behavioral models can be derivable from both simulations
and/or measurements. Measurement based model extraction is typically used for
model building, while simulation based modeling is typically used for reduction of
model complexity [80].
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2 – Modeling approaches

A very important advantage of this technique is that one can in principle obtain
a model of any required accuracy by providing a sufficient amount of (sufficiently
accurate) discrete data. Considering for example a circuit model for an integrated
circuit7 (IC), the simulator can be used to stimulate the IC model and the responses
used to derive a behavioral model for simulation at the next higher level of abstrac-
tion. Alternatively, behavioral models can be derived from real measurements made
on the component, which can therefore lead to more accurate models than starting
from lower level, possibly inaccurate equivalent-circuit simulations. This feature
also helps the designers to make behavioral models from real components for which
a circuit model may not be available.

2.4 Device-level modeling

Given a device D, it is physically impossible to measure its generally infinite collec-
tion F(D) of possible admissible voltage(v)-current(i) signal pairs. An alternative
approach is to develop a device model M(D) made of some well-defined set of el-
ements, so that each admissible voltage-current signal pair associated with M(D)
represents a good approximation to a corresponding measurement (v(t),i(t)) from
D.

In general, the model M(D) contains several parameters which are determined
by measurements on the given D. If not, a mathematical model can be developed,
consisting of one or more equations, each of whose solution under a given excitation
gives a good approximation to a corresponding pair (v(t), i(t)) measured from D.
These equations are generally nonlinear and may include a combination of algebraic
equations, ordinary differential equations, partial differential equations or integral
equations [10].

To incorporate into the model effects like signal propagation delay, M(D) may
be constructed from several so-called quasistatic (sub)models. A quasistatic model
consists of functions describing the static behavior of a model. Time is not an
explicit variable in any of these functions, it only affects the model behavior via
the time dependence of the input variables of the model. In an equivalent-circuit
representation, obtained from the equations of the model, the Kirchhoff current law
(KCL) relates the behavior of different topologically neighboring quasistatic models,
by requiring that the sum of the terminal currents towards a shared circuit node
should be zero in order to conserve charge [25]. It is through the corresponding
differential algebraic equations that truly dynamic effects like delays are accounted
for. Non-input, non-output circuit nodes are called internal nodes, and a model

7A circuit whose components (transistors, resistors, capacitors, inductors) and connecting wires
are made by processing distinct areas of a chip of semiconductor material, such as silicon.
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2 – Modeling approaches

or circuit containing internal nodes can represent truly dynamic or non-quasistatic
behavior.

A non-quasistatic model is simply a model that can represent the non instan-
taneous responses that quasistatic models cannot capture by themselves. A set of
interconnected quasistatic models then constitutes a non-quasistatic model through
the KCL equations. Essentially, a non-quasistatic model may be viewed as a small
circuit by itself, but the internal structure of this circuit need no longer correspond
to the physical structure of the device it represents, because the main purpose of
the non-quasistatic model is to accurately represent the electrical behavior, not the
underlying physical structure [52].

A comparison of examples at this level of analysis, using the circuit-based ap-
proach and behavioral modeling, are shown in the next subsection.

2.4.1 Example: transistor modeling

In the RF/Microwave field, the most commonly used transistor8 nowadays inside
integrated-circuits (ICs) as the basis for most digital electronic devices is the field-
effect transistor (FET). It is a semiconductor amplifying device, which relies on an
electric field to control the shape and the conductivity of a channel in a semiconduc-
tor material. Based on its input voltages, it allows a precise amount of current to
flow through it. The terminals in a FET are called gate, drain and source. The volt-
age applied between the gate and source terminals modulates the current between
source and drain. The FET is actually used as low-noise or power discrete element,
as well as active device inside microwave ICs. An example of an equivalent-circuit
model for a FET together with the physical meaning of the model topology are
shown in figure 2.5.

Figure 2.5. Physical meaning of an equivalent-circuit model for a FET transistor.

The well-known Curtice-Ettenberg model (traditionally called the Curtice model)[12][13],
proposed almost two decades ago for modeling FET transistors, has been exten-
sively used for all kinds of microwave circuit designs. The Curtice model consists

8Solid-state semiconductor device which can be used for amplification, switching, signal modu-
lation, etc.
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2 – Modeling approaches

of an equivalent-circuit for the device that includes linear elements, nonlinear ca-
pacitances, diodes and a nonlinear current source representing the channel current.
The channel current (or drain current) is given by equation 2.1, where the coef-
ficients Ai can be evaluated from measurement data, Vgs is internal gate voltage,
Vds is drain voltage, Vds0 is a particular bias voltage (usually the one where the Ai

polynomial coefficients were determined), β, γ and l are constants, t is gate-to-drain
time delay and V1 is the input voltage which includes the phenomena of pinch-off9

voltage increase with drain-source voltage. It can be noted that V1 = Vgs at DC
when Vds = Vds0.

Ids(Vgs,Vds) =
(
A0 + A1V1 + A2V

2
1 + A3V

3
1

)
tanh(γVds)(1 + lVds) (2.1)

where

V1 = Vgs(t) (1 + β(Vds0 − Vds)) (2.2)

Ignoring equation 2.2, by assuming that β = 0, equation 2.1 can be put in the
following form:

Ids = fg(Vgs)fd(Vds) (2.3)

where

fg(Vgs) = A0 + A1V1 + A2V
2
1 + A3V

3
1 (2.4)

and

fd(Vds) = tanh(γVds)(1 + lVds) (2.5)

Equation 2.3 is a convenient expression which allows to separate the effects of
the gate (equation 2.4) and drain (equation 2.5) I-V characteristics and to determine
them easily: fg(Vgs) is a cubic polynomial, which should be relatively easy to fit to
a set of measured data and can be found from a plot of Ids at fixed Vds; and fd(Vds)
is a hyperbolic tangent function, used because any FET’s drain I-V characteristic
looks like a hyperbolic tangent curve when Vds > 0 and can be calculated at fixed
Vgs. The remaining term, 1 + lVds accounts for DC drain-to-source resistance. The
corresponding equivalent circuit and I-V (current vs. voltage) curves of the Curtice
model can be seen in figure 2.6 and 2.7, respectively.

The Curtice model, in one form or another, has been implemented in virtually all
circuit simulators. Still, there are some problems when using the model. Designers
frequently encounter convergence difficulties and errors. As Dr. Curtice himself has
recently said : ”... it is a simple model for a very complex device ...” [49]. This

9Region on the characteristic curve of a FET in which the gate bias causes the depletion region
to extend completely across the channel.
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2 – Modeling approaches

model works reasonably well for small-signal levels, but fails to follow the device
behavior satisfactorily where saturation10 and cut-off11 occur.

Figure 2.6. The Curtice model: equivalent- circuit.

Figure 2.7. The Curtice model: I-V curves.

An example of a physics-based model for a FET is presented in [21]. The sim-
ulated and measured I-V curves for the device are shown in the right part of the
figure 2.8. This model, to be able to provide complete device performance predic-
tion (DC characteristics, bias-dependent small-signal AC parameters, large-signal
response, noise, temperature dependence) in terms of physical parameters alone, is
based on fundamental semiconductor equations. For the correct comparison between
measured and computed scattering [S] parameters12, a set of external parasitics was
added to the model, according to the equivalent circuit shown in the left part of fig-
ure 2.8. The circuit is largely redundant, since some elements are actually negligible
or can be merged; it has however been chosen because it allows a physical estimate of
all reactive parameters. The model is completely based on a deep knowledge about
the physical insights of the device modelled, i.e. the substrate residual donor and

10On a voltage-current conduction curve, condition in which a further increase in voltage pro-
duces no appreciable increase in current.

11The point on the characteristic curve of an amplifying device, at which the output current
drops to zero under no-signal conditions.

12Set of parameters that characterize a device, they relate its inputs and outputs in a linear way.
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2 – Modeling approaches

acceptor concentrations phenomena (happening at the very physical low-level) are
included into the model, as well as the external parasitics that were approximated
on the basis of electromagnetic models.

Figure 2.8. Small-signal equivalent circuit and I-V curves for a FET.

As an alternative to these traditional models, new curve-fitting techniques have
been recently proposed for behavioral modeling of nonlinear FET devices used in
amplifiers, generating characteristic amplifier data as function of bias current level
[76]. In the cited work, the traditional small-signal Curtice model is used as a
starting point and then modified to obtain a behavioral large-signal model. It is
built as combination of several functions as the result of polynomial fitting. The
coefficients of the functions are actually measurable parameters from the device,
such as power, voltage, current, gain, noise figure, among others. The behavioral
model is based on the following device parameters: Ids is drain current, Vgs is gate
voltage and Vpo is pinch-off voltage. Its final form is shown in equation 2.6.

Ids =
Ids

4

{
log10

[
1 + 10

(
4Vgs−3Vpo

|Vpo|

)]
+ log10

[
1 + 10

(
4Vgs−Vpo

|Vpo|

)]
−

4

5
log10

[
1 + 10

(
10Vgs
|Vpo|

)]}
(2.6)

A comparison between this behavioral model and the traditional Curtice model
is shown in figure 2.9. As can be concluded from the comparison, the new behavioral
model follows more accurately the real behavior of the current in a FET than the
Curtice model, specially taking into account the saturation phenomena.

Recently, neural networks (NNs) models, as the one shown in figure A.1, are being
preferred over polynomials for behavioral models building, because of their speed in
implementation and accuracy. By profiting from their capability to learn the circuit
behavior based on simulated or measured records of input-output parameters (inputs
and outputs to the neural model), they are used in nonlinear modeling and design
of many circuits [94].
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2 – Modeling approaches

Figure 2.9. Comparison between the traditional Curtice model and a new behav-
ioral model.

In [17][91] a neural network for modeling of nonlinear RF/Microwave devices or
circuits in continuous time-domain is proposed. The papers illustrate the modeling
of nonlinear effects on a FET operating at high frequencies. The model can be
trained directly from input-output large-signal data (in this case, spectrum data)
irrespective of internal details of the circuit. However, a circuit representation of the
proposed neural model is introduced in order to incorporate it into circuit simulators
for high-level design. The neural model still needs the circuit representation to
be simulated and to generate the data that will train it. This equivalent-circuit
approach to behavioral modeling has its limitations. The identification of model
parameters is done through virtual measurements, i.e. from transistor-level models
of the devices, and the physical effects taken into account in the model are decided
a-priori, when the circuit is built [9]. Therefore the disadvantages and problems
previously mentioned, associated to an equivalent-circuit topology generation, are
yet present in this work. Another neural-based proposal appears in [27], where
NNs are used for modeling small-signal and large-signal FETs, learning also the
[S] parameters and the derivatives of the model. However, this approach, again,
is not totally black-box because the parameters of the model are found by using
small-signal and large-signal equivalent-circuits.

Due to the mentioned advantages of NN-based behavioral models, this approach
has been followed in this PhD thesis. Chapter 3 is devoted to explain behavioral
modeling in more detail. But, due to the mentioned weaknesses of existing models,
this thesis proposes a new behavioral model based on NNs, trying to fullfil the
existing gap between accurate, fast models and available models.

For the model proposed in this thesis, the equivalent-circuit is no longer useful
because directly device measurements are used for model training, which assures
the representation of the real behavior of the device. Of course, the accuracy and
good quality of the measurements used have a direct influence on the model ac-
curacy. The dynamic and nonlinear phenomena in the device behavior are taken
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2 – Modeling approaches

Figure 2.10. Typical neural network model.

into account inside the NN model topology itself. And finally, concerning the model
implementation inside a simulator, a circuit will not be used but it will be done as
a completely black-box model. The details of the proposed model are explained in
chapter 4.

2.5 System-level modeling

The design of telecommunication systems is a hierarchical process, involving the
use of a large set of simulation tools and relying on appropriate modeling of sys-
tem elements. There is a continuous push to improve the accuracy obtained from
equivalent-circuit simulations, as well as to increase the capabilities for simulating
very large circuits, containing many thousands of devices at a system-level abstrac-
tion. These are conflicting requirements, because higher accuracy tends to require
more complicated models for the circuit components, while higher simulation speed
favors the selection of simplified, but less accurate, models. The latter holds despite
the general speed increase of available computer hardware on which run the circuit
simulation software [52].

When dealing with semiconductor circuits and devices, the system under study
is typically a continuous, but highly nonlinear, multidimensional dynamic system.
Moreover, due to the adoption of increasingly complex signal modulation techniques
in the newest wireless communication systems standards - i.e. single-multiple car-
rier modulation; second generation (2G) GSM and CDMA; third generation (3G)
CDMA2000 and UMTS - extra nonlinear behavior is added to the system, which
directly influences the system performance.

Microwave and wireless communications systems are too complex to allow a
complete simulation of its nonlinearities at a detailed transistor level of description.
This problem is a significant productivity bottleneck for design engineers. New
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2 – Modeling approaches

models have to be developed to deal with this growing complexity, to improve the
accuracy and efficiency with which the behavior of these systems can be analyzed,
predicted and simulated.

Currently, the most widely used RF/Microwave system design methodology, ac-
cording to [34], is composed of two stages, graphically shown in figure 2.11:

1. Top-down design stage: the target system is split-up into sub-systems or cir-
cuits. The specific system is replaced by a hierarchical system-level model
composed of a behavioral circuit model based on input-output relations. The
behavior of this hierarchical model might be analyzed by system simulators to
improve the circuit models specifications.

2. Bottom-up design stage: component models which constitute a circuit are ex-
tracted from simulations or, more directly, from measurements. The electrical
behavior of the circuits that compose the overall system model are then an-
alyzed and optimized to meet as closely as possible the system specifications
previously established.

In practice the designer goes through several iterations of the methodology until
he/she arrives at a stable system model that adequately covers the requirements.
Going up in the hierarchy implies the use of specific simulation tools acting on one
hand on specific models, from low-level physical models to high-level behavioral
models, and on the other hand on specific signals, from one carrier to complex
modulations.

Figure 2.11. Two stage system design process.

For circuit-level simulation purposes, a microwave circuit such as an amplifier,
oscillator or mixer is always described as an architecture composed of linear and
nonlinear device models. At system-level simulation, no physical insight is available
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2 – Modeling approaches

for the circuit which must only be described by a nonlinear input-output mapping,
allowing the handling of telecommunication systems composed of a large number of
circuits acting on complex signals.

System-level behavioral modeling consists of constructing a black-box analytic
function that admits responses alike to those obtained at the output of a real device
or a subsystem driven by the same input signal. Such models are an important
help for designers of communication systems, in particular, transmitters and power
amplifiers (PAs) since they provide them with greatly reduced complexity and time-
consuming design and optimization procedures [46]. Examples of this level of analy-
sis using the circuit-based approach and behavioral modeling are shown in the next
subsection.

2.5.1 Example: power amplifier modeling

A major building block of modern RF circuits are amplifiers. An amplifier works by
increasing the magnitude of an applied signal. Amplifiers can be divided into two
big groups: linear amplifiers, which produce an output signal directly proportional
to the input signal, and power amplifiers (PAs) which have the same function as the
first ones, but their objective is to obtain maximum output power [25]. Due to that,
the active devices that compose the PAs arrive at the limit of the linearity (class A)
or even work in the nonlinear regime (class B and C) and generate harmonics13 and
intermodulation (IM) products14.

In a PA the small-signal power output Pout is directly related to power input Pin

by amplifier small-signal or operative gain Gss (Pout[dB] = GssPin). This is a linear
relationship. In practice, however, power output increases linearly until compression
occurs, and finally saturation is obtained. The output of a PA is a signal at frequency
f0 (called the fundamental frequency) amplified at the output power level Pout plus
all the harmonics nf0 of the fundamental frequency. This happens when a one-tone
signal is introduced into the amplifier, as illustrates the left part of figure 2.12.

Figure 2.12. Power Amplifier with one-tone (left) or two-tone (right) input signal:
harmonics generation.

A common representation for a PA, that helps visualizing its input-output be-
havior, is the so-called Pin/Pout curve, which shows the power of the output at the

13Components whose frequencies are multiples of the fundamental frequency f0.
14Undesired modulation of one signal by another, caused by nonlinear processing of the signals.

19

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

; "
N

on
lin

ea
r 

R
F/

M
ic

ro
w

av
e 

de
vi

ce
 a

nd
 s

ys
te

m
 m

od
el

in
g 

us
in

g 
ne

ur
al

 n
et

w
or

ks
"

Po
lit

ec
ni

co
 d

i T
or

in
o,

 d
ec

, 2
00

5.



2 – Modeling approaches

fundamental frequency and its harmonics (in a logarithmic scale) as function of the
input power. A typical example of this curve is shown in figure 2.13. Fundamen-
tal output power as a function of input power has to exhibit a linear range where
output increases 1 dB for every 1 dB of input power increase. However, as input
power increases, gain compression begins to occur and output power begins to satu-
rate. In the figure, two important PA parameters are marked, the 1 dB compression
point and the third-order intercept point or third harmonic output intercept IP3.
These parameters have been traditionally used to describe the nonlinearity of a
RF/Microwave PA.

Figure 2.13. Amplifier power output vs. power input traces (Pin − Pout curve).

The 1 dB compression point is the input power to which the output power is 1 dB
below the corresponding output power of the small-signal gain Gss. The IP3 point
is usually determined by introducing two tones into an amplifier, at frequencies f1

and f2 as shows the right part of figure 2.12, and increasing their amplitudes equally,
driving the amplifier into compression. Frequency difference f1 − f2 must be less
than the amplifier active bandwidth such that both tones are equally amplified.
When the two tones are increased in power input through the linear range and push
into compression, the amplifier nonlinear behavior generates intermodulation (IM)
at frequencies 2f1 − f2 and 2f2 − f1, as depicted in figure 2.14. Amplitude of the
two tones f1 and f2 in the amplifier output increases 1 dB for every dB increase in
power input through the linear range. In the ideal amplifier, amplitude of the IM
at frequencies 2f1 − f2 and 2f2 − f1 increases 3 dB for every 1 dB increase in power
input.

Graphically, as figure 2.15 shows, the IP3 point can be seen by projecting third-
order intermodulation sideband amplitude growth at either 2f1 − f2 or 2f2 − f1 in
a Pin/Pout curve at a 3 dB per 1 dB slope and projecting linear signal f1 and f2

output amplitude growth at 1 dB per dB slope to a point of intersection. That point
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2 – Modeling approaches

Figure 2.14. Intermodulation (IM) distortion phenomena.

is defined to be the amplifier output IP3 and is valued at whatever output power
level the intersection occurs.

Figure 2.15. Classical two-tone test in an amplifier.

An important task when designing an amplifier is the choice of its active com-
ponent (the transistor). A common choice for PAs is a FET build on GaAs (Gal-
lium Arsenium), used as high-gain and high-power device. Figure 2.16 shows a
common amplifier schematics configuration. For maximum gain design, matching
networks are used to transform the generator/load impedances (ZG,ZL) into the op-
timum impedances (Zin,Zout) seen from the active device (optimum according to i.e.
power). A schematics of an equivalent-circuit model for a PA of this kind appears
in 2.17.

Figure 2.16. Schematics configuration of an amplifier with matching networks.
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2 – Modeling approaches

Figure 2.17. Schematics of a Power Amplifier equivalent circuit model.

Concerning behavioral models for PAs, they can be classified into three categories
depending on whether the model considers the existence of memory effects or not:
memoryless nonlinear systems, quasi-memoryless nonlinear systems, and nonlinear
systems with memory [43].

A memoryless nonlinear system is represented in figure 2.18, where the system
is defined by equation 2.7. The response r of the system at time t is a function of
the input signal s at time t only, no past values of the signal have incidence on the
response.

Figure 2.18. Block representation of a memoryless nonlinear system.

r(t) = f (s(t)) (2.7)

If the model of equation 2.7 is expanded in a power series around 0, the result is
equation 2.8. A linear PA can be modeled with this simple power series. The higher
order terms of the series describe a gradual reduction in gain on the amplifier from
its nominal value until the gain reaches zero. For the quasi-memoryless nonlinear
system, the PA block is often represented by functions measured by sweeping the
power of a single-tone in the center frequency of the band of the RF PA.

f(x) = a0 + a1x + a2x
2 + · · · (2.8)

An example of a memoryless behavioral model for a nonlinear PA is proposed
in [76] by constructing a graph having two asymptotes. Amplifier fundamental
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2 – Modeling approaches

power output as a function of power input traces a curve along the linear for small
signals, then transitions onto saturated power output as power input increases. The
asymptotes are connected by a right-hand-function having an asymptotic intercept
at Pin = Psat − Gss. The equation describing power output as function of power
input is shown in equation 2.9.

Pout = Pin + Gss −K log10

[
1 + 10(Pin+Gss−Psat

K )
]

(2.9)

The first two terms of the formula describe the amplifier linear range and the
third term describes the amplifier compression depth. The parameter K is defined
to be the compression coefficient. It determines how softly or sharply compression
occurs. It can be defined by measuring power output Pout(K) when power input is
set at Pin = (Psat−Gss). Saturated power output and small signal gain are in terms
of dBm and dB respectively.

Concerning systems with memory, a block representation of such a system is
shown in figure 2.19, whose input-output relationship is given by equation 2.10.
The formula expresses the nonlinear and dynamic nature of the system. In fact, on
the one hand products of the signal (y(t)2) contribute to the response and therefore
the system is nonlinear; on the other hand past values of the signal contribute to
the output also (s(t− τ)), which implies that the system is dynamic.

Figure 2.19. Block representation of a dynamic nonlinear system. A cascade of a
linear system and a memoryless nonlinearity to create a Volterra series model.

r(t) = a1y(t) +2 y(t)2 + · · ·

= a1

∫ +∞

−∞
h(τ)s(t− τ)dτ + a2

[∫ +∞

−∞
h(τ)s(t− τ)dτ

]2
+ · · · (2.10)

This model is called Volterra series model in the continuous time-domain, and its
h(τ) coefficients are called Volterra kernels. The Volterra series has been tradition-
ally used for the modeling of dynamic systems and its analysis is well suited to the
simulation of nonlinear microwave devices and circuits, in particular in the weakly
nonlinear regime where a few number of kernels are able to capture the nonlinearity
in the device behavior. The Volterra kernels allow the analysis of device charac-
teristics of great concern for the microwave designer, such as harmonic generation
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2 – Modeling approaches

and intermodulation15 (IM) phenomena in the case of a FET transistor [47]. How
to build a Volterra series model is shown in the next chapter, dedicated to explain
behavioral modeling in detail.

Generally, behavioral modeling of PAs is widely accomplished on the basis of
quasi-memoryless or quasi-static models, which are enough for narrowband modu-
lated signals. However, modern high-capacity radio links involve large signals band-
width, and therefore PA models should also take into account the amplifier distortion
due to the large amplitude and bandwidth on the input signal [3]. Some dynamic
effects show up only in the presence of nonlinear regimes. This is the case of the
so-called long-term memory effects. This nonlinear dynamics cannot be modelled
by any memoryless nonlinear model [63].

Some recent works propose behavioral models to treat memory effects in nonlin-
ear PAs using polynomial models. The work of [2] compares polynomials having dif-
ferent types of delays between samples in the input space (uniform and non-uniform
delay taps). In [44] the objective is to model the memory effects observed in PAs
when they are excited by a two-tone RF signal. It tries to show that a PA behavioral
model based on a memory polynomial can improve the accuracy in predicting out-
put nonlinear signals by modeling memory effects. However, the polynomial method
has two disadvantages: possible convergence problems when extrapolating the data;
and the order of the polynomial which constrains the model applicability. Although
polynomial are easily extracted, they are restricted to mild nonlinearities.

The proposal of [81] is to use describing functions in the frequency-domain, to
simulate the behavior of a PA under large-signal one-tone excitation at the input,
with any arbitrary impedances present at the output (fundamental and all har-
monics). The model parameters are extracted based upon a relatively small set of
measurements performed with a vectorial nonlinear network analyzer (VNA). The
drawback of the method is that the model is only valid for one-tone excitation, with
a frequency corresponding to the frequency used to extract the model.

The work of [95] states that analytical Volterra series models can be successfully
applied to RF PAs behavioral modeling, but their high complexity tends to limit
their applications to weakly nonlinear systems. To model a PA with strong nonlin-
earities and long memory effects, the general Volterra model involves a great number
of coefficients. It is proposed a pruning algorithm to remove the series coefficients
which are very small, or not sensitive to the output error. In [18] a new analytical
procedure is proposed for the extraction of the Volterra model from complex enve-
lope representations of the input and output signal in time-domain. In both cases,
the solutions proposed are analytical equations or procedures.

Finally, concerning neural-network based behavioral models of PAs, the model

15The (usually undesired) modulation of one signal by another, caused by nonlinear processing
of the signals.
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2 – Modeling approaches

of [91] is of the recursive type and represents the amplifier voltage/current dynamic
relationship. The model deals with the time derivatives of the input and output vari-
ables. The measurements are extracted from circuit-level simulated waveforms. In
[69] and [87] nonlinear device models are proposed whose multidimensional functions
are approximated by general polynomials or neural networks, involving two-port in-
put voltages, output currents, and their continuous time derivatives. To train the
models, simulations data from a nonlinear circuit-level simulator, for an appropriate
set of tone frequencies and amplitudes, are used. In [20] recursive nets are used to
model a bandpass amplifier, although using one recursive network for the transient
and another for the steady-state regimes. The model parameters are extracted from
circuit-level transient and sinusoidal steady-state simulation data. In [1] the neural
model is based on a complex-valued network which receives time-delays inputs with
unity and non-uniform time delay taps between instantaneous and previous input
signal of the PA.

These neural networks-based models share some common weakness. Most of
them are designed to reflect a one-variable input dependency only, which sometimes
can be restrictive to a particular device or system and not of general application.
Most of them also use simulation data to train the network, produced with an
equivalent-circuit model implemented inside a circuit simulator, neural model which
afterwards cannot be used inside the simulator itself. Some of the models propose the
use of non-standard network topologies, which need much knowledge of the neural
network theory to be able to build the model and train it, using new specialized
and complex learning algorithms, all of which adds complexity to the task of model
building and lead to a long training time and elevated computation resources.

In this thesis, a neural network-based behavioral model is proposed in chapter
4, which tries to overcome the mentioned disadvantages of existing models. The
proposed model can be used for modeling one or multiple input/output dependency.
Measurement data, obtained with an accurate time-domain characterization proce-
dure developed at Politecnico di Torino as result of a PhD thesis [75], designed for
nonlinear and dynamic characterization, are used to train the neural model. Once
trained, it will be shown how it can be implemented as a full black-box model inside
a commercial circuit simulator, or even as an equivalent Volterra series model.

2.6 Summary

This chapter began with an introduction to the traditional and new modeling tech-
niques that can be applied to the modeling of RF/Microwave electronic devices or
systems, namely physical-circuit and behavioral approaches, respectively. Then, the
second part of the chapter presents some examples of these techniques for device-
level modeling. The last part of the chapter made this analysis at a system-level.
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Chapter 3

Behavioral modeling

In this chapter behavioral modeling is explained. The first part of the chapter in-
troduces this new approach. After that, the three main techniques for building
behavioral models are described: Volterra series, curve-fitting techniques and artifi-
cial neural networks. The neural network paradigm is explained in much more detail
because this is the technique followed in this thesis. The last part of the chapter
explains the reasons of this choice showing its advantages over the other methods.

3.1 Introduction

What is behavioral modeling?

Behavioral modeling is the science of accurately expressing measured
behavior (linear or nonlinear) of an object [76].

The behavioral modeling objective is to formulate a single closed-form equation
representing some measured parameters, which might be function of one or multi-
ple independent variables that control the element behavior, simultaneously. The
main advantage of this measurement-based approach is that a low-order model of
a complex circuit or system can be derived, without prior knowledge of its internal
functioning, circuitry or topology. This new modeling approach is particularly use-
ful when the observed object internal behavior is the result of a nonlinear process,
or the physics of the object is not completely known.

A behavioral model is a simplified model of the essential behavior of an element,
at a given level of abstraction hierarchy, for use in simulation at the next highest
level. The simplification means that the model will execute more quickly, and use
much less computer memory, than if an entire complex system or sub-system were
simulated at the lowest detailed level [65]. This kind of model can be applied in
device-level as well as in system-level modeling.
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3 – Behavioral modeling

A behavioral model of a device could be, i.e. a set of ports characteristics equa-
tions (or the equivalent-circuit of such equations) obtained from external (possibly
virtual) measurements. A behavioral model of a system is a black-box which pro-
duces a response to inputs as closest as possible the original system would do.
Behavioral models have the required numerical efficiency and, when properly used,
yield responses close to the response of a detailed device-level model [9].

A typical RF/Microwave design and modeling hierarchy is presented in figure 3.1.
At the bottom appears the device represented through a detailed physical model and
at the top there is a complicated module, sub-system or system. A top-down design
methodology propagates specifications down the hierarchy. Bottom-up verification,
instead, validates overall system performance based on the performance of lower
level components and their configuration. At the bottom, the device is described
by the detailed semiconductor physics inside a device model; this is abstracted to a
circuit-level model that describes the terminal behavior through equivalent-circuit
or phenomenological equations. The circuit model is used to design efficiently using
circuit simulators, but it is too complex to use in a system level simulation at the
top of the hierarchy. To bridge the circuit and system environment, a reduced order
behavioral model of the circuit can be used [86].

Figure 3.1. Typical design and modeling hierarchy [86].

Behavioral models can be derivable from both simulations and (virtual) mea-
surements. Considering, i.e. a circuit model developed from primitive components
such as transistors, resistors, capacitors and inductors, a simulator can be used to
stimulate the model, and the responses can be used to derive a behavioral model
for simulation at the next higher level of abstraction. Alternatively, behavioral
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3 – Behavioral modeling

models can be derived from real measurements made on the component. Accurate
measurements can therefore lead to more accurate behavioral models than starting
from lower level, possibly inaccurate, models. This is, in fact, one of the major
advantages of this approach. It allows designers to model real components whose
equivalent-circuit model or analytical equations may not be available.

From a mathematical point of view, it can be said that a behavioral model
relates output waveforms y(t) to input waveforms x(t). This fact can be written in
functional notation as in equation 3.1. This is an example of a static relationship.
The output is an instantaneous function of the input waveform and it depends only
on the values of the actual input signal.

y(t) = F [x(t)] (3.1)

Instead, a model which incorporates the notion of memory is shown in equation
3.2, which states that the output is not an instantaneous function only of the input
signal, but it depends also on the time-derivatives of the input. This concept will be
called memory. The function F [.] which relates inputs with outputs may be linear
or nonlinear.

Since the behavioral model has to be evaluated on a digital computer, it is
convenient to adopt a discrete time representation of the variables, such as shown
in equation 3.3. It assumes that time is a succession of (generally uniform) time
samples of a convenient sampling period. In order to model the consequences of
the memory phenomena within devices behavior, dynamic modeling is required. In
fact, it is the incorporation of long-term memory beyond otherwise static nonlinear
behavioral models what distinguishes the newest behavioral models, i.e. for PAs
modeling [63].

y(t) = F [x(t),
∂x(t)

∂t
,
∂2x(t)

∂t2
, · · · ,∂

nx(t)

∂tn
] (3.2)

y(t) = F [x(t),x(t− 1),x(t− 2), · · · ,x(t− n)] (3.3)

For the building of behavioral models (in other words, for choosing F [.]) three
main techniques can be mentioned: Volterra series, curve-fitting or polynomial tech-
niques and artificial neural networks. They are explained in the next sections.

3.2 The Volterra series model

If the function F [.] represents a single-input, single-output (SISO) non-linear dy-
namical system, F [.] can be represented exactly by a converging finite series of the
form of equation 3.4. If the time in equation 3.4 is discrete, then the series assumes
the form of equation 3.5.
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3 – Behavioral modeling

This equation is known as the Volterra series expansion or power series with
memory, because the actual output of the system depends on the actual and also on
the past values of the inputs [7]. The series is formed with the sum of terms which
have some particular coefficients h named kernels [68].

y(t) = h0 +
∫ ∞

0
h1(τ)x(t− τ)dτ +∫ ∞

0

∫ ∞

0
h2(τ1,τ2)x(t− τ1)x(t− τ2)dτ1dτ2 +∫ ∞

0

∫ ∞

0

∫ ∞

0
h3(τ1,τ2,τ3)x(t− τ1)x(t− τ2)x(t− τ3)dτ1dτ2dτ3 + ... +∫ ∞

0
...
∫ ∞

0
hn(τ1,...,τn)x(t− τ1)...x(t− τn)dτ1...dτn + ... (3.4)

The Volterra approach characterizes a system as a mapping between two function
spaces, which represent the input and output spaces of that system. The Volterra
series representation is an extension of the Taylor series representation to cover
dynamic systems. It is based on a Taylor-series expansion of the device nonlinearity
around a fixed bias point or around a time-varying signal. In 1959 V. Volterra [82]
showed that such a series is capable of representing any analytic, time-invariant
system. The Volterra series approximation produces the optimal approximation
near the point where it is expanded. Therefore, it is known for its good modeling
properties of small-signal (or mildly nonlinear) regimes [18].

y(t) = h0 +
∞∑
0

h1(k)x(t− k) +

∞∑
0

∞∑
0

h2(k1,k2)x(t− k1)x(t− k2) +

∞∑
0

∞∑
0

∞∑
0

h3(k1,k2,k3)x(t− k1)x(t− k2)x(t− k3) + ... +

∞∑
0

...
∞∑
0

hn(k1,...,kn)x(t− k1)...x(t− kn) + ... (3.5)

The Volterra Series and its kernels can be described in the time-domain or in the
frequency-domain, changing from one representation to the other with the Fourier
Transform. The Fourier Transform of the kernel functions yields the transfer func-
tions of the nonlinear system under study. The transform of h1 gives the linear
transfer function H1, the transform of h2 gives the quadratic transfer function H2

and in general, the transforms of the higher order kernels give the higher order trans-
fer functions of the system. The Volterra series definition in the frequency domain
is shown in equation 3.6.
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3 – Behavioral modeling

Y (f) = H1(f)X(f) +
∞∑
f1

∞∑
f2

H2(f1,f2)X(f1)X(f2) +

∞∑
f1

∞∑
f2

∞∑
f3

H3(f1,f2,f3)X(f1)X(f2)X(f3) + · · ·+

∞∑
f1

· · ·
∞∑
fn

Hn(f1, · · · ,fn)X(f1) · · ·X(fn) + · · · (3.6)

A schematic representation of a Volterra system can be seen in figure 3.2. The
Volterra model can also be easily extended to a function depending on two or more
input variables [24][62].

Figure 3.2. Schematic representation of a system characterized with the Volterra
series.

Every nonlinear device having a Volterra series expansion has a set of symmetric
Volterra kernels h1,h2,h3, · · · ,hn about a DC operating point. The number of terms
in the kernels of the series increases exponentially with the order of the kernel. This
is the most difficult problem with the Volterra series approach and imposes some
restrictions on its application to many practical systems, which are restricted to use
second order models because of the difficulty in kernels expression [26].

The Volterra expansion approach has been proposed since many years for non-
linear electronic devices modeling [47] and for weakly nonlinear devices it has been
traditionally used as a behavioral black-box model [10]. The kernels allow a deeper
understanding of the device or system under analysis; i.e. information about in-
termodulation (IM) phenomena in a FET transistor can be inferred from the first
order kernels, among others [48][54][55][78][79]. An effective method of analyzing
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3 – Behavioral modeling

nonlinear RF and microwave intermodulation in PA is through the use of Volterra
transfer functions [83][84].

However, due to the difficulties and complexity in identifying the higher or-
der kernels through experimental data, this approach is not effectively used within
commercially available circuit simulators. Heavy characterization efforts are needed
to extract the kernels. There are some approaches which can be used for kernels
analytical expression when their order is previously known [4][22][85]. The use of
alternative methods for kernels identification [29][35][40][57][92] have proved to be a
complex and time-consuming task.

Moreover, at microwave frequencies, suitable instrumentation for the measure-
ment of the kernels is still lacking. The first published trial [6] for measuring second
order transfer functions consisted basically in generating a multi-tone probing sig-
nal made of a sum of many sinusoids (typically more than fifteen) whose frequencies
are generated by a simple algorithm which guarantees that no two pairs of input
frequencies give rise to the same intermodulation frequency. To measure the second-
order transfer function of a nonlinear device or system, the probing signal is applied
to the device at several amplitude levels and its output sampled and collected [19].
It is quite difficult to separately detect the individual contributions of each Volterra
operator from the global system response [45].

In the Biology field, Wray & Green [89][90] have outlined a method for extracting
the Volterra kernels from the weights and bias values of a neural network model [88].
Based on this idea, there have been several proposals for kernels calculation with
different, often non standard, neural networks topologies [16][30][74][50][41][59][61],
also in the electronics field [31][33][23][38]. However, all of these approaches use
a discrete temporal behavior by means of multi-delayed samples of a unique in-
put variable. In the case of the voltages/current relationship in a transistor (i.e.
Ids(Vgs,Vds)), such models are not useful because the multi-variable dependence can-
not be modeled. Also the fact that most of these approaches propose the use of
non-standard neural models and learning algorithms, makes difficult their use, and
they do not offer a simple analytical solution derived from the network which could
be implemented inside a commercial circuits simulator.

However, chapter 4 of this thesis proposes a simple and straightforward proce-
dure to extract the Volterra series directly from a behavioral model built based on
a standard neural network. The procedure can be applied even in the case of a non-
linearity that depends on more than one variable. A general model can be obtained,
independently of the physical circuit under study. The behavioral model proposed
is easy to load inside a circuit simulator, which simplifies and speeds up its practical
implementation. This fact can be a useful chance when Volterra series analysis is
implemented with a commercial RF CAD tool.
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3 – Behavioral modeling

3.3 Curve-fitting techniques

In general, the process of generating a behavioral model, meaning transforming
measured data into equations or finding a suitable F [.] for equation 3.1, relies on
curve-fitting techniques. These have the ability to generate equations that provide
acceptably accurate fits to data that cannot otherwise be represented by a single
equation. Many of the common linear, logarithmic, power function, exponential,
polynomial and splines available techniques are useful where the data trace is well-
defined over a defined range or where behavior of an object is known to follow a
specific mathematical model. These methods are listed in the following lines.

Linear regression is used to represent data that traces a straight line as a function
of an independent variable. It can be used to generate equations for asymptotes to
curved traces of data. Logarithmic regression can be used only with positive values
and the equation is difficult to accurately fit to a large number of data points unless
the behavior is truly related to a natural logarithmic function.

Power functions are useful in modeling objects that are known to obey a power
law, i.e FET transistors that under small-signal operation exhibit a quadratic be-
havior. However the power function is limited as a model for most nonlinear objects
when extreme conditions are encountered, such as cut-off in FETs, when there is no
current flow for all negative input signal values less than cut-off. They also saturate
at some large positive input signal value. These two effects cannot be effectively
modeled with one power series. Instead, FET pinch-off phenomena can be modeled
by an exponential function; unfortunately it will fail to also represent the abrupt
nonlinearity caused by saturation.

If F [.] is replaced by a multi-dimensional polynomial approximation, the non-
linear system behavior can be approximated by a series of multi-linear terms, such
as proposed in [2][70][71]. Polynomials are sometimes acceptable where measured
data is well-behaved and quadratic or cubic expressions are enough. The polynomi-
als expansions can be produced using McLaurin’s or Taylor’s procedure. However,
interpolation errors will always exist between known data values, when higher order
polynomials are used to capture sharp inflections.

Spline techniques have been developed to minimize curve-fit errors between mea-
sured data points where the data trace is a curve having rapid changes in the deriva-
tive orders. It uses polynomials equations to represent a small domain of data over
a limited region of the independent variables. The polynomials are forced to have
the same values and the same derivatives at the transition points or junctions be-
tween independent variable regions. The resulting curve fits are acceptably accurate,
but as results of the application of this method an elevate number of equations are
obtained.

In conclusion, problems arise when the object complex internal parameters cause
the data to exhibit sharp inflections or discontinuities, and common curve-fitting
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3 – Behavioral modeling

techniques become useless. That is why new curve-fitting techniques have been
recently proposed [76], using additive polynomial functions to replace F [.], where
the functions coefficients are actually identified from measurable device parameters,
such as power, voltage, current, gain, noise figure, among others.

The new behavioral models use as a starting point a classical small-signal model
and then modified it to obtain a large-signal model, which results a combination of
right-hand and left-hand functions as the results of polynomial fitting. An example
has been presented for transistor modeling in the previous chapter.

These new methods work well through sharp inflections because they use sum-
mations of logarithmic functions which are almost infinite series. However, these
techniques have the disadvantage of requiring much knowledge of the device under
study, to be able to identify the important parameters to measure and insert them
into the model, and often as result of the process, the equations obtained are quite
complex to generate and understand.

Moreover, polynomials have inherent local approximating properties instead of
global approximation, which is a potential disadvantage for modeling strongly non-
linear systems. Polynomials show much degradation outside the zone of characteri-
zation and therefore they cannot extrapolate beyond the zone where the system was
tested during parameter extraction. Polynomial order constraints the model applica-
bility. Furthermore, as an analytical approach, it can be a slow and time-consuming
task and may need the definition and calculus of a large amount of terms.

3.4 Artificial neural networks

What is an artificial neural network (NN)?

A neural network is a massively parallel distributed processor that has a
natural propensity for storing knowledge and making it available for use.
It resembles the brain in the following aspects [32]:

• Knowledge is acquired by the network through a learning process.

• Connection strengths between neurons, known as synaptic weights,
are used to store the knowledge.

There is no universally accepted definition of what artificial NNs are, or what
they should be. They can be loosely defined as large sets of interconnected simple
units which execute in parallel to perform a common global task. These units
usually undergo a learning process which automatically updates network parameters
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3 – Behavioral modeling

in response to a possibly evolving input environment. The units are often highly
simplified models of the biological neurons found in the animal brain [32].

Neural networks are information processing systems inspired by the ability of
human brain to learn from observations and to generalize by abstraction. A neural
network can be thought of as an input/output system with many simple processors,
each having a small amount of local memory. These units are connected by com-
munication channels carrying data. The fact that NNs can learn totally different
things led to their use in diverse fields such as pattern recognition, speech processing,
control, medical applications, among others. They can be much faster than original
detailed models, more accurate and flexible than empirical models, and easier to
develop when a new device/new technology is introduced.

Neural models have certain common characteristics. They are given a set of in-
puts x = (x1, · · · ,xn) ∈ <n and their corresponding set of outputs y = (y1, · · · ,ym) ∈
<m for a certain process (behavior). The assumption of a NN model is that the
process that produces the output response is given by some unknown mathematical
relationship y = G(x) for some unknown function G. This function may be non-
linear and very complicated and one cannot expect to compute it exactly. That is
why a candidate activation function AF (for G) is chosen and the approximation is
performed using a given set of examples, that is to say, some inputs x and their as-
sociated correct outputs y. The data are used to feed the NN model, which contains
a set of processing elements (called neurons) and connections between them (called
synaptic weights). Each neuron has an activation function AF , which process the
incoming information from other neurons. Neural models may be considered as a
particular choice of classes of functions AF (x,w) where w are the parameters and
specific procedures for training the network [64]. Training is similar to an optimiza-
tion process where internal parameters of the neural model are adjusted, to fit the
training data. Since a neural model is trained directly from data, the model can be
developed even if the original problem formulae do not exist.

Nowadays, the modeling and simulation of nonlinear elements inside a wireless
communication system using behavioral models based on the NN paradigm, is a
field of increasing interest [52][77]. The NN approach for electronic device modeling
has received increasing attention, especially in the recent years, for a large variety
of industrial applications [53][94], since model tailoring to the device under study
only needs a training procedure based on experimental data or measurements of
the physical circuit. Lately, NNs have been recognized as a useful tool in the high-
frequency CAD area, showing promising strength in addressing growing challenges
in physics-based circuit design as well [93].

Neural nets can be trained to learn physics based behavior from component
data, and the trained network can be used in high-level circuit and systems design,
for both passive and active modeling, allowing fast optimization [34][39]. A trained
neural model can be used online during microwave design stage providing fast model
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3 – Behavioral modeling

evaluation replacing original slow simulators. For example, large-signal transistor
device modeling [72] can be automated exploiting NN learning from DC and small-
signal data [27][28].

For behavioral models building, NNs are being preferred over polynomials and
curve-fitting techniques, due to their asymptotic properties and because they give
very smooth results for approximating discrete measured and simulated data, also
when interpolating points.

They are becoming really attractive for RF black-box modeling due to their flex-
ibility. In fact, they can be directly trained on the device non-linear measurements,
without the need neither of the equivalent circuit topology, nor the corresponding
non-linear component constitutive descriptions.

There are many different models of NNs. Most of them have a training rule
which indicates how and what to learn from a set of examples. The different types
of networks models and their learning rules are explained in the next subsections.

3.4.1 Representation and types

In engineering and physics domains, algebraic and differential equations are used
to describe the behavior and functioning properties of real systems and to create
mathematical models to represent them. To do this, accurate knowledge of the
system dynamics is required, and the use of estimation techniques and numerical
calculations to emulate the real system operation. The complexity of the problem
itself may introduce uncertainties, making the modeling non-realistic or inaccurate.
Therefore, in practice, approximate analysis is used and linearity assumptions are
usually made.

Artificial neural networks implement algorithms that attempt to achieve a neuro-
logical related performance, such as learning from experience, making generalizations
from similar situations and judging states where poor results were achieved in the
past. Nowadays, NNs are being applied to a lot of real world, industrial problems,
from functional prediction and system modeling (where physical processes are not
well understood or are highly complex), to pattern recognition engines and robust
classifiers, with the ability to generalize while making decisions about imprecise
input data [53].

In many artificial intelligence (AI) applications, the knowledge needed to solve
a problem may be incomplete, because the source of the knowledge is unknown,
or the environment may be changing and cannot be anticipated at design time.
There exist engineering problems for which finding the perfect solution requires a
practically impossible amount of resources and an acceptable solution would be fine.
NNs can give good solutions for such classes of problems.

Choosing a neural network solution for an immediate application (e.g. choosing
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3 – Behavioral modeling

the model topology, learning method, data flow, etc.) can become itself an engi-
neering problem. A choice must be made among several options, depending on the
application. The main features of a NN can be classified according to the following
characteristics:

Topology of the network: Feedforward, recurrent or self-organized. This classi-
fication is shown in figure 3.3, including examples of each category. A network
is feedforward if the flow of data is from inputs to outputs, without feedback.
Generally this topology has distinct layers such as input, hidden and output.
There are no connections among the neurons within the same layer. A recur-
rent network distinguishes itself from the feedforward topologies in that it has
at least one feedback loop. Self-organizing nets map high dimensional data
onto a lower representation space, therefore, after the learning process, the
resultant map topology reflects the unknowns clusters or internal groups that
exist inside the data.

Figure 3.3. Classification of neural network models according to network topology.

Data flow: Recurrent or non-recurrent. In a recurrent model, the outputs can
propagate in both directions, forwards and backwards. In a non-recurrent
or feedforward model, the outputs always propagate from the inputs to the
outputs.

Types of input values: Binary, bipolar or continuous. Neurons can be defined
to process different kinds of signals. The most common types are binary (re-
stricted to either 0 or 1), bipolar (either -1 or +1) and continuous (continuous
real numbers in a certain range).

Forms of activation: Linear, step, sigmoid, radial, etc. Activation functions de-
fine the way neurons behave inside the network structure and, therefore, the
kind of relationship that occurs between input and output signals.
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3 – Behavioral modeling

Inside the so-called feedforward network models, there are two main types of
models: the multi-layer perceptron (MLP) and the radial basis function (RBF).

The MLP model consists of a finite number of units called neurons or perceptrons,
where each unit of each layer is connected to each unit of the subsequent/previous
layer. These connections are called links or synapses and they only exist between
neurons in subsequent layers but connections among neurons within a layer do not
exist, nor are there any direct connections across layers. The signal flow is unidi-
rectional, from the inputs to the outputs, from one layer to the next one, thus the
term feedforward. The first layer is called input layer, it is followed by intermediate
groups of neurons called hidden layers, and the result of the network is obtained in
the output layer.

The number of neurons in the hidden layer is usually determined by trial-and-
error, to find the simplest network that gives acceptable performance. Since the
numbers of inputs and outputs are fixed (the independent and dependent variables
of the problem, respectively) the number of hidden neurons determines the number
of weights that must be optimized during the training process to obtain the best
function approximation. The MLP network model can be seen in figure 3.4.

Figure 3.4. Multi-layer Perceptron (MLP) neural network.

The rules for the MLP model are the following:

- The jth neuron of the kth layer receives as input each xi of the previous layer.
Each value xi is then multiplied by a corresponding constant, called weight
wji, and then all the values are summed.

- A shift θj (called threshold o bias) is applied to the above sum, and over the
results an activation function σ is applied, resulting in the output of the jth

neuron of the kth layer. The MLP neuron model is shown in equation 3.7,
where i = 1 · · ·N , j = 1 · · ·M , and graphically in figure 3.5.

yj = σ

(
N∑

i=1

wjixi ± θj

)
(3.7)
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3 – Behavioral modeling

Figure 3.5. Neuron model.

Some common choices for σ can be one of the following functions:

• The logistic sigmoid

σ(x) =
1

1 + e−x
(3.8)

• The hyperbolic tangent

tanh(x) =
ex − e−x

ex + e−x
(3.9)

• The linear function

y = x (3.10)

A priori, the number of layers and neurons in each layer is chosen, as well as
the type of activation functions for the neurons. Then the values of the weights
wji and bias θj are initialized. These values are chosen so that the model behaves
well on some set (named training set) of inputs and corresponding outputs. The
process of determining the weights and thresholds is called learning or training.
In the MLP model the basic learning algorithm is called backpropagation, which
uses gradient descend to minimize the cost function of the NN model (the error E)
generally defined as the mean square error (MSE) between the desired output (target
behavior to approximate) and the actual network output. During learning, the MSE
propagates backwards through the network, hence the term backpropagation. For
output units the error depends on the difference between the actual and desired
output. For hidden neurons the error is computed using the unit own activation
function and the weighted error of all its output units in the layer above. Thus
the error is propagated backwards across the layers of the network model and the
weights are changed according to the following equations:
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3 – Behavioral modeling

wnew
ji = wold

ji + ∆wold
ji (3.11)

∆wold
ji = −η∇E (3.12)

∇E =
δE

δwji

(3.13)

E =

√
1

P

∑
‖(Y − T )‖2 (3.14)

where E is the error mismatch (MSE) between the actual network outputs Y and
the target outputs T over all the training samples P and η is the learning rate. This
parameter is critical in the speed of convergence of the backpropagation algorithm.
In general, it is desirable to have fast learning, but not so fast as to cause instability
of learning iterations. Starting with a large learning coefficient and reducing it as
the learning process proceeds, results in both fast learning and stable iterations.

Selection of training data plays a vital role in the performance of a supervised
NN. The number of training examples used to train an NN is sometimes critical
to the success of the training process. If the number of training examples is not
sufficient, then the network cannot correctly learn the actual inputoutput relation
of the system. If the number of training examples is too large, then the network
training time could be too long.

A major result regarding MLP models is the so-called universal approximation
theorem [14] which states that given enough neurons in the hidden layer, an MLP
neural network can approximate any continuous bounded function to any specified
accuracy; in other words, there always exists a three-layer MLP neural network
which can approximate any arbitrary nonlinear continuous multidimensional func-
tion to any desired accuracy, provided that the model has enough neuronal units
[37]. That is why this model has been more extensively studied and used during
these years. It is worth noting, however, that the theorem does not say that a
single-layer network is optimum in the sense of learning time or ease of implemen-
tation; moreover, the theorem does not give indications about the required number
of hidden units necessary in order to achieve the desired degree of accuracy [8].

Until very recently, NNs for modeling were applied almost exclusively to static
functions of the input variables alone. Although this approach has been largely
exploited for DC simulation, their application to dynamic system is a rather new
research field. Recently have appeared models taking into account the dynamic phe-
nomena, i.e. for power amplifier(PA) modeling [60][91] which propose the use of a
special type of MLP model, the time-delayed neural networks (TDNN). They have
been successfully applied for solving the temporal processing problems in signal pro-
cessing, speech recognition, system identification and control [46]. They are suited
for dynamic systems representation because the continuous time system derivatives
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3 – Behavioral modeling

are approximated inside the model by time-delays of the input/output variables in
the discrete time.

A TDNN is based on the feedforward MLP neural network with the addition
of tapped delay lines (Z−1) which generate delayed samples of the input variables.
They are used to add the history of the input signals to the model, needed for
memory effects modeling. The TDNN entries include not only the current value of
the input signal, but also its previous values, as shows equation 3.15 and the figure
3.6. The memory depth of the element or system analyzed is reflected on the length
of the taps. The strategy followed to set the system memory is the same adopted
for the design of numerical filters, where the input tap number is dictated by the
bandwidth accuracy required.

yj = σ

(
N∑

i=0

wj,ix(t− i)± θj

)
(3.15)

Figure 3.6. Time-Delayed neural network (TDNN) model.

Another feedforward model is the Radial Basis Function (RBF). Here the acti-
vation of a hidden unit is determined by the distance between the input vector and
a prototype vector (the center of the neuron). The Euclidean distance between the
input signal X and the center of the tth neuron cj is first evaluated, then an acti-
vation function, also known as a basis function, is applied. This way, an unknown
relationship can be approximated as a linear combination of a set of basis functions.

The most common form of basis function used is the Gaussian function, which
has the form of equation 3.16, where X = [x1, · · · ,xn] represents n inputs to the
network, hj is the output of the jth hidden neuron and cj is its centroid. The
Euclidean norm is denoted by ‖.‖. A centroid is a fixed point in n-dimensional space,
and must be appropriately chosen from the input domain. The Gaussian function is
radially symmetric around cj and has variance determined by α. This parameter α
controls how spread the curve is. Using other radially symmetric functions besides
the Gaussian distribution generalizes the construct [15].
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3 – Behavioral modeling

hj = G(X) = e−
‖X−cj‖

2

2α2 (3.16)

Figure 3.7 shows the basic structure of a RBF network. The input nodes pass the
input values to the hidden layer directly, the first layer connections are not weighted.
Thus, each hidden node receives each input value unaltered. The hidden nodes are
the radial units. The second layer of connections is weighted and the output nodes
are simple summations. In other words, the first layer performs a fixed non-linear
transformation which maps the input n-dimensional space onto a new space, and
the output layer implements a linear combiner on this new space. This network does
not extend to more layers.

Figure 3.7. Radial Basis Function (RBF) neural network.

The learning algorithm for the centroids of the hidden neurons is usually a clus-
tering algorithm such as K-means. The simplest approach is to set the center of the
hidden neurons in randomly chosen patterns of the training set. Learning of the
weights from the hidden layer to the output layer can be achieved using a gradient
descent method, such as backpropagation.

A different category of neural networks are the recurrent neural networks
(RNN). A network is called recurrent when the inputs to its neurons come from
external inputs, as well as from the internal neurons themselves, consisting on both
feedforward and feedback connections between layers and neurons. The Hopfield
model is the most popular type of RNN [36]. It can be used as associative memory
and can also be applied to optimization problems. The basic idea of the Hopfield
network is that it can store a set of exemplar patterns as multiple stable states.
Given a new input pattern, which may be partial or noisy, the network can converge
to one of the exemplar patterns nearest to the input pattern.

As shown in figure 3.8 a Hopfield network is unstructured, its units are not
organized into layers. The network is recurrent and fully interconnected (every
neuron in the network is connected to every other neuron and the connections have
the same weight). Each input/output takes a discrete bipolar value of either -1 or
+1.
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3 – Behavioral modeling

Figure 3.8. Recurrent neural network (RNN): the Hopfield model.

This network is trained using unsupervised learning. The weights of the connec-
tions inside the net are set so that each example pattern is represented by a stable
state. Given a new input pattern, the network will settle into a previously learned
stable state, closest to the input pattern.

When an input pattern is presented to the network, it changes its overall state
by asynchronous iteration, updating the states of its units and computing their
activation functions. Usually the activation function is simple the weighted sum of
the incoming connections. Through the iterations the model converges to an overall
stable state, where the states of the internal units do not change anymore. When a
Hopfield network is in a stable state, its energy measure (the potential for change
within the network) is minimized.

In general this kind of network model reproduces the stored training sample that
is closest to the current input pattern. Therefore, the net can be used as associative
storage of partial patterns and recognition of noisy patterns. If the training data
are typical cases of different classes, a Hopfield net can be used for classification.

A third group of NN models are the self-organizing maps or SOMs. In the
brain there are many cases in which aspects of sensory inputs are represented in two
dimensional areas of the cortex. These topographic mappings within the brain are
the inspiration for the SOMs. The importance of global organization is recognized
on top of individual functionality of the units.

These networks appeared with the Kohonen map [42], which is an associative net-
work and is presented in figure 3.9. Their units are organized in a two-dimensional
array and they are connected so that there are excitatory connections between
nearby units and inhibitory connections between distant units. This network uses
unsupervised learning. When an input pattern is presented to the net, the unit with
the highest response to that pattern is located and its weights are updated, as well
as the neighboring units weights. This way the formation of clusters is encouraged
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3 – Behavioral modeling

Figure 3.9. Self-organizing map (SOM): the Kohonen model.

so that nearby units respond similarly to inputs. Usually the system will start orga-
nizing into large regions and focusing into smaller regions during training. Natural
applications of Kohonen maps are pattern recognition (speech, text, pictures, etc.),
feature detections and clustering.

3.4.2 Learning algorithms and training considerations

Training a neural network means adapting its connections so that the network ex-
hibits the desired computational behavior for all input patterns. It refers to op-
timization of the degree to which some desired behavior, the target behavior, is
represented. The process usually involves modifying the weights, but sometimes it
also involves modifying the actual topology of the network, i.e., adding or deleting
connections from the network.

The terms learning and optimization are nowadays used interchangeably, al-
though the term learning is normally used only in conjunction with NNs, because,
historically, learning used to refer to behavioral changes occurring through synaptic
and other adaptations within biological neural networks [52].

There are basically two categories of learning algorithms:

Supervised learning The correct results (target values or desired outputs) are
known and are given to the NN during training so that the network can adjust
its weights to match its outputs to the target values. Before the learning
algorithms are applied to update the weights, all the weights are initialized
randomly. The network, using its parameters, produces its own outputs. The
network outputs are compared with the correct targets and the differences are
used to modify the weights, as shown in figure 3.10. After training, a NN is
tested in the following way: it is given only input values, not target values,
and it is analyzed how close the network comes to the correct target values.

Unsupervised learning Involves no target values; the network tries to auto-associate
information from the inputs with an intrinsic reduction of data dimension.
This is the role of the training algorithms. It is also known as self-organized
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3 – Behavioral modeling

Figure 3.10. Supervised learning.

learning, because the network develops some classification rules by extracting
information from the inputs presented to the network. This is illustrated in
figure 3.11. By using the correlation of the input vectors, the learning rule
changes the network weights to group the input vectors into clusters. Similar
input vectors will produce similar network outputs since they belong to the
same cluster.

Figure 3.11. Unsupervised learning.

Considerations such as determining the input and output variables, choosing the
size of the training data set, initializing the network weights, choosing the learning
rate for the training algorithm and selecting the stopping criteria, are important
for several network topologies. However, there is no generic formula that can be
used to choose these parameter values. The initial weights play a significant role
in the convergence of the training method. Without a priori information about the
final weights, it is a common practice to initialize all weights randomly with small
absolute values, e.g., in the range [-0.5;+0.5]. Another option is to use the Nguyen-
Widrow algorithm [58] which chooses initial values for the weights according to the
training data and the number of hidden neurons.

For some applications, training time is a critical variable. For others, the training
can be performed off-line and more training data are preferred over using insufficient
training data to achieve greater network accuracy. Generally, rather than focusing
on volume, it is better to concentrate on the quality and representational nature of
the data set. A good training set should contain routine, unusual and boundary-
condition cases.
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3 – Behavioral modeling

Design considerations regarding a neural model include determining the number
of input and output nodes to be used, the number of hidden layers in the network and
the number of hidden nodes used in each hidden layer. The number of input/output
nodes is typically taken to be the same as the number of independent/dependent
variables of the problem, respectively.

In the past, there was a general practice of increasing the number of hidden
layers to improve training performance. Keeping the number of layers at three and
adjusting the number of processing elements in the hidden layer, can achieve the
same goal. A trial-and-error approach is usually used to determine the number of
hidden layer processing elements, starting with a low number of hidden units and
increasing this number as learning problems occur.

The good generalization property of a network means the ability of a trained
network to correctly predict a response to a set of inputs that has not seen before.
It says that a trained network must perform well on a new dataset distinct from the
one used for training. A very small value of the training error does not necessarily
imply that a good model is obtained and that it can generalize good to new inputs.
Even excessive training on the learning phase can make performance to decrease.
In some cases, the network can be trained to fit the target data extremely well, but
performs poorly on other data of a similar class. If this happens it is said that the
network has memorized the target data and generalizes poorly. This is a symptom
of the over-fitting phenomena.

During learning, the training error will usually decrease initially. However, as
training continues, the error can start to increase. This happens because as training
continues, weights become more tuned to particular features of the training data,
therefore the weights are becoming more precisely. This phenomena is called over-
fitting, which is when true error starts to increase during training, due to too much
training time.

Figure 3.12. The over-fitting phenomena during neural network training.

Techniques for improving the generalization of a neural network model include
regularization (normalization of the dataset) and early-stopping [73]. Early-stopping
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3 – Behavioral modeling

techniques divide the total data available for training into two data sets: the train-
ing set and the validation set. During training, the error on the validation set is
monitored, and training is stopped when validation set error starts to increase. If
the error on the validation set begins to rise, even though the error on the training
data set continues to fall, then this is an indication of a loss of generalization, and is
an indicator to stop training the network. If there is a succession of training epoch
in which performance improves only for the training data and not for the validation
data, over-fitting has occurred. At this point (called minimum generalization point)
the training is stopped. This is shown in figure 3.12.

3.4.3 Advantages

To justify the choice made in this thesis regarding the neural network approach, the
following list shows some of the potential benefits that may be obtained from using
behavioral models based on neural networks.

• Using NNs, much more compact models (also easier to generate and use) are
obtained than with physical or circuit models. They can be directly trained on
the device non-linear measurements, without the need neither of the equiva-
lent circuit topology, nor the corresponding non linear component constitutive
descriptions.

• Comparing the NN approach with the polynomial one, contrary to the inherent
local approximating properties of polynomials, neural networks can behave as
global approximates, a potential advantage for modeling strongly nonlinear
systems. NNs are, in principle, better in extrapolating beyond the zone where
the system was tested during parameter extraction.

• The generalization ability of a NN model of producing results from inputs
not previously presented during the training phase, by accepting an input and
producing a plausible response, makes such a model robust against noisy data.

• Behavioral models resulting from the use of the NN paradigm may replace
sub-circuits in simulations that would otherwise be too time consuming to
perform with an analogue circuit simulator.

• Neural networks can be used to provide a general link from measurements or
device simulations to circuit simulation. The discrete set of measurements or
device simulations can be used as the target data set for a neural network.
The NN then tries to learn the desired behavior. If this succeeds, the neural
network can subsequently be used as a neural behavioral model in a circuit
simulator.
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3 – Behavioral modeling

• An efficient link, via neural models, between device simulation and circuit
simulation would allow for the anticipation of consequences of technological
choices to circuit performance. For example, neural models could contribute
to a reduction of the design cycle when new semiconductor device technologies
appear.

• Feedforward neural networks can be defined in such a way that stability can
be guaranteed, as well as the networks having a unique behavior for a given
set of (time-dependent) inputs. This implies that the corresponding neural
models have unique solutions in both DC and transient analysis when they
are applied in circuit simulation. This property can help the nonlinear solver
of a circuit simulator to converge.

• Associated with the NNs models, a software toolbox could automatically gen-
erate the models in the appropriate syntax of a set of supported simulators.
The automatic generation of models can help to ensure mutually consistent
model implementations for the various supported simulators. In fact, one
chapter of this thesis is dedicated to present a prototype of such a software
toolbox.

3.5 Summary

In this chapter, the behavioral modeling approach has been introduced, and the
three main techniques to build a behavioral model have been presented. The neural
network paradigm has been explained in more detail, because this is the approach
followed in this thesis. At the end of the chapter appear the advantages of using the
neural network approach.
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Chapter 4

Neural network-based behavioral
model

In this chapter, the neural network-based model proposed in this thesis for behavioral
modeling of electronic devices is presented. The proposed procedure for Volterra
series extraction from the neural model is also explained.

4.1 Introduction

Electronic devices having nonlinear characteristics are, often, difficult to model ac-
curately. Generally it is easier to perform measurements of the device parameters
than to develop an analytical model of its behavior. As neural networks (NNs) can
be used to learn a system dynamics from input/output data only, we have developed
a NN model which reproduces the nonlinear behavior of an electronic device, using
laboratory measurements or simulation data.

However, electronic devices nonlinear analysis requires an analytical model de-
scribed as a closed-form function, that allows to draw conclusions about the device,
such as the Volterra series model. The Volterra model was presented in Chapter 3
and it was explained that the terms of the series, named Volterra kernels, contain
important information for the electronic engineer such as the model derivatives, but
they are difficult to calculate, estimate or measure.

In this chapter will be shown how the neural model and the analytical Volterra
series model of a device are totally equivalent, which is the relationship that exists
between the kernels and the network parameters, and how the kernels can be ob-
tained from the combination of the networks weights and bias values. Therefore,
this chapter explains how it is possible to build an analytical expression for a non-
linear dynamic device or system (the Volterra series model) with parameters of a
standard NN, properly trained with measurements or simulation data. Two cases
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4 – Neural network-based behavioral model

study are presented for the application of the novel approach: at device-level analy-
sis, a Field-effect transistor (FET); and at system-level analysis, a Power Amplifier
(PA).

4.2 Model building

The procedure proposed starts with the definition of a neural network model. The
type of network that is used is a Time-delayed neural network (TDNN) because,
as was explained in Chapter 3, this type of network can represent a system which
has a dynamic behavior. The TDNN model is based on a Multi-layer perceptron
net (MLP) and the general topology of the model, for two input variables and one
output, can be seen in figure 4.1.

Figure 4.1. General Time-Delayed neural network (TDNN) model able to repre-
sent an electronic device/system.

The model has one input layer, one hidden layer and an output layer with a single
output. The input layer has as inputs the samples of the independent variables,
together with their time-delayed values. The general model here presented shows a
two-input variable dependence (xa and xb) of one output variable (y), but the model
can be easily extended to more or less input/output variables.

Each variable can have a delay tap between 0 and N . If we call Na the maximum
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4 – Neural network-based behavioral model

number of delays for variable xa and Nb the maximum number of delays for variable
xb, then the total number of input neurons is M (M = (Na + 1) + (Nb + 1)).

In the hidden layer, the number h of hidden neurons varies between 1 and H.
The hidden units have a nonlinear activation function. In general, the hyperbolic
tangent (tanh) will be used because this function is usually chosen in the electronics
field for the type of devices we want to model. If necessary, the number of neurons
in the hidden layer can be changed to improve the network accuracy. The hidden
neurons receive the sum of the weighted inputs plus a corresponding bias value for
each neuron bh. All neurons having bias values gives more degrees of freedom to the
learning algorithm, which means more parameters that can be optimized to improve
the model accuracy.

The weights between the layers are described with the usual perceptron notation
introduced in Chapter 3, where the sub-indexes indicate the sense of the connection,
the origin and the destination of the connection weight, e.g. wj,i means that the
weight w relates the destination neuron j with the origin neuron i. However, a
modification in the notation was introduced, adding a super-index to the weights,
to more easily identify to which layer it belongs. Therefore, w1 means that the
weight w belongs to the connection between the inputs and the first hidden layer,
and w2 means that the weight w belongs to the connection between the first hidden
layer and the second one (in our particular case, the second hidden layer happens
to be the output layer). In this second group of connections weights, the sub-index
which indicates the destination neuron has been eliminated because there is only
one possible destination neuron (the output).

This unique output neuron has a linear activation function which acts as a nor-
malization neuron (this is usual choice in MLP models). Therefore, the output of
the proposed neural network model is calculated as the sum of the weighted out-
puts of the hidden neurons plus the corresponding output neuron bias (b0), yielding
equation A.1, where vi = [a,b] is the variable index.

y(t) = b0 +
H∑

h=1

w2
h tanh

bh +
Nvi∑
i=0

w1
h,i+1xvi(t− i)

 (4.1)

Once the TDNN model has been defined, it is trained with device/system time-
domain measurements. The input and output waveforms are expressed in terms of
their discrete samples in the time-domain. To improve the network accuracy and
speed up learning, the inputs are normalized to the domain of the hidden neurons
nonlinear activation functions (in our case, for the hyperbolic tangent tanh, the
interval should be [−1; +1]). The formula used to obtain normalization in this

interval is xnorm = 2(x−min{x})
(max{x}−min{x}) − 1.

During training, the network parameters are optimized using a backpropagation
algorithm. The Levenberg-Marquardt algorithm [51], which has been chosen due
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4 – Neural network-based behavioral model

to its good performances and speed in execution. This method is a second-order
backpropagation algorithm because it uses the Hessian matrix1 in the calculations.
To evaluate the TDNN learning accuracy, the mean square error (mse) is calculated
using equation 4.2, being P the number of input/output pairs in the training set,
yT the output target and yNN the network output.

mse =
1

P

P∑
k=1

E(k)2 =
1

P

P∑
k=1

(yT (k)− yNN(k))2 (4.2)

The good generality property of a neural network says that it must perform well
on a new dataset distinct from the one used for training. Even a excessive number
of epochs or iterations on the learning phase could make performance to decrease,
causing the over-fitting phenomenon.

That is why, to avoid it, the total amount of data available from measure-
ment/simulation is divided into training and validation subsets, all equally spaced.
We have used the ”early-stopping” technique [73], where if there is a succession of
training epoch in which accuracy improves only for the training data and not for
the validation data, over-fitting has occurred and the learning is terminated.

The initialization of the network is an important issue for training the TDNN
with the back-propagation algorithm, in particular in what respect speed of execu-
tion, that is why the initial weights and biases of the model are calculated using the
Nguyen-Widrow initial conditions [58], instead of a purely random initialization.

4.3 Volterra identification method

In this section, the found procedure for generating the Volterra series models using
the weights and bias values of the TDNN proposed model is briefly explained. A
more detailed explanation of the procedure can be found on the Appendix A.

The procedure, which can be applied to a function depending on one, two or even
more input variables, begins by expanding the output of the TDNN model (equation
A.1) as a Taylor series around the bias values of the hidden nodes. Therefore, the
hidden nodes activation functions derivatives regarding the bias values have to be
calculated (in this case, the tanh derivatives). This yields equation A.2, where d
means derivative order.

y(t) = b0 +
H∑

h=1

w2
h

+∞∑
d=0

 ∂d tanh
∂xd |x=bh

d!

Nvi∑
i=0

w1
h,i+1xvi(t− i)

d
 (4.3)

1Matrix of second derivatives of the error matrix E with respect to the weights w. It contains
information about how the error gradient changes in different directions in weight space.
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4 – Neural network-based behavioral model

Developing equation A.2 and grouping common terms according to the deriva-
tives yields equation A.6, which is the final form of the network model output.
Equation A.7 shows an instance of this formula for the proposed TDNN with two
input variables xa and xb, when d = 3.

y(t) =
+∞∑
d=0

 H∑
h=1

w2
h

Nvi∑
i=0

· · ·
Nvi∑
j=0

w1
h,i+1 · · ·w1

h,j+1

 ∂d tanh
∂xd |x=bh

d!

 (xvi(t− i) · · ·xvi(t− j))d

(4.4)

y(t) = b0 +
H∑

h=1

w2
h tanh(bh) +

[
H∑

h=1

w2
hw

1
h,1

(
∂ tanh

∂x
|x=bh

)]
xa(t) +

[
H∑

h=1

w2
hw

1
h,h

(
∂ tanh

∂x
|x=bh

)]
xb(t) + H∑

h1=1

H∑
h2=1

w2
h1

w1
h2,1w

1
h2,1

 ∂2 tanh
∂x2 |x=bh

2!

x2
a(t) +

 H∑
h1=1

H∑
h2=1

w2
h1

w1
h2,hw

1
h2,h

 ∂2 tanh
∂x2 |x=bh

2!

x2
b(t) +

 H∑
h=1

w2
hw

1
h,1w

1
h,h

 ∂2 tanh
∂x2 |x=bh

2!

xa(t)xb(t) + · · ·+
 H∑

h1=1

H∑
h2=1

w2
h1

w1
h2,1w

1
h2,1w

1
h2,1

 ∂3 tanh
∂x3 |x=bh

3!

x3
a(t) +

 H∑
h1=1

H∑
h2=1

w2
h1

w1
h2,hw

1
h2,hw

1
h2,h

 ∂3 tanh
∂x3 |x=bh

3!

x3
b(t) +

 H∑
h1=1

H∑
h2=1

H∑
h3=1

w2
h1

w1
h2,1w

1
h2,1w

1
h3,h

 ∂3 tanh
∂x3 |x=bh

3!

x2
a(t)xb(t) +

 H∑
h1=1

H∑
h2=1

H∑
h3=1

w2
h1

w1
h2,1w

1
h3,hw

1
h3,h

 ∂3 tanh
∂x3 |x=bh

3!

xa(t)x
2
b(t) + · · ·(4.5)

If this last equation is compared to the double Volterra series model (represen-
tation for two input variables) [62][56] partially reproduced in equation A.8, the
Volterra kernels hn can be easily recognized as the terms between brackets in the
TDNN output expression.
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4 – Neural network-based behavioral model

y(t) = h0 +
+∞∑
k=0

h1(k)x1(t− k) +

+∞∑
k=0

h1(k)x2(t− k) +

+∞∑
k=0

h2(k,k)x1(t− k)2 +

+∞∑
k=0

h2(k,k)x2(t− k)2 +

+∞∑
k=0

h3(k,k,k)x1(t− k)3 +

+∞∑
k=0

h3(k,k,k)x2(t− k)3 +

+∞∑
k=0

hn(k, · · · ,k)x1(t− k)n +

+∞∑
k=0

hn(k, · · · ,k)x2(t− k)n + · · · (4.6)

From this comparison some formulas have been derived which allow the calcula-
tion of any Volterra kernel order using the weights and hidden neurons bias values of
a TDNN. These, are general formulas that allow calculating any kernel order from
a network with any topology (any number of input neurons, any number of hidden
neurons and any activation function af(x)).

h0 = b0 +
H∑

h=1

w2
haf(bh) (4.7)

h1(k) =
H∑

h=1

w2
hw

1
h,k+1

(
∂af

∂x
|x=bh

)
(4.8)

h2(k1,k2) =
H∑

h=1

w2
hw

1
h,k1+1w

1
h,k2+1

(
∂2af
∂x2 |x=bh

)
2!

(4.9)

h3(k1,k2,k3) =
H∑

h=1

w2
hw

1
h,k1+1w

1
h,k2+1w

1
h,k3+1

(
∂3af
∂x3 |x=bh

)
3!

(4.10)

hn(k1, · · · ,kn) =
H∑

h=1

w2
hw

1
h,k1+1 · · ·w1

h,kn+1

(
∂naf
∂xn |x=bh

)
n!

(4.11)
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4 – Neural network-based behavioral model

More than one kernel can be used to describe a given system. A kernel can be
rewritten in several ways simply by reordering the variables. This feature can lead
to difficulties when system properties are described in terms of properties of the
kernel. Therefore, it becomes important in many situations to impose uniqueness
by working with a special, restricted form for the kernel. One such form is the
symmetric kernel which satisfies equation 4.12, where π(.) denotes any permutation
of the integers 1, · · · ,n. It can be shown that without loss of generality the kernel
of a homogeneous system can be assumed to be symmetric [67].

hsym (k1, · · · ,kn) = hsym

(
kπ(1), · · · ,kπ(n)

)
(4.12)

In fact any given kernel, say h(k1, · · · ,kn), can be replaced by a symmetric kernel
simply by setting the kernel as shows equation 4.13, where the indicated summation
is over all n! permutations of the integers 1 through n.

hsym (k1, · · · ,kn) =
1

n!

∑
π(.)

hsym

(
kπ(1), · · · ,kπ(n)

)
(4.13)

The following group of equations can be used when the hidden neurons acti-
vation function is the hyperbolic tangent. In the formulas, the hyperbolic tangent
derivatives have been developed, where tanh = tanh(bh).

h0 = b0 +
H∑

h=1

w2
h tanh (4.14)

h1(k) =
H∑

h=1

w2
hw

1
h,k+1

(
1− tanh2

)
(4.15)

h2(k1,k2) =
H∑

h=1

w2
hw

1
h,k1+1w

1
h,k2+1

(
−2 tanh +2 tanh3

)
2!

(4.16)

h3(k1,k2,k3) =
H∑

h=1

w2
hw

1
h,k1+1w

1
h,k2+1w

1
h,k3+1

(
−2 + 8 tanh2−6 tanh4

)
3!

(4.17)

hn(k1, · · · ,kn) =
H∑

h=1

w2
hw

1
h,k1+1 · · ·w1

h,kn+1

(
∂n tanh

∂xn |x=bh

)
n!

(4.18)

However, for some particular cases (i.e. PA nonlinearities), we have found that
there is a simpler way of calculating the kernels, avoiding the need for applying
a Taylor expansion to the TDNN model and the calculation of derivatives of the
activation functions. The proposal is to use polynomial activation functions in the
hidden neurons, in cases where the system order is previously known, because that
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4 – Neural network-based behavioral model

increases the speed and the simplicity in the Volterra series extraction. In this case,
the procedure to follow is simply to develop and to distribute the polynomials.

In general, a polynomial as activation function in the TDNN model should look
like equation 4.19, where P means polynomial order.

y(t) = b0 +
H∑

h=1

w2
h

bh +
Nvi∑
i=0

w1
h,i+1xvi(t− i)

P

(4.19)

The procedure, then, for finding the Volterra kernels, becomes simply distribut-
ing the polynomials and after common factoring, the kernels are immediately iden-
tifiable, as shown in equation A.4.

y(t) = b0 +
H∑

h=1

w2
h(bh)

P + H∑
h=1

w2
h

Nvi∑
i=0

w1
h,i+1

(
PbP−1

h

)xvi(t− i) +

 H∑
h=1

w2
h

Nvi∑
i=0

Nvi∑
j=0

w1
h,i+1w

1
h,j+1

(
P (P − 1)bP−2

h

2!

)xvi(t− i)xvi(t− j) +

 H∑
h=1

w2
h

Nvi∑
i=0

Nvi∑
j=0

Nvi∑
k=0

w1
h,i+1w

1
h,j+1w

1
h,k+1

(
P (P − 1)(P − 2)bP−3

h

3!

)
xvi(t− i)xvi(t− j)xvi(t− k) + · · · (4.20)

The new simpler formulas to calculate the kernels using polynomial activation
functions are the following:

h0 = b0 +
H∑

h=1

w2
h(bh)

P (4.21)

h1(k) =
H∑

h=1

w2
hw

1
h,k+1

(
PbP−1

h

)
(4.22)

h2(k1,k2) =
H∑

h=1

w2
hw

1
h,k1+1w

1
h,k2+1

(
P (P − 1)bP−2

h

2!

)
(4.23)

h3(k1,k2,k3) =
H∑

h=1

w2
hw

1
h,k1+1w

1
h,k2+1w

1
h,k3+1

(
P (P − 1)(P − 2)bP−3

h

3!

)
(4.24)

hn(k1, · · · ,kn) =
H∑

h=1

w2
hw

1
h,k1+1 · · ·w1

h,kn+1

(
P · · · (P − (n− 1))bP−n

h

n!

)
(4.25)
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4 – Neural network-based behavioral model

Once the TDNN model has been trained with time-domain measurements and
the desired accuracy has been obtained, an algorithm has been developed and im-
plemented inside a software toolbox prototype which allows the creation and use of
the proposed neural models and the building of the corresponding Volterra model.
The software toolbox, which is explained in detail in chapter 5, produces a file which
contains the TDNN/Volterra models and their parameters, to be implemented in-
side a circuits simulator as a full black-box model. The models can be used inter-
changeably, they both represent the same behavior, but in a different format. As
the simulation and validation results of chapter 6 show, they give exactly the same
response.

In the next section, applications of the proposed models, as well as their detailed
implementation inside a simulator, will be presented.

4.4 Applications

4.4.1 Transistor model

Inside the traditional equivalent-circuit Curtice model [12] of a FET, most of the
nonlinear behavior of the device is due to the drain to source current Ids, that
depends on the gate and drain voltages Vgs and Vds. Curtice proposed an equation
for modeling the current behavior (presented in chapter 2) which generates the
curves that can be seen in figure 4.2 when different input voltage combinations are
considered. These are the typical I/V curves of a Curtice FET device model in DC.
In the figure, the device bias point Ids0 = (Vds0,Vgs0) has been marked.

Figure 4.2. Typical I/V curves for a FET.

This drain current nonlinear behavior in DC can also be described with a more
compact model, which could also provide more information about the device under
test (DUT), i.e. intermodulation phenomena. This compact model is the Volterra
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4 – Neural network-based behavioral model

series model, shown in equation 4.26 including up to the third order terms. This
equation represents a static relationship, the instantaneous behavior of the drain
current in DC. Therefore, in this case, the Volterra series turns to be a simple
Taylor expansion.

Ids = Ids(Vgs0,Vds0) +

Gm1.Vgs + Gds.Vgs +

Gm2.V
2
gs + Gds2.V

2
gs + Gmd.Vds.Vgs +

Gm3.V
3
gs + Gds3.V

3
gs + Gm2d.V

2
ds.Vgs + Gmd2.Vds.V

2
gs (4.26)

With this model, the intermodulation distortion (IMD) phenomena can be easily
identified, as shows figure 4.3.

Figure 4.3. Intermodulation distortion (IMD) phenomena identified by a Volterra
model.

Once the model is built, the values of the Volterra kernels have to be identified.
If an analytical model for Ids is available for the DUT, such as the Curtice formula
for a FET, the kernels can be determined analytically. A Taylor expansion is applied
to the original formula at the bias point and the kernels are calculated as the first
order (Gm1 and Gds), second order (Gm2, Gds2 and Gmd) and third order (Gm3, Gds3,
Gm2d, Gmd2) derivatives of the current with respect to the voltages. For example,
the kernel Gm1, which is a figure of the transconductance of the device2 would be
calculated as the first derivative of the drain current with respect to the gate voltage.
Similarly, the kernel Gds or the output conductance3 would be obtained as the first
derivative of the drain current with respect to the drain voltage.

2Expression of the performance of the transistor; e.g. the larger the transconductance the
greater the gain it is capable of delivering, when all other factors are held constant.

3The internal conductance of a circuit or device, as seen at the output terminals.
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4 – Neural network-based behavioral model

Gm1 =
∂Ids

∂Vgs

|Vgs0,Vds0
(4.27)

Gds =
∂Ids

∂Vds

|Vgs0,Vds0
(4.28)

However, if an analytical model for the DUT is not available, the formulas 4.7 to
4.11 proposed in this chapter can be used, which extract the Volterra kernels from
the TDNN model. To validate the proposal, the neural network model of figure
4.4 is used to model the drain current nonlinearity and to obtain the corresponding
Volterra kernels in DC. The inputs to the model are the instantaneous gate and
drain voltages (Vgs(t) and Vds(t)) and the output is the instantaneous drain-source
current Ids(t), sampled on the time-domain. Using the procedure mentioned in the
first part of this chapter, the Volterra series model is found and compared with the
analytical Curtice model for a FET transistor. The results are presented in chapter
6.

Figure 4.4. Neural network model for instantaneous drain current in a transistor.

If memory effects have to be considered into the model, the TDNN model has
the form of figure 4.5, where not only the instant values of the input variables are
considered, but also their past values. This model has also been validated with
measurements on a real DUT, i.e. the characterization of a transistor for a PA
design project, where the device works on different classes according to the bias.
These results also appear on chapter 6.

As chapter 5 will illustrate, the model generation, training and use, and the
associated Volterra model obtention, have been codified inside a software toolbox
prototype, with a user-friendly interface which helps the electronic designer in the
task of behavioral model definition.

When the model has to be simulated, together with other traditional models
inside a circuits-based simulator, the toolbox generates a file containing the models
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4 – Neural network-based behavioral model

Figure 4.5. TDNN transistor model with memory.

definition and parameters. This way the model can be loaded into a user-defined
model inside a simulator. For example, in the simulator Agilent ADS c©, an element
named symbolically defined device (SDD) can be linked to a file containing the model
definition. The ports of the SDD element are defined to be the model variables.
Generators can be associated to the model as well, to simulate the input signals.
Once the model has been loaded, DC, AC and transient simulations as well as
harmonic-balance analysis can be made.

The following lines explain the implementation of the proposed behavioral model
inside Agilent ADS c© as a full black-box model, using a SDD element.

Figure 4.6 shows an implementation inside the circuits simulator of a general
TDNN/Volterra model for a transistor (two possible inputs with a maximum of two
delayed samples each). The figure marks the elements inside the schematics that
are needed for model implementation.

The SDD element allows the definition of a black-box model, which receives
input stimulus through some of its ports and produces outputs through some other
ports. In the shown example, the generic SDD defined has eight ports: two input
ports (port 1 and 2), four internal ports with the delays of the input variables,
and two output ports (ports 7 and 8). Input variables declaration is marked in the
figure and it associates port 1 of the SDD with the input variable, in this example
for a transistor, the gate voltage Vgs); and port 2 with Vds (drain voltage). In the
schematics this is performed with the following variables declaration:

V gs = v1 (4.29)

V ds = v2 (4.30)
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4 – Neural network-based behavioral model

Figure 4.6. Black-box implementation inside a circuits simulator of the
TDNN/Volterra model for transistor DC analysis.

Inside the SDD the following statements indicate that those ports will not absorb
current (they are inputs):

I[1,0] = 0 (4.31)

I[2,0] = 0 (4.32)

Depending on the kind of simulations that will be done with the model, the
input ports can be terminated with resistances in the case of DC analysis or they
can be replaced with sources in the case of AC and Harmonic Balance simulations.
In the figure, as the model will be tested in DC simulation, the DC and PARAME-
TER SWEEP elements appear in the schematics, which set the sweeps that will be
performed on the input variables.

When modeling the dynamic behavior, delayed versions of the input variables
are needed to feed the TDNN. In Agilent ADS c© delay in time can be implemented
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4 – Neural network-based behavioral model

inside a SDD element assigning the delay Fourier Transform Operator (ejωτ ) as a
weighting function (H) at the port where the delay has to be imposed.

This will be exemplified for the first delayed sample of the Vgs(t) variable, Vgs(t−
1), which will be called V gsdel1 in the model. First of all, it is given a name and
associated with a SDD port, i.e. port 3:

V gsdel1 = v3 (4.33)

Inside the SDD element, the variable is declared to be an output (generates a
signal) which will be a delayed version (according to some defined delay τ) of the
Vgs variable. This is done with the following formulas:

F [3,0] = −V gsdel1 (4.34)

F [3,3] = V gs (4.35)

H[3] = ejωτ (4.36)

which represent V gsdel1 = V gs ∗ H = V gs ∗ ejωτ . The formulas have to be
repeated for each delayed variable which must be defined.

The output variables are given a name and defined to appear at ports 7 and 8
with the lines:

I[7,0] = −Ids (4.37)

I[8,0] = −V olterra1 (4.38)

These output variables have the names NNoutput and Volterra inside the sim-
ulator, i.e. for plotting. They produce their responses according to the formulas of
the behavioral TDNN/Volterra model contained in the model file and loaded into
the schematics.

The NETLIST INCLUDE element provides the link between the model file and
the SDD of the schematics. Its parameters IncludePath and IncludeFile indicate
the location and the name of the file containing the model. In the example, the
file that contains the model is named NN model.txt and it contains the definition
of the output variables Ids and Volterra1 as result of a neural model. The model
parameters are loaded and used inside the simulator, therefore when the input vari-
ables are mentioned in the model file, their names must be the same names defined
for them in the schematics.

For example, the Ids variable and parameters definition, which could be find
inside the file for a TDNN model with M=0, H=2 and tanh activation function,
would be like follows:
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4 – Neural network-based behavioral model

b0=45.6198;

w1=-0.0069;

w11=24.2747;

w12=23.4633;

b1=-11.1024;

w2=45.5063;

w21=1.2322;

w22=1.5255;

b2=-8.7518;

Ids=b0+w1*tanh(w11*Vds+w12*Vgs+b1)+w2*tanh(w21*Vds+w22*Vgs+b2);

In the case of the Volterra1 output variable, inside the same file, it would be:
h0=0.006;

h1(0)=0.4149;

h1(1)=0.0806;

h2(0,0)=0.0033;

h2(1,1)=-0.0015;

h2(0,1)=0.0001;

h3(0,0,0)=0.0007;

h3(1,1,1)=-0.0001;

h3(0,0,1)=0.0002;

h3(1,1,0)=-0.0002;

Volterra1=h0+h1(0)*Vds+h1(1)*Vgs+h2(0,0)*Vds^2+h2(1,1)*Vgs^2+

2*h2(0,1)*Vds*Vgs+h3(0,0,0)*Vds^3+h3(1,1,1)*Vgs^3+

3*h3(0,0,1)*Vds^2*Vgs+3*h3(1,1,0)*Vds*Vgs^2;

For harmonic balance analysis, the implementation of the TDNN/model inside
the simulator should look like figure 4.7.

4.4.2 Power Amplifier model

When characterizing a power amplifier (PA) in function on input/output powers,
the TDNN model of figure 4.8 can be used.

The training set for the model is formed with input/output sinusoidal time-
domain waveforms power samples (Pin/Pout) and their delayed replies, according to
a certain tap delay (Td) which must be determined. When using a two-tone PA
characterization, it could be calculated from the bandwidth (BW ) according to:

Td =
1

2 ∗BW
(4.39)

BW = harm ∗ fund (4.40)
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4 – Neural network-based behavioral model

Figure 4.7. TDNN/Volterra model black-box implementation for harmonic bal-
ance analysis.

Figure 4.8. TDNN model for a PA.

fund =
f1 + f2

2
(4.41)

where fund is the middle of the input tones f1 and f2, and harm is the harmonics
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order to be considered in the model. In this case the sampling period (Ts) should
be:

Ts = nTd; n ≥ 1 (4.42)

The input-output training data sets are built with cascading samples obtained
from each source power level. Input data vectors from different input levels should
be first joined together; the resulting vector should be copied and delayed as many
times, to represent the network input, as necessary to take into account memory
effects. The TDNN model must be trained with all the data, simultaneously. This
allows to obtain a nonlinear model able to characterize, at the same time, the low
and high nonlinear distortion, for all the input power levels of interest.

When the order of the system being modeled is known a priori, this information
can be used to improve the model accuracy. As will be shown in the results chapter,
when the system is of order 3 and therefor cubic activation functions are used for
the TDNN model, the results are much better than using the hyperbolic tangent.

Concerning implementation of a general behavioral TDNN/Volterra model for
PA simulations based on Pin/Pout measurements inside a circuits simulator, it is
presented in figure 4.9.

The same considerations for the implementation presented before for the TDNN
model of a transistor, hold also for this PA model. The only observation to be made
is that in this case there only one input variable Vin at port 1 of the SDD, which
can have delays versions of itself, calculated exactly as was explained before. In
this example the file that contains the model definition is named NNamplifier.txt

and the output variables of the model, defined inside the model file, are Vout and
Volterra.

The schematics shows also a HARMONIC BALANCE element which is setup to
perform simulations at 1 GHz including 4 harmonics for the PA model, and therefore
the input port 1 has a sinusoidal source connected to it instead of a resistance as in
the DC case.

4.5 Summary

This chapter began with an explanation of the neural network-based model pro-
posed in this thesis for behavioral modeling of electronic devices and systems. The
proposed procedure for Volterra series extraction from the neural model, as well as
model implementation inside a commercial circuits simulator have been explained.
Finally, examples of the application of the model to transistors and power amplifier
modeling have been shown.
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4 – Neural network-based behavioral model

Figure 4.9. Black-box implementation inside a circuits simulator of the
TDNN/Volterra model for a PA.
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Chapter 5

Results

This chapter shows the results of validation of the proposed model against measure-
ments. The results obtained from four modeling cases study are here reported.

5.1 Introduction

First of all, the proposed time-delayed neural network (TDNN) model was applied
for the characterization of the static DC behavior of a FET transistor, compared to
the analytical Curtice model simulations. For this device, the corresponding Volterra
series model has been extracted as well, and the results from the comparison are
reported.

Concerning transistor dynamic behavior modeling, results of a GaAs MESFET
measurements used to train the TDNN model are shown, comparing a neural model
without memory (no delayed variables) and a model with memory, highlighting the
importance of the inclusion of memory into the TDNN. Finally, a GaN HEMT
transistor has been also measured and characterized with the TDNN, when the
device works in different classes according to the bias point. These measurements
were performed at Politecnico di Torino.

Finally, regarding the power amplifiers (PAs) dynamic behavior modeling, mea-
surements with one-tone and two-tones inputs have been made at Università Tor
Vergata di Roma. These measurements were used to train the TDNN model for
Pin/Pout waveforms characterization.

The strategy followed to set the TDNN memory is the same adopted for the
design of numerical filters, where the input tap number is dictated by the bandwidth
accuracy required, while the number of hidden neurons has been chosen to perform
the best fitting between the input-output data (H=10). The TDNN is trained
with a backpropagation algorithm, based on the Levenberg-Marquardt approach for
network parameter optimization because of its execution speed and good accuracy,

66

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

; "
N

on
lin

ea
r 

R
F/

M
ic

ro
w

av
e 

de
vi

ce
 a

nd
 s

ys
te

m
 m

od
el

in
g 

us
in

g 
ne

ur
al

 n
et

w
or

ks
"

Po
lit

ec
ni

co
 d

i T
or

in
o,

 d
ec

, 2
00

5.



5 – Results

with a mean square error (MSE) level, in the worst cases of approximately around
1e−4, and in the best ones, an excellent accuracy of 1e−12, as shown in figure 5.1.
This good approximation accuracy is confirmed by the obtained results.

Figure 5.1. TDNN model performance.

Furthermore, the good generality property of a neural model, which says that it
must perform well on a new dataset distinct from the one used for training, should
be guarantee. That is why, to prevent the overfitting phenomena, the total amount
of data available from measurements has been divided into training and validation
subsets, and early-stopping technique has been applied. It determines that if there
is a succession of training epoch in which performance improves only for the training
data and not for the validation data, overfitting has occurred and the learning is
terminated.

For all the cases, both neuronal and Volterra series based black-box model have
been obtained. In all cases, the proposed behavioral models have been implemented
and simulated inside a commercial circuits simulator, as was explained in chapter 4.

5.2 Transistor modeling

This section presents the results of comparison between the TDNN behavioral model
- and its corresponding Volterra series model - and different measurements performed
on a FET transistor.

In the first subsection, the DC behavior of a MESFET transistor at a certain bias
point represented by the traditional Curtice formula is shown. This DC behavior
will be modeled though a TDNN model and then its Volterra kernels extracted from
the network.
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5 – Results

The second subsection shows the results of modeling the dynamic behavior of a
MESFET and a HEMT transistors in RF. First of all the importance of the inclusion
of memory into the TDNN model will be highlighted. Then, a TDNN model capable
of learning the behavior of a transistor able to work in different classes, according
to the bias point, is reported.

5.2.1 DC behavior

W. Curtice proposed an equation - presented in chapter 2 - for modeling the current
behavior of a FET transistor at a certain bias point.

This model generates the curves that can be seen in figure 5.2.1 when different
intrinsic voltage combinations (or bias points) are considered for the device. In the
figure, the following typical model parameter values have been used: Vgs = [−2; 0]V
step 0.2, Vds = [0; 5]V step 0.5, A0 = 0.0625,A1 = 0.05,A2 = 0.01,A3 = 0.001,β = 0,
γ = 0.3. The bias point is Vds = 3V .

Figure 5.2. Typical I/V curves for a transistor in DC.

This device simulations have been used to train a simple TDNN model with-
out memory, with only two input variables (Vds and Vgs), 10 hidden neurons with
hyperbolic tangent activation function and one output (Ids). The network, shown
in figure 5.3, has been trained with samples uniformly distributed; the training has
been refined up to an average mean square error of 1e−10.

At the end of the training procedure, the Volterra kernels up to the 3rd order
have been extracted from the TDNN model and the Volterra series expansion cor-
responding to this device bias point has been built.

Figure 5.2.1 reports the Curtice model approximation of the drain current behav-
ior in a FET transistor (dotted line) compared to the TDNN and Volterra models
(full line). On the left, the figure shows the comparison between the TDNN model

68

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

; "
N

on
lin

ea
r 

R
F/

M
ic

ro
w

av
e 

de
vi

ce
 a

nd
 s

ys
te

m
 m

od
el

in
g 

us
in

g 
ne

ur
al

 n
et

w
or

ks
"

Po
lit

ec
ni

co
 d

i T
or

in
o,

 d
ec

, 2
00

5.



5 – Results

Figure 5.3. Neural network model for DC transistor modeling.

output and the original data of the problem. The approximation of the neural
model is highly accurate. On the right, the figure compares the original data and
the Volterra series approximation for this data. Considering that only up to the 3rd

order kernels have been included, the result can be qualified as very good. The same
comparison is made in figure 5.2.1 concerning the current and the gate voltage.

Figure 5.4. Comparison between the Curtice model (dotted line) and the TDNN
model (left) and Volterra model (right) for modeling the DC characteristics of a

FET transistor.

From the comparison it can be concluded that the TDNN and its corresponding
Volterra model give almost the same results for the same inputs and therefore they
could be used interchangeably; and that they can model the static characteristic of
a FET transistor with very good accuracy.
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5 – Results

Figure 5.5. Comparison between the Curtice model (dotted line) and the TDNN
model (left) and Volterra model (right) for modeling the Ids/Vgs characteristics of

a FET transistor.

5.2.2 RF behavior

Concerning the dynamic behavior of a transistor, time-domain measurements have
been performed to obtain suitable training sets for a TDNN model taking into
account the dynamic phenomena.

The first transistor which has been characterized was a medium power GaAs
MESFET (10x100 mm) transistor. The device knee voltage is Vk = 1.2 V and
its maximum drain current is Imax = 180 mA. A drain bias voltage of 5 V has
been selected, while -2 V gate bias voltage has been chosen, corresponding to a
drain current Idc = 70 mA. Operating frequency (f0) is 1 GHz and time-domain
characterization is performed up to the fourth harmonic.

The load-source-pull test proposed in the doctoral thesis of [75] at Politecnico
di Torino has been used for time-domain device characterization, and therefore, for
generating the training and validation data sets necessary for neural model training.

The dedicated test-set for accurate device characterization used for measure-
ments obtention is shown in figure 5.6. It provides static and pulsed DC characteri-
zation, scattering parameter measurements, real-time load/source-pull at fundamen-
tal and harmonic frequencies, and gate and drain time-domain RF waveforms. The
measurements are carried out with a Microwave Transition Analyzer and a Vector
Network Analyzer. A classical VNA calibration between port 1 and 2 (e.g. TRL,
LRM) is completed with absolute power and harmonic phase calibration at port 3.

A time-domain investigation on the bias influence on the model has been per-
formed, as shows figure 5.7, which reports drain current and voltage waveforms at
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5 – Results

Figure 5.6. Simplified scheme of the load/source-pull system with time-domain
waveform capabilities at Politecnico di Torino.

-1dB compression varying the gate voltage from -2 to -2.5 V.

Figure 5.7. Drain current and voltage waveforms (-1dB compression) for Vgs =
-1.75, -2, -2.25 and -2.5 V.

To model this behavior, first of all the static TDNN model used in the previous
case for DC modeling has been proved. The results obtained concerning drain
current modeling appear in figure 5.8 (no memory model - left). On the right part
of this figure appear the results of using the model of figure 5.9, which includes
memory M = 2. A clear improvement in the approximation can be noticed, in fact,
the model with memory perfectly follows the behavior of the drain current.
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5 – Results

Figure 5.8. Neural model static (left) and dynamic (right) model approximations
to drain current behavior.

Figure 5.9. Neural network model considering memory.

Since the TDNN including memory is quoted as the best one, from this model
the Volterra series representation has been built, which is shown in figure 6.9. A
remark has to be done with respect to this figure. Compared to the TDNN output,
the Volterra model has more error, but this is probably due the fact that the Volterra
approximation is built including a limited number of kernels (in this case, up to the
3rd order).

The TDNN dynamic behavioral model has been also applied to help PA design,
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5 – Results

Figure 5.10. Measurements (dotted line) vs. Volterra model (full line) comparison
for drain current modeling.

modeling an active device working in a wide range of classes. The model was capable
of identifying the device response, through the training procedure, for a wide range
of input power levels.

Complete characterization was performed for different classes of operation. Re-
sults are here reported for class A and B, at VDS = 30[V ]. Class A is biased at
50% IDSS, and class B with IDS = 0. A 1 mm total gate periphery GaN HEMT
based on SiC with IDSS = 700[mA] has been measured at 1 GHz. Output loads at
fundamental and harmonic frequencies are 50 Ohm. Only the first 4 harmonics are
taken into account.

Figure 5.11. Power sweeps at 1GHz for class A, AB, and B bias points.

The power sweep ranges from -13 to +27 dBm, as shown in figure 5.11, that
reports the device Pin/Pout at 1 GHz for class A, AB, and B. Samples have been
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5 – Results

collected on a 2 ns window. Figure ?? reports the drain current time-domain wave-
forms at increasing output power, the upper plots are relative to a class A bias
condition, while the bottom ones refer to class B operations. Figure 5.12 reports
the dynamic load lines (DLL) at 1 GHz for class A and B operation.

Figure 5.12. Dynamic load lines for 1GHz and 50 Ohm, in class A (left) and B
(right) operation.

For this device, the dynamic TDNN model has been used (it was presented above
in figure 5.9). The memory level is M = 2, meaning that two delay samples for each
input variable are accounted for, and therefore, that a total of six inputs is obtained.
The number of hidden neurons has been chosen H = 10, and the system outputs are
the time samples of the drain current IDS.

For training the TDNN model, input data vectors from all different input power
levels have been first joined together, and the resulting vector has been copied and
delayed as many times, to represent the network input, as necessary to account for
memory. This is schematically depicted in figure 5.13. The TDNN model has been
trained simultaneously for all the power levels chosen for training.

Figure 5.13. Training data for the TDNN model.

The simulation results reported in figure 5.14 show a rather good agreement
between experimental and modelled data. The drain current time-domain waveforms
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5 – Results

are reported at increasing output power; the upper plots are relative to a class A
bias condition, while the bottom ones refer to class B operations. The left figures
report the measurements, while the right ones shows the TDNN simulation result.

Figure 5.14. Time domain IDS waveforms at 1 GHz at increasing power for class
A (top), and B (bottom). Measurements (left), TDNN simulations (right). The

pointed arrow waveform refers to the validation data subset.

The waveforms good agreement of the power levels used only for the model
validation, and excluded from the training data, emphasized in the figure, is a key
result to prove the model predictive capabilities.

5.3 Power amplifier modeling

This section presents the results of comparison between the TDNN behavioral model
- and its corresponding Volterra series model - and one-tone and two-tone measure-
ments performed on a power amplifier (PA).

The neural network used to model the amplifier has the architecture of figure
5.15. This network is trained with PA time-domain measurements. The input and
output waveforms are expressed in terms of their samples in the time domain. M is
the number of the input taps and represents the finite duration of the memory effect
of the PA (in this case, M = 4). The tap delay Z−1 between successive samples
must be a multiple or equal to the data sampling time Ts, and it is calculated as
Ts = M/Fs, being Fs the data sampling frequency.

The measurements setup used at Università Tor Vergata di Roma is shown in
figure 5.16. It has been used to generate the measurements for PA characterization.
The PA is stimulated with tones generated by an HP83640A synthesized sweeper
and an Anritsu MG3692 CW generator. Each power is swept from -30 to -8 dBm,
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Figure 5.15. TDNN architecture for PA modeling.

that is 4 dB over the 1 dB compression point for the combined input power. The
amplifier output has been connected to a Tek11801B Digital Sampling Oscilloscope
(DSO), that has been triggered with the common 10 MHz RF reference from the
generators; the equivalent time sampling algorithm for repetitive waveforms allows
the instrument to exploit the full 50 GHz analog bandwidth of the testing probe. To
compare the frequency response of the amplifier measurements and the simulation of
the two behavioral models, an HP71000 Spectrum Analyzer (SA) has been connected
to the amplifier output, and spectra have been measured for different input power
levels.

Figure 5.16. Measurement setup for PA characterization developed at Università
Tor Vergata di Roma.
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5.3.1 One-tone characterization

Measurements obtained from a Cernex 2266 PA, with 1-2 GHz bandwidth and 29 dB
gain have been used to train a TDNN model of figure 5.15. The inputs to the model
are the voltage signal Vin at the present instant, and four previous delayed samples,
which makes a total of five inputs to the network. The input-output training data
sets have been built with cascading samples obtained from eight source power levels,
using all the data for training simultaneously.

Two type of networks have been trained: the first one with hyperbolic tangent
activation function (equation 5.1), in the entire power range, with 3 dB power step,
to perform a very large signal nonlinear model; the second one with third degree
polynomial activation function (equation A.3), in a smaller power range, below 1 dB
compression point. Both have been trained with five harmonics, eight input delays,
and nine hidden neurons.

Vout NNtanh = b0 +
10∑

h=1

w2
h tanh(bh) +

[
10∑

h=1

w2
hw

1
1

(
1− tanh(bh)

2
)]

Vin(t) +

 10∑
h1=1

10∑
h2=1

w2
h1

(w1
h1

)3

(
−1 + 4 tanh2−3 tanh4

)
3

Vin(t)3 + · · ·(5.1)

Vout NNcubic = b0 +
10∑

h=1

w2
h(bh)

3 +

[
10∑

h=1

w2
hw

1
13(bh)

2

]
Vin(t) + 10∑

h1=1

10∑
h2=1

w2
h1

(w1
h1

)3

Vin(t)3 + · · · (5.2)

Figure 5.17 reports simulation results after training the neural network with the
original data (doted line) and building afterwards the Volterra series model (solid
line) up to the 3rd order approximation, from an neural network with hyperbolic
tangent activation functions (f(x) = tanh(x)) in the hidden layer (left part) and
with cubic activation functions (f(x) = x3) in the hidden layer (right part). More
training results, obtained at 2 GHz, are shown in figures 5.18 and 5.19.

It has also been calculated the mean squared approximation error (MSAE) be-
tween the original device behavior Vout and each obtained Volterra series approxi-
mation VoutV , over the number of samples, using the formula of equation 5.3, being
P the total number of samples (pairs input/output) used in the training set. The
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5 – Results

Figure 5.17. Comparison between measurements and Volterra series model.

Figure 5.18. Volterra model simulation and amplifier measurement comparison
for three input power levels (-20, -12, -7 dBm).

order of the MSAE error is around 1e−03, being the hyperbolic tangent the most
accurate Volterra model. However, the cubic series can be more easily and quickly
obtained.

MSAE =
1

P

P∑
p=1

(Vout(p)− Vout V (p))2 (5.3)

Finally and to conclude the analysis of the results, a natural question that could
arise is why to build and use an approximation of the PA behavior (the Volterra
model) that may have an error bigger than the TDNN model itself? The answer is
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Figure 5.19. Hyperbolic tangent neural model simulation and amplifier measure-
ment comparison for three input power levels (-20, -12, +1 dBm).

that, for simulation purposes, to be able to put the device model into a circuits sim-
ulator and to interconnect it with other devices models to make systems simulations,
an analytical formula is most of the time required. The neural network is a valuable
tool that saves time and complexity when building the analytical Volterra model,
which is a particular suitable model traditionally used for nonlinear device behavior
representation, and already available as a component (whose kernels, however, have
to be assigned a value) inside most of today commercial simulators.

5.3.2 Two-tone characterization

In this case, measurements from a Cernex 2267 PA have been used, with a 2-6 GHz
bandwidth, a 42 dB gain, and 1 dB compression at 32 dBm, stimulated with two
tones at center frequency 4.1 GHz and frequency spacing 100 MHz, generated by an
HP83640A synthesized sweeper and an Anritsu MG3692 CW generator, respectively.

Each power is swept from -30 to -8 dBm, that is 4 dB over the 1 dB compression
point for the combined input power. The amplifier output has been connected to a
Tek11801B Digital Sampling Oscilloscope (DSO), that has been triggered with the
common 10 MHz RF reference from the generators; the equivalent time sampling
algorithm for repetitive waveforms allows the instrument to exploit the full 50 GHz
analog bandwidth of the testing probe. A characterization bandwidth of 22 GHz
has been used to calculate the tap delay, in order to take into account fifth order
harmonic distortion.

To compare the frequency response of the amplifier measurements and simula-
tion of the two behavioral models, an HP71000 Spectrum Analyzer (SA) has been
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connected to the amplifier output, and spectra have been measured for different
input power levels.

Figure 5.20. Time-domain measurements (solid line), TDNN (dotted ∇) and
Volterra (dotted 4) model simulation comparison of amplifier voltage response,
with two input tones at 4.05 and 4.15 GHz, for Pin = -25,-13,-5 dBm, respectively.

In this case the TDNN parameters have been setup at M=4 memory deep and
H=5 hidden neurons. For larger memory duration the neural network tends to
become unstable. Results are shown in figure 5.20. At the end of the training
process, the measured and simulated time-domain waveforms of both models have
been compared in figure 5.21 for three input levels.

To see the modeling performance in the frequency domain, a Fast Fourier Trans-
form (FFT) has been applied to output waveforms either of TDNN and Volterra
model simulation, and compared with spectra measurements made with an HP7000
Spectrum Analyzer. The results are presented in 5.22, where power amplitudes at
fundamental, third-order and, only for the TDNN model, fifth-order intermodula-
tion have been plotted against input power. Both models show a good behavior in
the full power range. Concluding both models show well matched behavior both
in the time and frequency-domain. In this case, better performance of the TDNN
model is hardly discriminated.

To demonstrate the validity of the modeling approach for signals not used in
the training phase, measurement data were obtained by stimulating the amplifier
with a two-tone input signal at different frequencies, in particular 4.3 GHz center
frequency, 20 MHz frequency spacing and the same power sweep.

Time-domain envelopes TDNN model simulations and measurements are shown
in figure 5.23 for three input levels, whereas frequency-domain comparisons are
presented in figure 5.24. As it can be seen, the third-order Volterra model is less
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Figure 5.21. Comparison between measurements (solid line), TDNN (dotted ∇)
and Volterra (dotted 4) model simulations of amplifier response, with two input
tones at 4.05 and 4.15 GHz, for Pout (@f1=4.15 GHz), IMD3 (@2f2 − f1=4.25

GHz) and, only for the TDNN model, IMD5 (@3f2 − 2f1=4.35 GHz).

Figure 5.22. Time-domain measurements (solid line), TDNN (dotted ∇) and
Volterra (dotted 4) model simulation comparison of amplifier voltage response,
with two input tones at 4.29 and 4.31 GHz, for Pin = -25,-13,-5 dBm, respectively.

accurate than the TDNN model around the 1 dB compression point, however still
demonstrating good matching performance not only for low-to-medium distortion.
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Figure 5.23. Time-domain envelopes of measurements, TDNN and Volterra model
simulation of amplifier voltage response, with two input tones at 4.29 and 4.31 GHz,

for Pin = -25,-13,-5 dBm, respectively.

Figure 5.24. Comparison between measurements (solid line), TDNN (dotted ∇)
and Volterra (dotted 4) model simulations of amplifier response, with two input
tones at 4.29 and 4.31 GHz, for Pout (@f1=4.31 GHz), IMD3 (@2f2 − f1=4.33

GHz) and, only for the TDNN model, IMD5 (@3f2 − 2f1=4.35 GHz).

5.4 Summary

This chapter showed the results of validation of the proposed model against mea-
surements, for several different case studies. First of all, the proposed TDNN neural
network model and corresponding Volterra series model were applied for the char-
acterization of the static DC and dynamic RF behavior of FET transistors. Then,
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regarding power amplifiers dynamic behavior modeling, measurements with one-
tone and two-tones inputs have been used to train the TDNN model for Pin/Pout
waveforms characterization.
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Chapter 6

Toolbox for behavioral model
development

This chapter shows the software toolbox prototype that has been designed as result
of this thesis to support the creation and use of behavioral models based on the
neural network paradigm.

6.1 Introduction

Behavioral modeling based on neural networks (NNs) has been proved to be an
important research area, of increasing interest for nonlinear devices and circuits
modeling.

However, the process of neural model development is not trivial and involves
many critical issues such as data generation, normalization, neural network topol-
ogy definition, number of hidden neurons, learning rules, among others. As NN
techniques are relatively new to the microwave community, it is often not easy for
electronic engineers to make decisions regarding these issues.

Therefore, tools for automation of NN model development could be of great
interest to RF/microwave engineers now, whose knowledge about neural network
theory is rather limited.

There exist, actually, commercial and non-commercial products available on the
market that allow for the creation and use of behavioral models, for example, for
a communication system and components modeling. Nevertheless, most of them
assume that the user is an expert in NN theory, because a rather deep understanding
about how the NN paradigm works is needed to define a model. An electronic
engineer who must design a neural model probably would not have a deep knowledge
about the neural paradigm.
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6 – Toolbox for behavioral model development

The mathematics software MatLab c© has recently incorporated a Neural Net-
work Toolbox for developing NN models, which can be applied to resolve a big
variety of problems. The disadvantages of this toolbox, to support the task of elec-
tronic devices behavioral modeling, are many. First of all, a software licence must
be bought. Once it is installed, to be able to exploit all its features it is neces-
sary to know very well the toolbox specific commands. To be able to create really
customized models, deep understanding on the toolbox is needed. Deep knowledge
about neural models parameters, learning rules, etc., is required, which makes its
use restrictive only to expert users. There is also a graphical interface for model
creation and use, but it is poorly designed and not much user-friendly and could
confuse the user.

Finally, another important point is that, if one has been able to create a neural
model, it cannot be exported automatically to be used inside any available commer-
cial circuits simulator. Therefore practically they cannot be used for real simulations,
i.e. of a whole communications system.

There exist another commercial and non-commercial alternatives for NN models
creations, such as:

• NeuralPlanner: http://www.tropheus.demon.co.uk/nplan.htm

• NeuroSolutions: http://www.nd.com/download.htm

• Lens Simulator: http://tedlab.mit.edu/ dr/Lens/

• PDP++: http://www.cnbc.cmu.edu/Resources/PDP++.html

among others, but all of them are too general purpose to be used in the electronics
field, because they were designed for the generic creation of any kind of neural model,
and they require an expert user as well.

Considering only tools designed specifically for behavioral or black-box modeling
of electronic devices, MπLog can be mentioned (www.polito.it), which use however
is specifically limited to analog-digital drivers modeling. Instead, NeuroModeler c©
(http://web.doe.carleton.ca/qjz.html) has been designed as a free tool, for the cre-
ation and use of behavioral models of electronic devices or systems, of any kind,
which once defined can be afterwards exported into the circuits simulator Agilent
ADS c©. The good points of this toolbox is that it is specifically electronic-oriented
and it allows the creation of behavioral models for a big variety of different prob-
lems, which can be saved and modified and loaded into a simulator. This is a very
powerful tool which allows creation and use of many types of networks and it has
implemented most of the neural training algorithms. Besides, it can generate a
black-box model specific for the mentioned commercial simulator.

In this context, appears the need for a software toolbox easy to use for a
RF/microwave engineer which must create and manage behavioral models based
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6 – Toolbox for behavioral model development

on NNs, but has not knowledge at all of the neural theory. Such a tool should have
a good interface design really thought for en electronic engineer who must design a
neural model for a device or system and who probably would not have deep knowl-
edge about the neural paradigm. It should allow also be easily to implement inside
a circuits simulator and efficient to execute.

That is why this thesis proposes a prototype of a software toolbox, which tries
to fulfill these requirements. The prototype has been implemented as a MatLab c©
interface to initially improve the access to the Neural Network Toolbox c© algorithms
and commands. The continuation of this work should be the implementation of the
prototype in a free programming language.

6.2 Toolbox features

The proposed toolbox, named NeuroPOLI, is a prototype of a RF/microwave ori-
ented software tool, to help an electronic engineer to quickly develop neural models
for communications systems components; at both device and circuit-levels; and for
linear or nonlinear simulations. The software is written for typical electronic design-
ers who are not neural network experts but would like to immediately get started
with this new technology. The toolbox prototype has been implemented using the
MatLab c© GUI (Graphical User Interface).

Some of NeuroPOLI main features are:

• Model creation and editing: the toolbox allows for easily create a neural net-
work model. The built-in default automatically defines a model structure and
number of neurons, based on the file containing the input/output data or
measurements. The user can choose from some templates to define customer
neural models.

• Training: the toolbox automatically trains the neural model with the data,
choosing the proper learning algorithm by default. In a future version of the
prototype, the program will have a feature which, intelligently, will adjust
the neural model size and training methods to achieve the required model
accuracy. User can modify any training defaults.

• Learning methods: backpropagation methods of second order are supported
(Levenberg-Marquardt algorithm).

• Activation functions: the functions that can be used as activation for the
neurons are: sigmoid, hyperbolic tangent, linear, cubic. The supported neural
models types are multilayer perceptron (MLP) and time-delayed neural models
(TDNN).
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6 – Toolbox for behavioral model development

• Test: the performance of neural model can be verified using an independent
set of data. User can also evaluate interpolation and extrapolation capabilities
of the model.

• Plot: the results of the training and simulation steps can be seen graphically.

• Export: the trained neural model can be exported to the own user-environment
as a full-back-box model, be it a spreadsheet or a simulator.

Figure 6.1. Schematics representation of NeuroPOLI functioning.

A block representation of the functioning of the proposed toolbox is shown in
figure 6.1. A neural network model developed by the toolbox based on real de-
vice/circuit measurements/simulations can be exported as a behavioral model, to
be used inside a commercial simulator for circuit simulation, design and optimiza-
tion.

Figure 6.2 shows a flowchart with the model development process inside the
proposed toolbox. The measurements data files generated from laboratory mea-
surements are directly loaded into the toolbox. They have to follow a specific for-
mat, which allows for the automatic detection of number of input/output variables.
Therefore, from the detection of the variables from the measurements, the NN model
is automatically created. The designer can change the original networks design pro-
posed by the toolbox and set some model parameters, such as number of hidden
neurons and activation functions.

Once the model has been defined, it can be trained and/or simulated with the
measurements, up to a user-defined accuracy (mean square error of the NN). If after
training the desired accuracy has been reached, the model can be save (exported)
as a text file which will include the NN model and its parameters values, and it
can also be saved as a Volterra model extracted from the NN model. The toolbox
includes an algorithm which automatically implements the formulas that have been
presented in chapter 4 for the Volterra kernels extraction and Volterra series model
generation.

The NN/Volterra models are saved into files, which afterwards are loaded as a
device or circuit behavioral model inside a commercial circuit simulator, i.e. using a
netlist file suitable to implement the model in a symbolically-defined-device (SDD),
as was shown in the previous chapter.
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6 – Toolbox for behavioral model development

Figure 6.2. Flowchart of the proposed automatic behavioral model development
toolbox.

6.3 Graphical User Interface

The graphical user interface provides support for model creation from input/output
simulation or measurements data, as well as the visualization and control of the sim-
ulation itself. Snapshots of its windows are described in the subsequent paragraphs.

One interface of the prototype is presented in figure 6.3. The interface has been
programmed taking into account the classical windows style, grouping into a menu
the options which have to be available to most of the interfaces (windows), and
activating/deactivating the menu options accordingly.

Figure 6.4 shows the main control screen of NeuroPOLI, which allows the creation
and opening of behavioral neural network-based models. The menu options are
displayed to show the toolbox features.

6.3.1 Model creation

Figure 6.5 and 6.6 are snapshots of the new and open interfaces, respectively. For
the creation of a new model, as the model is created from measurements, the files
containing them have to be localized (the input data and the corresponding output
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6 – Toolbox for behavioral model development

Figure 6.3. NeuroPOLI prototype: about interface.

Figure 6.4. NeuroPOLI prototype: main screen and menu options.

data). Once these files have been loaded, the input/output variables are automat-
ically detected and a neural model topology (number of hidden neurons, type of
network model, activation function) is suggested, which the user can change. The
neural model parameters (weights, bias, etc.) are automatically initialized as well.
Once the model has been created, it can be saved into a file.

An existing model can be loaded into memory to work with it. The neural
model and its associated information will be automatically detected (such as the
model approximation error).

Once the model has been created, it can be trained to adjust and learn the
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6 – Toolbox for behavioral model development

Figure 6.5. NeuroPOLI prototype: new model interface.

Figure 6.6. NeuroPOLI prototype: open model interface.
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6 – Toolbox for behavioral model development

measurements data, using the train and/or simulate menu options.

6.3.2 Model training and simulation

The train and simulate windows of the prototype appear on figure 6.7 and 6.8,
respectively. The train interface allows to set the training algorithm parameters
such as the stopping criteria (number of epochs or error level), and hiding or not
the performance plot.

Figure 6.7. NeuroPOLI prototype: train model interface.

The simulate interface allows to simulate a model, that it to say to generate the
model response to certain input data, and the network response can be compared
to the measurements data using the plot menu option.

6.3.3 Volterra model generation

The Volterra series model associated to a neural model can be automatically gen-
erated by choosing the corresponding menu option. By default the Volterra series
model is created into a .txt file and a model windows alerts the correct model
creation. This file afterwards can be loaded as a black-box model into a commercial
circuits simulator.
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6 – Toolbox for behavioral model development

Figure 6.8. NeuroPOLI prototype: simulate model interface.

Figure 6.9. NeuroPOLI prototype: Volterra model generation interface.

6.3.4 Plotting

The plot menu option plots all the available data about the model and the mea-
surements. The variable names are automatically extracted from the measurements
data and correctly showed in the plots, even when some input variables may have
associated delays.

6.4 Application examples

In this section two examples ar presented. The first example demonstrates the use
of the software toolbox use for creation of a transistor behavioral model. The second
example shows a power amplifier model and simulation results.
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6 – Toolbox for behavioral model development

6.4.1 Transistor modeling and simulation

In this example, input/output time-domain measurements of the parameters Vds,
Vgs and Ids are used to create a neural network model.

From the main menu, the option new model is selected, which opens the windows
shown in figure 6.10, where the files containing the measurements are selected. The
files are .txt files which follow a certain template. The variables (and their delays if
they are part of the model) must be defined with their corresponding names inside
the test file. An automatic procedure extracts the name and the number of variables.
The user can define the type of network that will be created. In this example, a
TDNN model will be created.

Figure 6.10. NeuroPOLI prototype: new transistor model definition.

In the shown example, the number of inputs to the neural model is 6 and the
output is 1 variable. Actually the input variables are only two (Vds and Vgs) with
two delays each, which makes a total of 6 inputs. The model is given a name (in
the example, transistor) and it is saved.

Now the model and plot options are activated. The model can be trained with
the measurements, as shows figure 6.11, and the results can be plot. If the plot
option of the menu is chosen, the result is figure 6.12.
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6 – Toolbox for behavioral model development

Figure 6.11. NeuroPOLI prototype: transistor model training.

Figure 6.12. NeuroPOLI prototype: plots of the transistor model.

94

si
nc

(i
) 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
Si

gn
al

s,
 S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

; "
N

on
lin

ea
r 

R
F/

M
ic

ro
w

av
e 

de
vi

ce
 a

nd
 s

ys
te

m
 m

od
el

in
g 

us
in

g 
ne

ur
al

 n
et

w
or

ks
"

Po
lit

ec
ni

co
 d

i T
or

in
o,

 d
ec

, 2
00

5.



6 – Toolbox for behavioral model development

6.4.2 Power Amplifier modeling and simulation

In this example, Pin/Pout time-domain measurements of a power amplifier are used
to create a neural network model. In this case the parameters chosen in the new
model window appear in figure 6.13.

Figure 6.13. NeuroPOLI prototype: new power amplifier model definition.

In this case the model has only one input variable and two delayed samples,
therefore the toolbox recognizes that the neural model should have 3 inputs.

This model is trained (figure 6.14) and then the results are plotted (figure 6.15).

6.5 Summary

This chapter explained the software toolbox prototype that has been designed as
result of this thesis to support the creation and use of behavioral models based on
the neural network paradigm. At the end of the chapter, examples of applications
of the toolbox to electronic devices modeling have been shown.
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6 – Toolbox for behavioral model development

Figure 6.14. NeuroPOLI prototype: power amplifier model training.

Figure 6.15. NeuroPOLI prototype: power amplifier model plot.
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Chapter 7

Conclusions

This chapter presents the conclusions of this work.

7.1 Introduction

This thesis has been motivated by the increasing importance of Radio-Frequency
(RF) and Microwave Engineering, as a consequence of the the exceptional world-
wide growth in digital mobile communication systems and wireless applications.

Modern communications systems composed by RF/Microwave electronic devices
or sub-systems generally have nonlinear behavior, rich in high-frequency dynamics.
For analysis and design purposes, they have to be replaced by realistic models,
which must particularly take into account this dinamicity and nonlinearity, which
influence the whole systems performance. The wireless communications market is
very important commercially and therefore there is a big interest in finding good
suitable models to use in the RF system design process.

In recent years the measurement-based modeling technique has been identified
as a particularly critical issue for simulation time reduction without loosing accu-
racy. Behavioral models have become the object of extensive research during the
last few years as a black-box, technology independent tool to model off-the-shelf
devices or sub-systems starting from conventional or ad-hoc measurements. In par-
ticular, a new technique that has received increasing attention for the development
of behavioral models is the Neural Network approach.

This PhD thesis proposed a new behavioral model, which could be applied for
the modeling of electronic components of a communication system (devices or sub-
systems), reproducing accurately their nonlinear and dynamic behavior using a neu-
ral network-based approach. Measurements have demonstrated the validity of the
modeling approach, both for static device characterization in DC transistors and
strong nonlinearities and memory effect characterization in power amplifiers.
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7 – Conclusions

Moreover, an efficient procedure to extract Volterra kernels in the time-domain
from the parameters of the neural network has been proposed, thus providing a
simple way to construct very compact and accurate Volterra models. Even if neural
models are often more accurate to characterize hard nonlinearities, Volterra-series
behavioral models provide open information about the nonlinear behavior, and their
implementation in circuit simulators is generally less time-consuming.

Due to need of an adequate support to the process of behavioral model generation
and use, this thesis also proposed a prototype of a software toolbox for the creation
and use of neural models and implementation inside a commercial RF CAD circuits
simulator.

7.2 Main contributions

The main contributions of this thesis to the RF/Microwave field can be summarized
as follows:

New behavioral model: A new compact and highly accurate behavioral model
is proposed, to be applied for the modeling of devices or sub-systems of a
communication system, reproducing their nonlinear behavior using a neural
network-based approach.

Volterra series model generation: Automatically and straight-forward proce-
dure for Volterra model generation and kernels extraction. The procedure
can be applied also in the case of a nonlinearity that depends on more than
one variable. It allows obtaining a full black-box model, independently of the
physical circuit under study.

Toolbox for behavioral model development: A prototype of a software tool-
box specially deigned for electronics engineers, which would like to use behav-
ioral models and are not familiar with the neural networks theory.

Behavioral model implementation: A template for efficient implementation of
the behavioral model inside a commercial circuits simulation has been provided
as well, allowing fast simulation.
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Appendix A

Volterra identification procedure

In this chapter, the procedure that allows obtaining the Volterra kernels from the
parameters of a neural network model, procedure which has been first addressed in
[89], is explained in detail. The second part of the appendix show the codification
of the obtained formulas.

A.1 Algorithm

In the following lines, the procedure that allows calculatin the Volterra kernels from
the parameters of a neural network model, will be shown. To make the explanation
more clear, a simple example will be used.

Let us suppose a neural model which has to reflect a one input (x)/one output(y)
dependence. The neural model reflects also a dynamical dependence on the input
(past values). For example, it may take into account not only the actual value (at
time t) of the input variable but also a delayed sample (at time t-1), as shows figure
A.1. This network is a time-delayed neural network (TDNN) which receives two
input values and produces one output. The hidden neurons activation function has
been chosen to be the hyperbolic tangent. Instead, the output neuron activation
function in linear. All the neurons have bias values, which allows having more
degrees of freedom when making the model learn a nonlinear behavior.

Using the convention for naming the TDNN parameters (weights and bias) which
has been presented in chapter 4, the output of the model should be equation A.1.
If this equation is specialized for the TDNN model under consideration, with N=1
and H=2, the result is equation A.2.

y(t) = b0 +
H∑

h=1

w2
h tanh

(
bh +

N∑
i=0

w1
h,i+1x(t− i)

)
(A.1)
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A – Volterra identification procedure

Figure A.1. Example of a simple TDNN model.

y(t) = b0 +

w2
1 tanh

(
b1 + w1

1,1x(t) + w1
1,2x(t− 1)

)
+

w2
2 tanh

(
b2 + w1

2,1x(t) + w1
2,2x(t− 1)

)
. (A.2)

In [90] it has been proved that if a neuron activation function is considered
in terms of its Taylor series equivalent (e.g. a polynomial), the neuron bias acts
to change the output function. Therefore, if the hidden neurons in a network have
different bias values, each hidden neuron can be considered as a different polynomial
output function, ph(x), which can be written as equation A.3.

ph(x) = a0h + a1hx + a2hx
2 + a3hx

3 + · · ·+ anhx
n. (A.3)

The TDNN model we are analyzing has two hidden neurons. Their corresponding
output polynomials would be the following:

p1(x) = a01 + a11x + a21x
2 + a31x

3 + · · · (A.4)

p2(x) = a02 + a12x + a22x
2 + a32x

3 + · · · (A.5)

where x =
∑N

i=0 w1
h,i+1x(t − i). Combining equation A.2 and A.4, replacing

tanh(bh + x) by ph(x), results in equation A.6.

y(t) = b0 +

w2
1

[
a01 + a11

(
w1

1,1x(t) + w1
1,2x(t− 1)

)
+ a21

(
w1

1,1x(t) + w1
1,2x(t− 1)

)2
+ · · ·

]
+

w2
2

[
a02 + a12

(
w1

2,1x(t) + w1
2,2x(t− 1)

)
+ a22

(
w1

2,1x(t) + w1
2,2x(t− 1)

)2
+ · · ·

]
(A.6)
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A – Volterra identification procedure

Distributing and gathering like terms, we get equation A.7.

y(t) = b0 + w2
1a01 + w2

2a02 +

w2
1a11

[
w1

1,1x(t) + w1
1,2x(t− 1)

]
+ w2

2a12

(
w1

2,1x(t) + w1
2,2x(t− 1)

)
+

w2
1a21

[
w1

1,1x(t) + w1
1,2x(t− 1)

]2
+ w2

2a22

[
w1

2,1x(t) + w1
2,2x(t− 1)

]2
+ · · ·

= b0 + w2
1a01 + w2

2a02 +[
w2

1w
1
1,1a11 + w2

2w
1
2,1a12

]
x(t) +[

w2
1w

1
1,2a11 + w2

2w
1
2,2a12

]
x(t− 1) +[

w2
1(w

1
1,1)

2a21 + w2
2(w

1
2,1)

2a22

]
x(t)2 +[

w2
1(w

1
1,2)

2a21 + w2
2(w

1
2,2)

2a22

]
x(t− 1)2 +[

w2
1w

1
1,1w

1
1,2a21 + w2

2w
1
2,1w

1
2,2a22

]
x(t)x(t− 1) + · · · (A.7)

If this last equation is compared to the Volterra series model - reproduced in
equation A.8 - they are equivalent, and the Volterra kernels are identified as the
terms between brackets.

y(t) = h0 +

[h1(k)]x(t) +

[h1(k)]x(t− 1) +

[h2(k1,k1)]x(t)2 +

[h2(k2,k2)]x(t− 1)2 +

[h2(k1,k2)]x(t)x(t− 1) + · · · (A.8)

The comparison shows that the TDNN model is equivalent to a finite memory
discrete Volterra series and the Volterra kernels can be calculated using the following
formulas.

h0 = b0 +
H∑

h=1

w2
ha0h (A.9)

h1(k) =
H∑

h=1

w2
hw

1
h,ka1h (A.10)

h2(k1,k2) =
H∑

h=1

w2
hw

1
h,k1

w1
h,k2

a2h (A.11)

hn(k1, · · · ,kn) =
H∑

h=1

w2
hw

1
h,k1

· · ·w1
h,kn

anh (A.12)
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A – Volterra identification procedure

Now, the hidden node polynomials coefficients anh have to be calculated. To do
this we have to remember that we have used a Taylor expansion in the hidden units
for replacing the activation function tanh. But, if as suggested in [90], this expansion
is evaluated around the bias values of the hidden nodes (instead of around zero), then
the polynomials coefficients can be calculated with the derivatives of the activation
function, in this case tanh, with respect to the bias. Therefore, the formula for
calculating the coefficient anh, of the dth power, is given by,

anh =
1

d!

(
∂d tanh

∂xd
|x=bh

)
(A.13)

Putting all the pieces of the presented procedure together, we arrive at the
formulas that have been presented in chapter 4 (reproduced below, where tanh
means tanh(bh)), which allow calculating any kernel order from a TDNN model
with any topology (any number of input neurons, any number of hidden neurons)
and the hyperbolic tangent as activation function of the hidden nodes.

h0 = b0 +
H∑

h=1

w2
h tanh (A.14)

h1(k) =
H∑

h=1

w2
hw

1
h,k+1

(
1− tanh2

)
(A.15)

h2(k1,k2) =
H∑

h=1

w2
hw

1
h,k1+1w

1
h,k2+1

(
−2 tanh +2 tanh3

)
2!

(A.16)

h3(k1,k2,k3) =
H∑

h=1

w2
hw

1
h,k1+1w

1
h,k2+1w

1
h,k3+1

(
−2 + 8 tanh2−6 tanh4

)
3!

(A.17)

hn(k1, · · · ,kn) =
H∑

h=1

w2
hw

1
h,k1+1 · · ·w1

h,kn+1

(
∂n tanh

∂xn |x=bh

)
n!

(A.18)

A.2 Coding

The code of the function that obtains a Volterra series model from a neural network
model is presented in the following code lines. This functions is used when the
Volterra models is calculated from a TDNN mdoel with tanh activation function. It
implements the formulas that are presented in chapter 4.

-----------------------------

function[VolterraSeries,H0,H1,H2,H3]=NN Volterra(Input,Output,NN)

-------------------------
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A – Volterra identification procedure

% Output parameters:

% VolterraSeries: output Volterra series

% H0: Volterra kernel of order 0

% H1: matrix with the Volterra kernels of order 1

% H2: matrix with the Volterra kernels of order 2

% H3: matrix with the Volterra kernels of order 3

% Input parameters:

% Input: input values

% Output: output values

% NN: neural network model

-------------------------

% Extraction of parameters from the NN

H = size(NN.LW{1},1); % number of NN hidden neurons

W = NN.IW{1,1}; % input weights matrix

C = NN.LW{2,1}; % hidden neurons weights matrix

B = NN.b{1}; % hidden neurons bias matrix

D = NN.b{2}(1); % hidden neurons bias matrix

--------------------------

% Calculation of Volterra kernel of order 0

H0 = D;
for h = 1:H

H0 = h0 + C(h). ∗ tanh(B(h));
end;

---------------------------

% Calculation of Volterra kernel of order 1

for m = 1:M, for h = 1:H,

H1(m) = H1(m) + C(h) ∗W (h,m) ∗ (1− tanh(B(h))2);
end,end;

% H1 = [ h1(0), h1(1), h1(2), ... ]

--------------------------

% Calculation of Volterra kernel of order 2

for m = 1:M, for k = 1:M, for h = 1:H,

H2(m,k) = H2(m,k) + C(h) ∗W (h,m) ∗W (h,k) ∗ [−2∗tanh(B(h))+2∗(tanh(B(h))3)
2

];
end,end,end;

% H2 = [ h2(0,0) h2(0,1) h2(0,2) ...

% h2(1,0) h2(1,1) h2(1,2) ...

% h2(2,0) h2(2,1) h2(2,2) ... ]

---------------------------

% Calculation of Volterra kernel of order 3

for m = 1:M, for k = 1:M, for h = 1:H

if m == k
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A – Volterra identification procedure

H3(m,k) = H3(m,k) + C(h) ∗W (h,m)2 ∗W (h,k) ∗ [−2+8∗tanh(B(h))2−6∗tanh(B(h))4

6
];

else

H3(m,k) = H3(m,k) + 3 ∗C(h) ∗W (h,m)2 ∗W (h,k) ∗ [−2+8∗tanh(B(h))2−6∗tanh(B(h))4

6
];

end,

end,end,end;

% H3 = [ h3(0,0,0) h3(0,0,1) h3(0,0,2) ...

% h3(1,1,0) h3(1,1,1) h3(1,1,2) ...

% h3(2,2,0) h3(2,2,1) h3(2,2,2) ...]

-----------------------------

% Volterra Analytical model

V 1=h0;

for m = 1:M,

V 1 = V 1 + V in(m, :). ∗H1(m);
end;

V 2=V 1;

for m = 1:M, for h = 1:M,

V 2 = V 2 + V in(m, :). ∗ V in(h, :). ∗H2(m,h)
end,end;

V 3=V 2;

for m = 1:M, for h = 1:M,

V 3 = V 3 + V in(m, :). ∗ V in(m, :). ∗ V in(h, :). ∗H3(m,h);
end,end;

-----------------------------

VolterraSeries=V 3;

-----------------------------

A.3 Summary

This appendix began with a detailed explanation of the procedure that allows ob-
taining the Volterra kernels from a neural network and its parameters. Finally, the
code that implements the presented formulas and that has been used to automati-
cally calculate the Volterra kernels was shown.
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